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Abstract 

In this paper we describe the algorithms used in the 
BBN BYBLOS Continuous Speech Recognition system. 
The BYBLOS system uses context-dependent hidden 
Markov models of phonemes to provide a robust model of 
phonetic coarticulation. We provide an update of the 
ongoing research aimed at improving the recognition 
accuracy. In the first experiment we confirm the large 
improvement in accuracy that can be derived by using 
spectral derivative parameters in the recognition. In 
particular, the word error rate is reduced by a factor of  two. 
Currently the system achieves a word error rate of 2.9% 
when tested on the speaker-dependent part of the standard 
1000-Word DARPA Resource Management Database 
using the Word-Pair grammar supplied with the database. 
When no grammar was used, the error rate is 15.3%. 
Finally, we present a method for smoothing the discrete 
densities on the states of the HMM, which is intended to 
alleviate the problem of insufficient training for detailed 
phonetic models. 

i. Introduction 

At BBN we have been involved in the development of 
Spoken Language Systems for almost two decades. As part 
of DARPA's Speech Understanding Research Program 
from 1971-1976, we developed a system that integrated 
continuous speech recognition with natural language 
understanding in a 1000-word travel management task; we 
call the system HWIM (Hear What I Mean). As part of 
another DARPA program, we have been working since 
1982 on a more advanced speech recognition system based 
on using Hidden Markov Models. The result of this work 
is the BYBLOS Continuous Speech Recognition System. 

The basic algorithms used in the BYBLOS 
Continuous Speech Recognition system have been 
described in several papers [1, 2, 3]. In Section 2 we give a 
brief review of the techniques currently used in the 
BYBLOS system. The two features that have made the 
largest improvements in recognition accuracy since 1982 

were the use of robust context-dependent phonetic models, 
and the addition of derivative spectral parameters in 
multiple codebooks. Each of these features used separately 
reduces the recognition error rate by a factor of  two. Taken 
together, they reduce the error rate by a factor of four. In 
Section 3 we present the latest recognition results for the 
BYBLOS system. In particular, we compare the 
recognition results with and without spectral derivative 
parameters. We also demonstrate, by testing the system on 
training data, that the recognition accuracy is likely to 
improve as more training data is made available. Since 
several similar systems have provided test results on this 
database it is possible to determine the benefits of 
particular algorithms. In particular, we compare the error 
rate for using discrete densities with that using continuous 
densities. We also compare the recognition accuracy for 
speaker-dependent models with that for speaker- 
independent models derived from a large number, of 
speakers. Finally, in Section 4, we present a method for 
smoothing the discrete densities on the states of the HNIM. 
The smoothing is intended to alleviate the problem of 
insufficient training for detailed phonetic models. 

2. The BYBLOS system 

The BYBLOS system uses context-dependent hidden 
Markov models (HMM) of phonemes to provide a robust 
model of coarticulation [ 1, 2]. Each phoneme is typically 
modeled as a HMM with three states that correspond 
roughly to the acoustics of the beginning, middle, and end 
of the phoneme. To model the acoustic coarticulation 
between phonemes, we define a separate HMM for each 
phoneme in each of its possible contexts. Since many of 
these phonetic contexts do not occur frequently enough to 
allow robust estimation of model parameters, we 
interpolate the detailed context-dependent phonetic models 
with models of the same phoneme that are dependent on 
less context. In this way we derive the benefit of word- 
based models for words with sufficient training and the 
generality of phoneme-based models for the rest. For 
example, we use triphone models that depend jointly on the 
preceding and following phonemes, we use diphone models 
that depend separately on the preceding or following 
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context, and we use context-independent models that are 
pooled across all instances o f  the phoneme. We have also 
experimented with models of the phoneme that depend on 
the particular word that the phoneme is in [3]. We average 
the probabilities of the different context-dependent models 
with weights that depend on the state within the phoneme 
and on the number of occurrences of each type of context 
in the training set. 

With each state of the HMM we associate a 
conditional probability density of the spectral features 
given that state. The basic spectral features are reel-scaled 
cepstral coefficients (MFCC)[4] and the log of the 
normalized total energy. We derive the MFCC by warping 
the log power spectrum of each frame of speech before 
computing the cepstrum (by inverse Fourier transform). A 
portion of  the training set of MFCC vectors is clustered to 
produce a codebook of spectral prototypes [5]. We 
typically use a codebook with 256 prototypes. Then for 
each frame we find the index of the nearest vector quantizer 
(VQ) prototype. The discrete probability density is 
therefore represented as a vector of 256 numbers indicating 
the probability of each VQ index given the state. 

The decoding algorithm used in the BYBLOS system 
has been described in [2]. The algorithm is a time- 
synchronous beam search for the most likely sequence of 
words, given the observed speech parameters. The 
algorithm is similar to the commonly used Viterhi 
algorithm with the exception that, when performing the 
state update within a word, the probability of being in a 
particular state is derived from the sum of the probabilities 
at each of the preceding states. This is contrasted with the 
standard Viterbi algorithm, in which we use the maximum 
over the preceding states. This algorithm more nearly 
computes the correct likelihood function for each sequence 
of words and was found to result in a small but consistent 
improvement over the standard Viterbi algorithm. As with 
the Viterbi algorithm, the search can be constrained by any 
f'mite-state grammar. It has also been used in a top-down 
search using context-free grammars. 

M u l t i p l e  C o d e b o o k s  

As shown by Furui [6], even though the sequence of 
spectral parameter vectors may be sufficient to reproduce a 
reasonable facsimile of the original speech, it is beneficial 
to explicitly include the derivatives of the spectral 
parameters in the recognition algorithm. To avoid 

problems associated with trying to estimate probability 
densities of large dimensional spaces, we use a separate 
VQ codebook and probability distribution for the steady 
state and derivative parameter sets. We multiply the 
probabilities for the different parameter sets as if they were 
independent [7l. During the past year we modified the 
BYBLOS system to use multiple sets of features. 
Currently, the BYBLOS system uses three sets of spectral 
features: 14 reel-scale cepstral coefficients, the 14 
derivatives of these parameters (computed as the derivative 

of a linear fit to 5 successive frames), and a third set 
containing the normalized total energy and the derivative of 
the energy. 

3. Results  

In this section we present the recognition results for 
the BYBLOS system under several different conditions. 
But first, we describe the database and the testing 
procedure used for all the results in this paper. 

DARPA Resource Management Database 

Most of the recent research with the system has been 
performed using the standard 1000-word DARPA Resource 
Management Database [8]. Tests were performed on the 
speaker-dependent portion of the database which contains 
the speech of 12 speakers. The training set for each 
speaker consists of 600 sentences averaging eight words or 
three seconds in length, for a total of about 30 minutes of 
speech. There are two test sets of 100 sentences each. The 
first test set is designated as "development test" and was 
distributed by the National Bureau of Standards for formal 
tests. 25 sentences from 8 of the 12 speakers were 
distributed in October, 1987; 25 different sentences from 
all 12 speakers were distributed in May, 1988. After these 
two formal tests, all I00 of the development test sentences 
were released for development purposes. The remaining 
100 test sentences, which were designated as "evaluation 
test", were also divided into 25 sentence groups and are 
being distributed in a similar manner for further formal 
testing. The first set of 25 was distributed for February, 
1989. In the remainder of this paper, we will refer to the 
different formal test sets by their date of distribution, (e.g. 
the Oct. '87 test set, etc.). 

In addition to the speech data itself, the database also 
contains a specification of two grammars to be used for 

testing and testing procedures to be used to assure that 
results from different research sites can be compared. 
Recognition runs typically are performed using an artificial 
"Word-Pair" grammar with perplexity 60 that allows all 
pairs of word classes that appear in the database, and with 
no grammar or perplexity 1000. The recognized strings ate 
automatically aligned to the tree word strings, and the 
number of word substitutions, insertions, and deletions are 
computed. The standard single-number measure of 
performance is the total word error, which is defined as 

%error = 100 substitutions + deletions + insertions 
total words 

When sentence error rate is quoted, (typically only when 
using a grammar) it is defined as the percentage of 
sentences with any error at all. 
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M u l t i p l e  C o d e b o o k  R e s u l t s  

We compared the recognition accuracy when the 
system used 14 steady state cepstral coefficients with that 
when it used three codebooks (including derivative and 
energy parameters). The comparison was made on the Oct. 
'87 test set of 8 speakers under the two grammar 
conditions. Table 1 below contains the results of  this 
comparison. As can be seen, the use of derivative (and 
energy) information reduced the error rate by about a factor 
of two under both grammar conditions. 

1 codebook  

3 c o d e b o o k s  

Word-Pair  

7.5 

3.6 

[ No G r a m m a r  

32.4 

18.0 

Table  I: Recognition error rate with 1 codebook 
with steady state parameters vs 3 codebooks with 
added derivative and energy parameters. 

The results given above for 3 codebooks were 
development results, in that the t~st set had been used 
several times. Therefore, we present below in Table 2 the 
results of testing the system on all 12 speakers on the May 
'88 and Feb '89 test sets for the first time, using the same 
phonetic word models as used above. 

The average word error rates were 3.4% and 2.9% 
when the Word-Pair grammar was used, and 16.2% and 
15.3% when no grammar was used. The difference 

May '88 

Feb '89 

Word-Pair  

3.4 

2.9 

No G r a m m a r  

16.2 

15.3 

Table  2: Recognition Results With and Without 
Grammar for May '88 and Feb '89 Test Sets 

between the error rates of the two test sessions is only 
marginally significant especially given the variation 
between speakers. Table 3 below shows the detailed 
results for the February '89 test sets for each of the 12 
speakers. The table gives the percent substitution, deletion, 
and insertion errors, in addition to the total word and 
sentence error rates. 

NO G R A M M A R  W O R D  P A I R  
] W o r d  W o r d  i Sent  

S u b  Del  Ins Err  Sub De l  Ins Err I~rr 

BEF 10.8 6.1 0.5 17.4 1.9 0.9 0.5 i 3.3 24.0 
C M R  14.6 3.3 3.3 21.2 2.8 0.9 0.5 I 4.2 24.0 
D A S  2.9 1.0 l 1.0 4.9 0.5 0.0 0.5 1.0 8.0 
D M S  8.6 2.3 1.1 12.0 I .I  1.1 0.0 2.2 12.0 
D T B  15.3 2.4 1.0 18.7 2.4 0.5 0.0 2.9 20.0 
D T D  13.1 2.3 1.4 16.8 2.3 0.0 0.9 3.2i  20.0 
ERS ! I7 .7  2.9 2.9 33.5 1.1 1.7 0.6 3.4 16.0 
H X S  I 6.1 1.9 1.9 9,9 0.9 1.4 0.0 2.3 16.0 
JWS i 7.7 1.7 0.0 0.4 1.7 0.4 0.0 2.1 20.0 
PGH I 8.8 1.4 2.8 15.0 1.8 0.5 0.0 2.3 20.0 
R K M  13.2 4.7 4.3 22.2 3.4! 1.3 0.4 5.1 36.0 
TAB 10.6 2.3 2.3 15.2 1.8 i 0.9 0.0 2.7 24.0 

I 
Avg 10.8 2 .7  1.9 15.3 1.5 0.5 10.3 2.9 i 20.0 

Table 3: Detailed Recognition Results for Each of 
the Twelve Speakers on the Feb '89 Test Set. 
Results are given with and without the Word-Pair 
grammar. For each condition and speaker, the table 
shows the percent substitution, deletion, and 
insertion errors, and total word error. Percent 
sentence error is also given for the Word-Pair 
grammar. 

T e s t  o n  T r a i n i n g  

It is frequently instructive to measure the recognition 
performance of a system when it is tested on data that was 
included m the training set. In Table 4 below we compare 
the word and sentence recognition error rate when the 
system is tested on the training set versus when it is tested 
on an independent test set. The same acoustic models were 
used in both cases. Results are given for the Word-Pair 
grammar only. 

As can be seen, when the system is tested on training 
data, the error rates are very small. This large difference in 
performance indicates that there is not enough training data 
for the number of free parameters we have in our phonetic 
models. Therefore, we might expect that recognition 
accuracy would improve considerably as we add more 
training data. 

Word 
Error 

Sentence 
Error 

Independent  
Test  

2.9 - 3.4 

20.0 

Training 
D a n  

0.5 

2 . 7  

Table  4: Comparison of Results on Independent 
Test vs on Training Data. The Word-Pair grammar 
was used. 
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C o m p a r i s o n  o f  M e t h o d s  

Several other research groups have also reported their 
recognition results on this same database. Since, in many 
cases, the algorithms differ in only one or two aspects, it is 
possible to identify differences in performance with 
particular aspects of a system. In this section, we attempt 
to make two such comparisons: discrete vs continuous 
densities, and speaker-dependent vs speaker-independent 
models. The comparisons are made on the results provided 
for the May '88 test set because the different systems were 
most similar for this test set. We note that each of these 
systems has evolved since testing on this particular test set, 
and as a result their results have improved considerably as 
can be seen in the results presented for those systems 
elsewhere in this volume. 

The continuous speech recognition system developed 
at MIT Lincoln Labs by Doug Paul uses Gaussian 
probability densities to represent each of the states of the 
HMM instead of the discrete densities used in BYBLOS. 
In most other respects, the two systems are quite similar. 
The recognition accuracy for the speaker-dependent test on 
the May '88 test set was 5.5%, as compared with 3.4% for 
the BYBLOS system. It would appear, then, that 
continuous HMM densities do not necessarily provide 
improved results over discrete densities. 

Another comparison of interest is the relative 
performance of  speaker-dependent models versus speaker- 
independent models. While it is clear that, for any given 
duration of training, a speaker-dependent model (trained 
for the particular speaker using the system) should always 
result in much higher recognition accuracy, the practical 
question remains, "How much more training does a 
speaker-independent system need to give the same 
accuracy as a speaker-dependent system?" Three systems 
that are almost identical to BYBLOS have been used on the 
speaker-independent portion of the Resource Management 
Database. Two different training sets have been used in the 
tests on the May '88 test set: one with 72 different 

speakers containing 2880 sentences, and a larger one with 
105 speakers containing 4200 sentences. The test data used 
was the same as for the speaker-dependent test described 
above. 

When trained on 72 speakers the word error rate with 
the Word-Pair grammar was 10.1% for the Sphinx system 
of Carnegie Mellon University, I 1.4% for the Decipher 
system of Stanford Research Institute, and 13.1% for the 
Lincoln Labs system. The Sphinx system and the Decipher 
system both use discrete densities similar to those used in 
BYBLOS. When trained on 105 speakers, the error rates 
for Sphinx and the Lincoln system were 8.9% and 10.1% 
respectively. Thus, the BYBLOS system with speaker- 
dependent training with five to seven times less training 
data has roughly 1/2 to 1/3 the error rate of the speaker- 

independent trained systems. It would be interesting to 
fred out how much additional speech is needed for speaker- 
independent training to result in the same performance as 
30-minute speaker-dependent training. 

4. Robust Smoothing for 
Discrete Probability Densities 

Much of the research in speech recognition is devoted 
to improving the structure of the statistical model of 
speech. Frequently, improving the model involves 
increasing the complexity or dimensionality of the model. 
For example, we use context-dependent phonetic models, 
which increases the number of models. We add features, 
such as spectral derivatives, which increases the 
dimensionality of the feature space. We use a non- 
parametric probability density function (pdf) to have 
flexibility in the model, but we lose the benefit of the 
compactness of a parametric model. Each of these 
improvements comes with an increase in the effective 
number of degrees of freedom in our model. 
Unfortunately, more training data is needed to estimate 
reliably the increased number of free parameters. 
Conversely, faced with a fixed amount of training data, we 
must limit the number of free parameters or else our 
"improvements" will not be realized. 

As described above the BBN BYBLOS Continuous 
Speech Recognition system uses discrete nonparametric 
pdfs of context-dependent phonetic models. Most of these 
pdfs are trained with only a few tokens of speech (typically 
between 1 and 1'0). These discrete distributions work 
surprisingly well, given the small amount of training. 

However, they are certainly prone to the problem of 
spectral types that do not appear in the training set for a 
given model, but are, in fact, likely to occur for that model. 
The results presented in Table 4 in Section 2 indicate that 
there is a large difference in recognition rate when the 
system is tested on the training data and on independent 
test data. Therefore, we tried to find a smoothing algorithm 
that would reduce the number of probabilities that are low 
purely due to a lack of training. Below we describe a 
general smoothing method based on using a probabilistic 
smoothing matrix [9]. 

For each state of a discrete HMM, we have a discrete 
probability density function (pdf) defined over a fixed set, 
N, of spectral templates. For example, in the BYBLOS 
system we typically use a vector quantization (VQ) 
codebook of size N=256 [5]. The index of the closest 
template is referred to below as the V Q  index or the 
spectral bin. We can view the discrete pdf for each state s 
as a probability row vector 

p(s) = [P(klls), P(k21s) . . . . .  p (k~s)] ,  (2) 

where P(kils) is the probability of spectral template k i at 

9 7  



state s. We can imagine that the probabilities of different 
spectra are related in that, for each spectrum that has a high 
probability for a given lxtf, there are several other spectra 
that are also likely to have high probabilities. These might 
be "nearby" spectra, or they might just be statistically 
related. We represent this relation by p(kj4ki), the 
probability that if spectrum k i occurs, the spectrum kj will 
occur also. The set of probabilities p(k~4k i) for all i and j 

form an N x N  smoothing matrix, T, where Tij = p(k14ki). 

If we multiply the original pdf row vector p(s) by the 
smoothing matrix, we get a smoothed pdf row vector. 

Psmooth(S) = Porig(S) × T. (3) 

In our experiments we use a separate smoothing matrix for 
each phoneme. This matrix is combined with the 
phoneme-independent matrix to ensure robustness. 

The amount of training available for different models 
varies considerably, from one or two tokens for the 
majority of the triphone-dependent models to hundreds of 
tokens for the more common models. Clearly, we don't 
want to smooth a model as much ff it was estimated from a 
large number of training tokens. Therefore we recombine 
the smoothed pdf above with the original pdf using a 
weight w(s) that depends on the number of training tokens 
of the model. Thus the final pdf used is given by 

p//nafls) = w(s)Porig(s) + [l-w(s)]Psmooth(S). (4) 

The weight w is made proportional to the log of the number 
of training tokens, N T. 

w(s) = rain[0.99, 0.5 lOgl0NT(S)] (5) 

This equation is illustrated in Figure 1. 

1 
1.o 

o.s 

o.o 
10 100 

N u m b e r  of  O c c u r r e n c e s  (N)  

Figure I: Weight w for original model as a 
function of  the number of training tokens, N T 

Estimating the Matrix 

We have tried three techniques for estimating the 
smoothing matrix: Parzen smoothing, self adaptation 
cooccurrence smoothing, and triphone cooccurrence 
smoothing. These methods were presented in a talk at 
Arden House in May 1988 and are described in detail in 
[10]. Since the third method worked best in our initial 

experiments, we will discuss only that method. 

After performing forward-backward training, we have 
a large number of context-dependent phonetic models. 
Most of  these (about 2,500) are triphone-dependem models. 
Each model has three different pdfs. These models contain 
a record of all of the VQ-index spectra that occurred for 
one part (one state) of a particular triphone. Thus, 
according to the Markov model, these spectra freely 
cooccur. For each pdf of each triphone model we count all 
permutations of  two VQ spectra in that pdf, weighted by 
their probabilities and by the number of training tokens of 
the model. Figure 2 illustrates this process for one pdf of 
one mode l  

No. o f  Oeeurren¢4. l  27  112  198  2O 

I ° ' I • S .2 112  3.00  S.00 2.00  

J, , ! .  t -  ° °  .oj 

Figure 2: Triphone Cooccurrence Matrix 
Estimation. pdf shown results in matrix increments 
shown. 

For example the pdf shown has VQ indices 27, 112, 
and 198 with probabilities 0.3, 0.5, 0.2 respectively. The 
model occurred 20 times in the training set. Therefore, we 
add 0.3 * 0.5 * 20 = 3.0 to entries (27,112) and (112.27) m 
the matrix. As with the second method, we keep a separate 
matrix for each phoneme and one phoneme-independent 
matrix. Each row is normalized to create probabilistic 
matrices. A method similar to this was developed 
independently by Lee [11]. However, in his method there 
was only one smoothing matrix, instead of one for each 
phoneme, and he estimated the matrix from context- 
independent models instead of triphone-dependent models. 
We believe that these differences result in too much 
smoothing. 

Recognition experiments using the word-pair 
grammar were performed with and without triphone 
cooccurrence smoothing on all three test sets. These results 
are shown below in Table 5. 
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Test Sot 

Tot  word , trot  r m  ft.) 
m 

Word-Pair No Grammar 

Baseline Smooth Baseline Smooth 

O • o  t ~ r ~  ' 
I 
, 3.6 3.0 18.0 19.2 (8 spkrs) I 

May '88 
(12 spkrs) 3.4* 2.7 16.2 * 15.2 

Feb. '89 
(12 spkrs) 2.9 * 3.1 * 15.3 * 13.8 * 

* Official test 

Table 5: Recognition Results With and Without 
Smoothing 

5. C o n c l u s i o n s  

2. 

3. 

4. 

5. 
We have described the BYBLOS Continuous Speech 

Recognition System. As expected, we found that adding 
the derivative and energy parameters in separate codebooks 
reduced the error rate by a factor of two, relative to using 
the steady state spectral parameters alone. The resulting 6. 
word error rate was 3.4% and 2.9% on two successive 
formal tests. We presented an algorithm for smoothing 
discrete probability densities when the training is 
insufficient. However the algorithm provided only a small 
gain in recognition accuracy when 30 minutes were 7. 
available for training. The HMM systems based on 
nonparametric discrete densities resulted in higher accuracy 
than the system that used continuous densities, leaving 
open the question of whether it is harmful to quantize the 
spectral parameters. The error rate of the speaker- 
dependent system when trained with 30 minutes of speech 8. 
was less than half that of similar speaker-independent 
systems trained on over 100 speakers with five to seven 
times the amount of speech. 
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