SOME COMPUTATIONAL PROPERTIES
OF TREE ADJOINING GRAMMARS*

K. Vijuy-Shankyr and Aravind K. Joshi

Department of Computer and Information Scicnce
Room 288 Moore School/D2
Univerait{ of Pennsylvania
P

Philade

ABSTRACT

Tree Adjoining Grammar (TAG) is a formalism for natural
language grammars. Some of the basic notions of TAG's were
introduced in {Joshi,Levy, and Takahashi 1975} and by [Joshi, 1983].
A detailed investigation of the linguistic relevance of TAG's has been
carried out in [Kroch and Joshi,1985). In this paper, we will describe
some pew results for TAG's, especially in the following areas: (1)
parsing complexity of TAG's, (2) some closure results for TAG's, and
(3) the relationship to Head grammars.

1. INTRODUCTION

Investigation of constrained grammatical systems from the
point of view of their linguistic adequacy and their computational
tractability has been a major concera of computational linguists for
the last several years. Generalized Phrase Structure grammara
(GPSG), Lexical Functional grammars’ {LFG), Phrase Linkiag
grammars {PLG), and Tree Adjoining grammars (TAG) are some
key examples of grammatical systems that have been and still
continue to be investigated along these lines.

Some of the basic notions of TAG's were introduced in [Joshi,
Levy, and Takahashi, 1975 and [Joshi,1983]. Some preliminary
investigations of the linguistic relevance and some computational
properties were also carried out in [Joshi,1983]. More recently, a
detailed investigation of the linguistic relevance of 1AG's were
carried out by [Kroch and Joshi,1985].

In this paper, we will describe some new results for TAG's,
especially in the following areas: (1) parsing complexity of TAG's, (2)
some closure results for TAG's, and (3) the relationship to Head
grammars. These topics will be covered in Sections 3, 4, and §
respectively. In section 2, we will give an introduction to TAG's. In
section 6, we will state some properties not discussed here. A detailed
exposition of these results is given in [Vijay-Shankar and Joshi,1985].

*This work was partislly supported by NSF Graante MCS-8210116-CER,
MC?—&-O:&N. We want to thaok Carl Pollard, Kelly Roach, David Searl, and
David Weir. We have benefited enormously by valuable discussions with them.

212

hia, PA 191C4

2. TREE ADJOINING GRAMMARS--TAG's

We now introduce tree adjoining grammars (TAG's). TAG's
are more powerful than CFG’s, both weakly and strongly.! TAG's
were first introduced in [Joshi, Levy, and Takahashi,1975] and

[Joshi,1983]. We include their description in this section to make the
paper self-contained.

We can define a tree adjoining grammar as follows. A tree
adjoining grammar G is a pair il,A; where | is a set of initial trees,

and A is a set of auxiliary trees.

A tree « is an initial tree if it is of the form

a =

That is, the root node of a is labelled S and the frontier nodes
are all terminal symbols. The internal nodes are all non-terminals.
A tree f is an acxiliary tree il it is of the form

That is, the root node of 8 is labelled with a non-terminal X
and the frontier nodes are all labelled with terminals symbols except
one which is labelled X. The node labelled by X on the frontier will
be called the foot node of 8. The [rontiers of initial trees belong to
X*, whereas the frontiers of the auxiliary trees belong to INIHU
L+N L.

We will now define a composition operation called adjoining
(or adjunction) which composes an auxiliary tree § with a tree 7.
Let 4 be a tree with a node n labelled X and let 8 be an auxiliary
tree with the root labelled with the same symbol X. (Note that 3
must have, by definition, a node (and only one} labelled X on the
frontier.)

1Grammars G1 and G2 are weakly equivalent if tbe string language of G1,
L(G1) == the string language of G2, L{G2). Gi and G2 are strongly equivaleat if
they are weakly equivalent and for each w in L{G1) = L(Gzl). both G1 and G2
sssign the same structural description to w. A grammar Gis wuk!.y adequate
for a (string) language L, if L{G) == L. G is strongly sdequate for L if LYG) ==L
and for each w in L, G assigns an ®appropriste® structural description to w. Tbe
notion of strong adequacy is undoubtedly not precise because it depends on the
notion of appropriate structural descriptions

Adjoining can now be defined as (ollov{s. Itpis tdjoinefl to 7
st the node n then the resulting tree 74’ is as shown in Fig. 2.1

below.

Figure u

The tree t dominated by X in v is excised, § is inserted at the
oode o in 7 and the tree t is attached to the foot node (labelled X) of
d, ie, B is inserted or adjoined to the node n in 7 pushing ¢t
downwards. Note that adjoining is not a substitution operation.

We will pow define

T(G): The set of all trees derived in G etarting from initial
trees in I. This set will be called the tree set of G.

L{G): The set of all terminal etrings which appear in the
frontier of the trees in T(G). This set will be called the string
language {or language) of G. If L is the string language of a TAG G
thea we say that L is a Tree-Adjoining Language (TAL). The
relationship betweea TAG's , coatext-free grammars, and the
corresponding string languages can be summarized as follows {{Joshi,
Levy, and Takahashi, 1975], {Joehi, 1983}).

Theorem 2.1: For every context-free grammar, G', there is an
equivalent TAG, G, both weakly and strongly.

Theorem 2.2: For every TAG, G, we bave the following

sitoations:

2. L{G) is context-free and there is a context-free grammar
G' that is strongly (end therefore weakly) equivalent to
G.

b. L(G) is context-free and there is no context-free grammar
G' that is equivalent to G. Of course, there must be a
coatext-free grammar that is weakly equivalent to G.

¢. L(G) is strictly context-sensitive. Obviously in this case,
there is no context-free grammar that is weakly
equivalent to G.

Parts (a) and {c) of Theorem 2.2 appear in ({Joshi, Levy, and
Takabashi, 1975]). Part (b) is implicit in that paper, but it is
impottant to state it explicitly as we have done here because of its
lingaistic significance. Example 2.1 illustrates part (a). We will now
illustrate parts (b) and (¢).

Example 2.2: Let G == (LA) where

I:
oy =
s
|
.
A
b= by =
S T
/\ I\
a T s
AN n
b [
H T -

7o=a= 12=
Se s
l /\I\
° 2,7
RIAN
/% S\b
! I\ \
1 ib \
l..___r___\
N
b
S
|
[]
1"
s
I\
¢ T A
I\
Sb
|
e
T = o With §, 73 = 7y with g,

adjoined at S as indicated in 75. adjoined at T as indicated in 7,.

Clearly, L(G), the string language of G is
L=1{a%eb®/n>o0}
which is a context-free language. Thus, there must exist s context-
free grammar, G’, which is at least weakly equivalent to G. It can be
shown however that there is no context-free grammar G’ which is
strongly equivalent to G, i.e, T(G) = T(G'). This follows from the
fact that the set T(G) (the tree set of G) is non-recognizable, ie.,
there is no finite state bottom-up tree automaton that can recognize
precisely T(G). Thus 3 TAG may generate a context-free language,
yet assign structural descriptions to the strings that cannot be
assigned by any context-free grammar,

Example 2.3: Let G == (I,A) where

1: o=
S
1
e
A ﬂ‘= ﬂz_
S
7\ /\
[3 a S
/1\ /N
71\ 7\
b § ¢ » T ¢

213

The precise definition of L(G) ia as follows:
L{G) =Ly = {wec® [n > o, wis a string of a's and b's such that
(1) the number of a's = the number of b's == u, and

(2) for any initial substring of w, the number
of a's > the number of b's. }

L, is a strictly context-sensitive language {i.e., a context-
sensitive language that is not context-free). This can be shown as

follows. Intersecting L with the regular language a°® b° ¢ ¢° results in
the language

Ly={8"b%ec®/n>0}=L,na"b"ec’

L, is well-known strictly context-sensitive language. The result
of intersecting a context-free language with a regular language is
always a context-free language; hence, L; is not a context-free
language. It is thus a strictly context-sensitive language. Example
2.3 thus illustrates part {c) of Theorem 2.2.

TAG's bave more power than CFG's. However, the extra
power is quite limited. The language L, has equal number of a's, b's
and c’s; however, the a's and b's are mixed in a certain way. The
language L, is similar to Ly, except that a's come before all b's.
TAG's as defined s0 far are not powerful enough to generate L,.
This can be seen as follows. Clearly, for any TAG for Ly, each
initial tree must contain equal number of a's, b's and ¢'s (including
1ero), and each auxiliary tree must also contain equal number of a's,
b’s and c's. Further in each case the a's must precede the b's. Then
it is easy to see from the grammar of Example 2.3, that it will not be
possible to avoid getting the a's and b's mixed. However, L, can be
generated by a TAG with local constraints (see Section 2.1) The so-
called copy language. ’

L={wew/w¢{afb)')

also cannot be generated by a TAG, however, again, with local
constraints. It is thus clear that TAG's can generate more than
context-free languages. It can be shown that TAG's cannot generate
all context-sensitive languages [Joshi ,1084].

Although TAG's are more powerful than CFG’s, this extra
power is highly constrained and apparently it is just the right kind
for characterizing certain structural descriptions. TAG's share almost
all the formal properties of CFG’s (more precisely, the corresponding
classes of languages), as we shall see in section 4 of this paper and
[Vijay-Shankar and Joshi,1985}. In addition,the string languages of
TAG's can also be parsed in polynomial time, in particular in O(a%).
The parsing algorithm is described in detail in section 3.

2.1, TAG's with Local Constraints on Adjolning
The adjoining operation as defined in Section 2.1 is *context-
free®. An auxiliary tree, say,

ﬂ::

is adjoinable to a tree ¢ at a node, say, n, if the label of that
pode is X. Adjoining does not depend on the context (tree context)
around the node n. In this sense, adjoining is context-free.

In [Joshi ,1083], local constraints on adjoining similar to those
investigated by [Joshi and Levy ,1977] were considered.These are a
generalization of the context-sensitive constraints studied by [Peters
and Ritchie ,1969]. It was soon recognized, however, that the full
power of these constraints was never fully utilized, both in the
linguistic context as well as in the *formal languages® of TAG's.
The so-called proper analysis contexts and domination contexts (2a
defined in [Joshi and Levy ,1977]) as used in [Joshi ,1083] always
turned out to be such that the context elements were always in a
specific elementary tree i.e., they were further localized by being in
the same eclementary tree. Based on this observation and a
suggestion in [Joshi, Levy and Takahashi ,1975), we will describe a
new way of introducing local constraints. This approach not only
captures the insight stated above, but it is truly in the spirit of
TAG's. The earlier approach was not so, although it was certainly
adequate for the investigation in [Joshi ,1983]. A precise
characterization of that approach still remains an opea problem.

G = (LLA) be a TAG with local constraints if for each
elementary tree t € I U A, and for each node, n, in t, we specify the
set f of auxiliary trees that can be adjoined at the node n. Note
that if there is no constraint thea all auxiliary trees are adjoinable at
n {of course, only those whose root has the same label as the label of
the node n). Thus, in general, A is a subset of the set of all the
auxiliary trees adjoinable at n.

We will adopt the following conventions.

—

. Since, by definition, no auxiliary trees are adjoinable to a
vode labelled by a terminal symbol, no constraint has to
be stated for node labelled by a terminal.

2. If there is no coustraint, i.e., all auxiliary trees (with the
appropriate root label) are adjoinable at a node, say, n
then we will not state this explicitly.

’

3. If po auxiliary trees are adjoinable at a node n, then we
will write the constraint as (¢), where ¢ denotes the pull
set.

4. We will alea allow for the possibility that for a node at
least one adjoining is obligatory, of course, from the set
of all possible auxiliary trees adjoinable at that node.
Hence, a TAG with local constraints is defined as follows. G =
(1, A) is a TAG with local constraints if for each node, n. in each tree
t, be specify one (and only one) of the following constraints.

1. Selective Adjoining {SA:) Ouly a specified subset of the
set of all auxiliary trees are adjoinable at n. SA is
written as (C), where C is a subset of the set of all
auxiliary trees adjoinable at n.

If C equals the set of all auxiliary trees adjoinable at n,
then we do not explicitly state this at the node n.

2. Null Adjoining (NA:) No auxiliary tree is adjoinable at
the node N. NA will be written as (¢).

3. Obligating Adjoining (OA:) At least one (out of all the
auxiliary trees adjoinable at n) must be adjoined at n.
OA is written as (OA), or as O(C) where C is a subset of
the set of all auxiliary trees adjoinable at n.

Example 2.4: Let G = (I,A) be 3 TAG with local constraints where

E a=
S (4)
/\
By s s (8

214

A: pla ﬂ’—

s (B § 5y
/\ /\

/ \ / A\
s s (¢ (¢ s b

In a; no auxiliary trees can be adjoined to the root node. Only
B, is adjoinable to the left S node at depth 1 and only f, is
adjoinable to the right S node at depth 1. In 8, only 8, is adjoinable
at the root node and no auxiliary trees are adjoinable at the fout
node. Similarly for f,.

We must now modify our definition of adjoining to take care of
the local constrainta. given a tree 7 with a node, say, u, labelled A
and given an auxiliary tree, say, g, with the root node labelled A, we
define adjoining as follows. f is adjoinable to v at the node o if § €
B, where f is the constraint associated with the node n in 7. The
result of adjoining A to 7 will be as defined in earlier, except that the
constraint C associated with n will be replaced by C’, the constraint
associated with the root node off and by C=, the constraint
associated with the foot node of 8. Thus, given

= ﬂ =
s A (C*)
/\ node n /\
/ A (C) / \
/ \
/7 \\ / \
A\ / \
----------- - —-—--A-_-—‘
(c*)

We also adopt the convention that any derived tree with a node
which has an OA constraint associated with it will not be included in

There are no coastraints in a,. In A no auxiliary trees are adjoinable
st the root node and the foot node and for the center S node there
are no constraints.

Starting with o, and adjoining A to a; at the root node we
obtain

9=

Adjoining A to the center S node (the only node at which
adjunction can be made) we have

v -
S (¢)
/1
/1
’\/'s‘(¢)
s/
’/II \ P
s S A —
fooom
,’ /A ‘\
p P '(3) \
s
ik [\
/ 1\
b | ¢
f(é)
‘o

It is casy to sec that G generates the string language

L={a%btec*/n>0}

s

Other languages such as l.,'=(a"2 |]n >1},L* = {a**|n > 1)
also cannot be generated by TAG's. This is because the strings of a
TAL grow linearly (for a detailed definite of the property called
*contact growth® property, see [Joshi ,1983].

the tree set associated with a TAG, G. The string language L of G is
then defined as the set of all terminal strings of all trecs derived in G
(starting with initial trees) which have no OA constraints left-in

them.

Example 2.5: Let G = (LLA) be a TAG with local constraints

where
I: a =
A B =

For those familiar with [Joshi, 1983], it is worth pointing out
that the SA coostraint is only abbreviating, i.e., it does not affect the
power of TAG's. The NA and OA constraints however do affect the
power of TAG's. This way of looking at local constraints has only
greatly simplified their statement, but it has also allowed us to
capture the insight that the 'locality’ of the constraint is statable in
terms of the elemeatary trees themselves!

3.3. Simple Linguistic Examples

We now give a couple of linguistic examples. Readers may refer
to [Kroch and Joshi, 1985] for details.

1. Starting with 7; == a; which is an initial trec and thea sdjoining
B, (with appropriate lexical insertions) at the indicated node in ay,
we obtain 7.

215

Nm=a = by =
S 14
/\ TAY
NPs VP P S
A A /\
DET N VNP WH §
[I I AN /\
I T B B RP VP
the girl | DET X { A
ia | | e V NP
s+ senior [
moet N
the girl is & sentor |
Bill
Ta =
S
/ \
/ \
Prat'4 \
t NP vP
IVAYR TAN
MAN / \

AYEEEAN N

DET X, /\\is DET K

1 tywd s\ | 1|
the girl) /_a senior

Fwe v

B AN
‘ -] vV NP \
\ N

. met | \‘ <« B
\

\ [

S oBi)

~
~N -

The girl who met Bill is a senior

2. Starting with the initial tree 94, = a, and adjoining A, at

the'indicated node in a, we obtain 7,.

v =ay= ﬂﬁ =
¢S u(ﬂz) S
/\ /\
NP VP P VP
| AN | /I\
PRO TO VP N /1A
N | VNP s (9)
V NP John | \
ot I\
invite N persuaded lll
: |
Mary Bill

John persuaded Bill S
T2 =

~o

I
{
{

John persuaded Bill to invite Mary

Note that the initial tree @, is not & matrix seotence. In order

for it to become a matrix sentence, it must undergo an adjunction at
its root node, for example, by the auxiliary tree g, as shown above.
Thus, for a, we will specify a local constraint O(8;) for the root

- pode, indicating that a, requires for it to undergo an adjunction at

the root node by an auxiliary tree f;. In a fuller grammar there will
be, of course, some alternatives in the scope of Of).

3. PARSING TREE-ADJOINING
LANGUAGES
3.1, Deflinitlons

We will give a few additiona! definitions. These are not
necessary for defining derivations in a TAG as defined in section 2.
However, they are introduced to help explain the parsing algorithm
and the proofs for some of the closure properties of TAL's.

DEFINITION 2.1 Let 7,7" be two trees.We say 7 |- 7' if in v we
adjoin an auxiliary tree to obtain 7.
=" is the reflexive,transitive closure of -

DEFINITION 3.3 7' is called a derived tree if ¥ =" 4" for some
elementary tree 4.
!We then say 7' € D(v).

The frontier of any derived tree - belongs to either L' N £+ y
I+ N L it 7€ D(8) for some auxiliary tree f, or to L' if 7 € D{a)
for some initial trece a. Note if ¥ € D(a) for eome initial tree a, then
7 is also a sentential tree.

It 8 is an auxiliary tree, ¥ € D{f) and the frontier of 7 is w, X
wy (X is a nonterminal,w,,w, € L") then the leaf node having this
non-terminal symbol X at the frontier is called the foot of 7.

Sometimes we will be loosely using the phrase ®adjoining with
a derived tree® 7 € D(f) for some auxiliary tree §. What we mean is
that suppose we adjoin 4 at some node and then adjoin within § and
so on, we can derive the desired derived tree € D(B) which uses the
same adjoining sequence and use.this resulting tree to ®adjoin® at
the original node.

3.2. The Parslng Algorithm

The algorithm, we preseat here to parse Tree-Adjoining
Languages (TALs), is a modification of the CYK algorithm (which is
described in detail in [Aho and Ullman,1073}), which uses a dynamic
programming technique to parse CFL's. For the sake of making our
description of the parsing algorithm simpler, we shall present the
algorithm for parsing without considering local constraints. We will
later show how to handle local constraints.

We shall assume that any node in the elementary trees in the
grammar has atmost two children. This assumption can be made
without any loss of generality, because it can be easily shown that
for any TAG G there is an equivalent TAG G, such that any node in
any elementary tree in G; has atmost two children. A similar
assumption is made in CYK algorithm. We use the terms ancestor
and descendant, throughout the paper as a traasitive and reflexive
relation, for example, the foot node may be called the ancestor of the
foot node.

The algorithm works as follows. Let a,...a, be the input to be
"parsed. We use a four-dimensional array A; each element of the
-array contains a subset of the nodes of derived trees. We say a node
X of a derived tree 7 belongs to Ali,j,k,l] if X dominates a sub-tree of
< whose frontier is given by either 8418 Y 3 4q..8, (where the
foot node of 7 is labelled by Y) or a;,,..a; (ie, j = k. This

216

corresponds to the case when 7 is a sentential tree). The indices
(i.k1) refer to the positions between the input symbols and range
over O through n. If i = 5 say, then it refers to the gap between ag
and ag.

Initially, we fill Ali,i+1,i4+1,i4+1] with those nodes in the
frontier of the elementary trees whose label is the same as the input
3;41 for 0 < i < n-1. The foot nodes of auxiliary trees will belong to
all Afi,i,j.j], such that i < .

We are now in a position to fill in all the elements of the array
A. There are five cases to be considered.

Case 1. We know that if a node X in a derived tree is the
ancestor of the foot node, and node Y is its right sibling, such that X
€ Alijkl and Y € Allm,m,n], then their parent, say, Z should
belong to Ali,jk,n], see Fig 3.1a.

Case 2. If the right sibling Y is the ancestor of the foot node
such that it belongs to Afl,m,n,p] and its left sibling X belongs to
AlijiJ], then we know that the parent Z of X and Y belongs to
Ali.m,5,p|, see Fig 3.1b

Case 3. If neither X nor its right sibling Y are the ancestors of
the foot node (or there is no foot node) then if X € Ali,j,j,}j and Y €
A|l,m,m,n] then their pareat Z belongs to Ali,j.j,n).

Case 4. If a node Z has only one child X, and if X € Ali,j,k,}],
theo obviously Z € Afijk,}]. “

Case S. If a node X € Ali,j,k,]], and the root Y of a derived
tree ¥ having the same label as that of X, belongs to A[m,i,l,n], then

adjoining 7 at X makes the resulting node to be in Alm,j,k,n], see Fig -

3.1e.
! () Y
(s) /x\ A
/I \ /7 \
/ \ / \
/ \ / \
2\ / \
/NN / \
\ / \
/i \ \ / \
/ * T o\ X -
YA I\ \ - I\
/N i /7 \ |
..... x' , \
st / \
T T T T B R
i Jjk 1 = 1 | : | :
® /x; 1 §J x 1
\
/ \
/ \
/I 2\
/I I\ N\
/ A\
/! \ \

Although we have stated that the elements of the array
contain a subeet of the nodes of derived trees, what really goes in
there are the addresses of nodes in the elementary trees. Thus the
the size of any set is bounded by a constant, deumi?cd by the
grammar. It is hoped that the presentation of the algorithm below
will make it clear why we do so.

3.3. The algorithm
The complete algorithm is given below
Step 1 For 1=0 to n-1 step 1 do

Step 2 put all nodes in the frontier of elementary
trees whose label is azyq in Afd,4¢1,441,141].

Step 3 For 1=0 to n-1 step 1 do
Stap 4 for }=i to n-1 step 1 do

Step b put foot nodes of all auxiliary trees in
Alt,1.5.1]

Step 6 For 1=0 to n stop 1 do

Step 7 For 1=1 to 0 step -1 do

.Step 8 For j=1 to 1 etep 1 do

Step 9 For k=1 to § step -1 do

Step 10 do Case 1

Step 11 do Case 2

Step 12 do Case 3

Step 13 do Case &

Step 14 do Case 4

Step 156 Accept 1f root of some initial tree € A(0,§.§.0],
0<j<n

where,

{a) Case 1 corresponds to situation where the left sibling is the
ancestor of the foot node. The parent is put in Afij,k,1] if the left
sibling is in Ali,j,k,m] and the right sibling is in A{m,p,p,I], where k
<m<Il,m<p,p <L Therefore Case 1 is written as

For m=k to 1-1 step 1 do
for p= s to 1 step 1 do

if there is a left sibling in Afi.j.k.a] and the
right sibling in Alm,p,p,1] satisfying appropriate
restrictions then put their parent
in Al1,§.k.1).

(b) Case 2 corresponds to the case where the right sibling is the
ancestor of the foot node. If the left sibling is in Ali,m,m,p] and the
right sibling is in Alp,j,k,l], i < m < p and p < j, then we put their
parent in Afi,jk,l]. This may be written as

For a=i to j-1 step 1 do
For p=m+l to § step 1 do

for all left siblings in A(i,m,m,p] and right
8iblings .
in Alp.§.k,1] satisfying sppropriate restrictions put
their parents
in Al4,4,Kx,1).

217

(c) Case 3 corresponds to the case where neither children are
ancestors of the foot node. If the left sibling € Ali,j.ji,m] and the right
" sibling € Alm,p,p.l] then we can put the parent in Ali,j,j}] if it is the
ciathit (i<j<mori<j<m)and(m<p<lorm<p<

" 1) This may be written as

for m = § to 1-1 step 1 do
for p=§ tol step 1 do
for all left siblings in A[i,§,],n] and

right siblings in Alm,p,p,1) satisfying the sppropriate
restrictions put their pareat in A{i,}.).1].

(¢} Case 6 corresponds to adjoining. If X is a node in Afm,j,k,p| and
Y is the root of a auxiliary tree with same symbol as that of X, such
that Y is in Alimpl] (i Sm <p<lori<m<p<land(m
<j<k<porm <)<k < p)) This may be written as

for m =1 to §J step 1 do
for p=m to 1 step 1 do
if a node X € Ala,},k,p] and the root of
auxiliary tree is in A{i,us,p,1] then put X in AlL.§.x.1]

Case 4 corresponds to the case where a node Y has only oue c‘bild X
If X € Ali,i,k,}] then put Y in Afi,jk]]. Repeat Case 4 again if Y has
no siblings.

3.4. Complexity of the Algorlithm

It is obvious that steps 10 through 15 {cases a-¢) are completed
in O(n?), because the different cases have at most two nested for
loop statements, the iterating variables taking values in the range 0
through n. They are repeated atmost O(n?) times, because of the
four loop statements in steps 6 through 9. The initialization phase
(steps 1 through 5) has a time complexity of O(n + n%) = O(n2).
Step 15 is completed in O(n). Therefore, the time complexity of the
parsing algorithm is O(n8).

3.5. Correctness of the Algorithm

The main issue in proving the algorithm correct, is to show
that while computing the contents of an element of the array A, we
must have already determined the contents of other elements of the
array needed to correctly complete this entry. We can show this
inductively by considering each case individually. We give an
informal argument below.

Case 1: We need to know the contents of Afi,j,k,m|, Alm,p,p,|
where m < 1, i < m, when we are trying to compute the contents of
Ali,j,k,}]. Since 1 is the variable itererated in the outermost loop (step
6), we can assume (by induction hypothesis) that for all m < I and
for all p,q,r, the contents of Alp,q,r,m| are already computed. Hence,
the contents of Ali,j,k,m] are known. Similarly, for all m > i, and
for all p,q, and r < |, A[m,p,q,1] would have been computed. Thus,
Alm,p,p,}] would also have been computed.

Case 2: By a similar reasoning, the contents of Ali,m,m,p] and
Alp.jk,l} are known since p < 1and p > i.

Case 3: When we are trying to compute the contents of some
Alij.ill, we need to know the nodes in Alij.j,p| and Alp,q.q.]]. Note j
> ior j < L Hence, we know that the contents of Ali,j,j,p] and

Alp.q.q,]] would have been computed already.

Case 5: The contents of Ali,m,p,]] and Alm,jk,p| must be
known in order to compute A[i,j,k,l}, where (i <m < p <lori <
mSpSl)and(mSj$k<porm<iSkSP)- Since
either m > i or p < |, contents of Alm,jk,p] will be known.
Similarly, since either m < j or k < p, the contents of Ali,m,p,l}
would have been computed.

218

3.6. Parsing with Local Constrainte

So far,we have assumed that the given grammar has no local
constraints. If the grammar has local constraints, it is easy to modify
the above algorithm to take care of them. Note that in Case 5,if an
adjunction occurs at a node X, we add X again to the element of the
array we are computing. This seems to be in contrast with our
definition of how to associate local constraints with the nodes in a
sentential tree. We should have added the root of the auxiliary tree
instead to the clement of the array being computed, since so far as
the local constraints are concerned,this pode decides the local
constraints at this node in the derived tree. However, this scheme
cannot be adopted in our algorithm for obvious reasons. We let pairs-
of the form (X,C) belong to elements of the array, where X is as

before and C represents the local constraints to be associated with
this node.

We then alter the algorithm as follows. If (X,C,) refers to a
node at which we attempt to adjoin with an auxiliary tree (whose
root is denoted by (Y,C,)), then adjunction would determined by C;.
If adjunction is allowed, then we can add (X,C,) in the corresponding
element of the array. In cases 1 through 4, we do not attempt to add

3 new clement if any ome of the children has an obligatory
constraint.

Once it has been determined that the given string belongs to
the language, we can find the parse in a way similar to the scheme
adopted in CYK algorithm.To make this process simpler and more
efficient, we can use pointers from the new element added to the
elements which caused it to be put there. For example, consider
Case 1 of the algorithm (step 10). If we add a node Z to Ali,j,Ll],
because of the presence of its children X and Y in Ali.j,k,m] and
Alm,p,p,l] respectively, then we add pointers from this node Z in
Alijk 1} to the nodes X, Y in Ali,j,k,m] and Alm,p,p,l]. Once this has
been done, the parse can be found by traversing the tree formed by
these pointers.

A parser based on the techniques described above is currently
being implemented and will be reported at time of presentation.

4. CLOSURE PROPERTIES OF TAG's

~.

In this section, we present some closure results for TALs. We
now informally sketch the proofs for the closure properties.
Interested readers may refer to [Vijay-Shankar and Joshi,1985] for
the complete proofs.

4.1. Closure under Unlon

Let G, and G, be two TAGs generating L; and L, respectively.
We can construct a TAG G such that L(G)=L, U L,.

Let Gy = (I, A;, N;, S), and G, = (I, Az, Np, S)
Without loss of generality, we may assume that the N; N Ny = ¢.
Let G = (I, ULy, A U Ag N UN,, S). We claim that L(G) = L,
UL,

Let x € L, UL, Then x € L, or x € Ly, If x € Ly, then it
must be possible to generate the string x in G, since I; , A, are in
G. Hence x € L(G). Similarly if x € Ly , we can show that x € L(G).
Heace L, U L, C L(G). If x € L(G), then x is derived using either
only I;, A or only I, Aj since Ny N Ny = ¢. Hence, x € Liorx€
L,. Thus, L(G) C L; UL,. Therefore, L{(G) = L, U L,.

4.2. Closure under Concatenation

Let G; =(1;,A|NyS)), Gy = (I5,A4,Ny,S;) be two TAGs
generating L, L, respectively, such that N, N Ny = 6. We can
construct 2 TAG G = (I, A, N, S) such that L(G)= L; . L,. We
chooee S such that S is not in N; UN,;. Welet N= N, UN, U
{S}, A=A UA, Forallt, €1y, ¢, €E1;, we add t;; to], 23 shown
in Fig 4.2.1. Therefore, I = { t;5 / t; € I}, t, € L}, where the nodes
in the subtrees t; and t; of the tree ¢;, have the same constraints
associated with them as in the original grammars G, and G;. It is
easy to show that L{G) = L, . L,, once we note that there are no
auxiliary trees in G rooted with the symbol S, and that N; N N, =
[

Sy Sq
ty = 7\ t = 7\
/I A\ /I N\
/ \ / \
S
'qg= /\
/7 \
/ \
/ \
S S2
/ \ / \
! Y\ / ta\

4.3. Closure under Kleene Star

Let G; = (I,,A;,N,,5,) be a TAG generating L;. We can show
that we can construct a TAG G such that L{G) = L,*. Let S be a
symbol not in Ny, and let N = N, U (S). We let the set I of initial
trees of G be (¢}, where ¢, is the tree shown in Fig 4.3a. The set of
auxiliary trees A is defined as

A={ta/t €L} UA,.

The tree t,, is as shown in Fig 4.3b, with the constraints on
the root of each tja being the oull adjoining constraint, no
constraints on the foot, and the constraints on the nodes of the
subtrees t; of the trees ¢ya being the same as thoee for the
corresponding nodes in the initial tree ¢, of G,.

To see why L(G) = L,°, consider x C L{G). Obviously, the tree
derived (whose frontier is given by x) must be of the form shown in
Fig 4.3¢, where cach ¢’ is a seatential tree in G,.such ¢’ € D(t;), for
an initial tree ¢; in Gy. Thus, L(G) C L,".

On the other hand, if x € L,”, then x = Wy Wy, W; €L, for 1
S i < u. Let cach w; then be the frontier of Liie sentential tree ¢}’ of
G, such that ¢; € D(t;), 4, € 1,. Obviously, we can derive the tree T,
using the initial tree t,, and bave a sequence of adjoining operations
using the auxiliary trees t;4 for 1 < i < n. From T we can obviously

obtfi_n the tree T’ the same as given by Fig 4.3c, using only the
suxiliary trees in A;. The fronticr of T" is obviously w;...w,. Hence, x

€ L(G). Therefore, L,* € L(G). Thus L(G) =L,".

(2) ty = s
/

s
() t4, = s (e) I\
/\ /s
/ N\ /7 I\
S Sy . /___.\("-"
/\
I \aty
I\ s
/ \
/5
s [/ \
I /__\et'y,
.
T.
Figure 4.3

4.4. Closure under Intersection with Regular Languages

Let Lp be a TAL and Lyp be a regular language. Let G be a
TAG generating Ly and M = (Q, ', §, qg , Q) be a finite state
automaton recognizing Lg. We can construct a grammar G and will
show that L(G,) == Lt N Lg.

Let a be an elementary tree in G, We shall associate with each
node a quadruple (q,,92,93.9,) Where q;,q2,.93.9¢ € Q. Let (q,.92,93.9¢)
be associated with a node X in a. Let us assume that a is an
auxiliary tree, and that X is an ancestor of the foot node of a, and
hence, the ancestor of the foot node of any derived tree 4 in D{a).
Let Y be the label of the root and foot nodes of a. If the frontier of
4 (7 in D{a)) is w; wy Y wy w,, and the frontier of the subtree of ¥
rooted at Z, which corresponds to the node X in a is wy Y w;. The
idea of associating (q4,92.95,9¢) With X is that it must be the case
that 6°(q, wa) = q,, 20d 6°{qs, W3) = q,. When 7 becomes a part of
the seatential tree v' whose frontier is given by u wy wo v wy w, w,
then it must be the case that &°(q; v) = qy. Following this
reasoning, we must make q; = qg, if Z is not the ancestor of the foot
node of 4, or if 7 is in D(a) for some initial tree & in G.

We have assumed here, as in the case of the parsing algorithm
presented earlier, that any node in any elementary tree has atmost
two children.

From G we can obtain G, as follows. For each initial tree o,
associate with the root the quadruple (qq, q, q, qr) where qq is the
initial state of the finite state automaton M, and g € Qp. For each
auxiliary tree B of G, associate with the root the quadruple
(95.92,95,94), Where q,9,,92.95,.9¢ are some variables which will later
be given values from Q. Let X be some node in some elementary tree
a. Let (q;,9,,93,9,) be associated with X. Then, we have to consider
the follo'wing cases.

Case 1: X has two children Y and Z. The left child Y is the
ancestor of the foot node of a. Then associate with Y the quadraple (
P Q2. 93, q), and (q, 1, r, 8) with Z, and associate with X the
constraint that only those trees whose root has the quadruple (q4, p,
8, Q4), among those which were allowed in the original grammar, °

" may be adjoined at this node. If q; 7 p, or q; 7 & , then the

constraint associated with X must be made obligatory. If in the
original grammar X had an obligatory constraint associated with it
then we retain the obligatory constraint regardless of the relationship
between qq and p, and q, and s. If the constraint associated with X
is & null adjoining constraint, we associate (q,, 2. q5,q), and (g, 1,
r, qu) with Y and Z respectively, and associate the null adjoining
constraint with X. If the label of Z is a, where a € £, then we choose

s and q such that § (q, a) = &. In the null adjoining constraint case,
q is choscn such that §(q, a2) = qq.

219

Case 2: This corresponds to the case where a node X has two
children Y and Z, with (q,,95,q;.9,) associated at X. Let Z (the right
child) be the ancestor of the the foot node the tree a. Thea we shall
associate (p,q,q.f), (r.92,95.8) with Y and Z. The associated constraint
with X shall be that only those trees among those which were
allowed in the orignal grammar may be adjoined provided their root
has the quadruple (q;,p,8,q,) associated with it. If q, 92 p or q, ¥
then we make the constraint obligatory. If the original grammar had
obligatory constraint we will retain the obligatory constraint. Null
constraint in the original grammar will force us to use null constraint
and not consider the cases where it is pot the case that q; = p and
qq = 8. If the label of Y is a terminal 'a’ then we choose r such that
8°(p,a) == r. If the constraint at X is a null adjoining constraint, then

(ma)=r.

Case 3: This corresponds to the case where neither the left
child Y nor the right child Z of the node X is the ancestor of the foot
node of a or if « is a initial tree. Then q; = q; = q. We will
associate with Y and Z the quadruples (p,r,r,q) and (q,5,5,t) resp. The
constraints are assigned as before , in this case it is dictated by the
quadruple (q;,p,t.q(). If it is not the case that q, = p and q =,

then it becomes an OA constraint. The OA and NA constraints at X -

are treated similar to the previous cases, and 80 is the case if either
Y or Z is labelled by a terminal symbol.

Case 4: If {q,,95,93.q,) is associated with a node X, which has
only one child Y, then we can deal with the various cases as follows.
We will associate with Y the quadruple (p,q,,9;,8) and the constraint
that root of the tree which can be adjoined at X should have the
quadruple (qq,p,8,q,) associated with it among the trees which were
allowed in the original grammar, if it is to be adjoined at X. The
cases where the original grammar had null or obligatory “constraint
associated with this node or Y is labelled with a terminal symbol, are
treated similar to how we dealt with them in the previous cases.

Once this has been done, let qy,..q, be the independent
variables for this elementary tree a, then we produce as many copies
of a so that qj,...,q, take all possible values from Q. The only
difference among the various copies of a so produced will be
constraints associated with the nodes in the trees. Repeat the process

for all the elemeatary trees in G,. Once this has been done and each

tree given a unique name we can write the constraints in terms of
these names. We will now show why L(G;) == Ly N L.

Let w € L(G;). Then there is a sequence of adjoining
operations starting with an initial tree a to derive w. Obviously, w €
L, also since corresponding to each tree used in deriving w, there is
a corresponding tree in G, which differs only in the constraints
associated with its nodes. Note, however, that the constraints
associated with the nodes in trees in G; are just a restriction of the
corresponding ones in G, or an obligatory constraint where there was
none in G. Now, if we can assume (by induction hypothesis) that if
after n adjoining operations we can derive 7' € D(a’), then there is a
corresponding tree 7 € D(a) in G, which has the same tree structure
as 4' but differing only in the constraints associated with the
corresponding nodes, then if we adjoin at some node in 4’ to obtain
7', we can adjoin in 7 to obtain 7, (corresponding to 7,').
Therefore, if w can be derived in Gy, then it can definitely be derived
in G.

If we can also show that L{G;) C Lg, then we can coanclude
tbat L(G;) € Lt N Lg. We can use induction to prove this. The

induction hypothesis is that if all derived trees obtained after k < n
adjoining operations have the property P then so will the derived
trees after n + 1 adjoinings where P is defined as,

Property P: If any node X in a derived tree 7 has the ioo'.-node of
the tree § to which X belongs labelled Y as a descendant such that
Wy Y w, is the frontier of the subtree of # rooted at X, thea if
{9192.95.9¢) had been associated with X, 6'(q,w;) = q, and
8"(q,w3) = q, and if w is the frontier of the subtree under the foot
node of § in 7 is then & (q2:%) = q4. If X is not the ancestor of the
foot node of § then the subtree of 8 below is of the form LAY
Suppose X has associated with it (q;,9,9.9;) then 5°(q,w;) = q,
F(Q:wz) = {qa.

Actually what we mean by an adjoining operation is not
necessarily just one adjoining operation but the minimum number so
that no obligatory constraints are associated with any nodes in the
derived trees. Similarly, the base case need not consider only
elementary trees, but the smallest (in terms of the number of
adjoining operations) tree starting with elementary trees which has
no obligatory constraint associated with any of its nodes. The base
case can be scen casily considering the way the grammar was built
(it can be shown formally by induction on the height of the tree) The
inductive step is obvious. Note that the derived tree we are going to
use for adjoining will have the property P, and so will the tree at
which we adjoin; the former because of the way we designed the
grammar and assigned constraints, and the latter because of
induction hypothesis. Thus so will the new derived tree. Once we
have proved this, all we have to do to show that L(G;) C Ly is to
consider those derived trees which are sentential trees and observe
that the roots of these trees obey property P.

Now, if a string x € Lt N Ly, we can show that x € L(G). To
do that, we make use of the following claim.

Let 8 be an auxiliary tree in G with root labelled Y and let 4 €
D(B). We claim that there is a ' in G, with the same structure as f,

such that there is a 4’ in D(beta())’) where 7' has the same structure
as 4, such that there is no OA constraint in 4'. Let X be a node in
By which was used in deriving 7. Then there is a node X' in 7' such

that X' belongs to the auxilliary tree §," (with the same structure as
b There are several cases to consider -

Case 1: X.is the ancestor of the foot node of §,, such that the
frontier of the subtree of 5, rooted at X is wyYw, and the frontier of
the subtree of 7 rooted at X is wyw Zwow,. Let 8°(qy,w;) == q,
8'(q.wy) = qq, 6'(q3.Wp) = 1, and 8°(r,w,) = q. Then X' will have
{q;.q.1.q,) associated with it, and there will be no OA constraint in
7.

Case 2: X is the ancestor of the foot node of f§,, and the frontier of
the subtree of g, rooted at X is wyYw,. Let the frontier of the
subtree of ¥ rooted at X is wyw,wow,. Then we claim that X' in '
will have associated with it the quadruple (q;,4.1,q), if 8'(qy,w;) =
q 5'(q,w;) = p, 5°(p, W) =1, and &8°(r,w,) = q,.

Case 3: Let the frontier of the subtree of 8, (and also 7) rooted at X
is w,w, Let &'(q,w;) = p, 6'(p,wz) = r. Then X' will have
associated with it the quadruple (q,p,p.1). .

We shall prove our claim by induction on the number of
adjoining operations used to derive 7. The base case (where 7 = f) is
obvious from the way the grammar G; was built. We shall now
assume that for all derived trees 7, which have been derived from 8
using k or less adjoining operations, have the property as required in
our claim. Let 4 be a derived tree in § after k adjunctions. By our
inductive hypothesis we may assume the existence of the
corresponding derived tree ' € D(') derived in G;. Let X be a node
in 7 as shown in Fig. 4.4.1. Thea the node X' in 7' corresponding to
X will have associated with it the quadruple {q,",q,".95".94°)- Note we
are assuming here that the left child Y* of X' is the ancestor of the

220

foot node of #'. The quadruples (q,'.93".qy",P) and {pP.py.P1aq") will
be associated with Y* and Z* (by the induction bypothesis). Let 74 be
detived from 7 by adjoining S, at X as in Fig. 4.4.2. We have to
ahow the existence of ;' in Gy such that the root of this auxiliary
ttee has sssocisted with it the quadruple (q.9,",a¢°.r)- The existence
of the tree follows from induction hypothesis (k == 0). We bave alo
got to show that there exists 7," with the same structure as - but
one that allows ;' to be adjoined at the required node. But this
should be so, since from the way we obtained the trees in Gy, there
will exist 7,® such that X," bas the quadruple (.92'q4',r) 20d the
coestraints at X, are dictated by the quadruple (q,q,'.q,",t), but
such that the two children of X' will have the same quadruple as in
7. We can now adjoin B’ in 7,° to obtain 7,". It can be shown that
7;" has the required property to establish our claim.

A
/ \
/7 N\
/ \
/ \
/ \
/ \
/ \
/ AN \
/ / \ A\
- / /7 \ \
7\ / / \ \
/N e / \---—----
/ \ - / \
/ \ /. \
/I x \ / \
/ /N N e N\---=- ==
/I /I N\ x/ \y
A v \
! 7 AN / \
/I I\ /N \ . / \
/2N S U A W N A\
! \/ O\ / \\ / \\
Y uty v w0, // \V/ \
"x Yvw 2 "‘ '.2
£(q'3.9'1)=q"25 (p.v)=py
F@r'dP FRLIDCL p(g 0=q, &(Q%.7)=r
Fiﬂre 4.4.2

Figure 4.4.1

Firstly, any node below the foot of B;' in 74" will eatisfy our

requirements as they are the same as the corresponding nodes in 7,°.
Siace §,' satisfies the requirement, it is simple to observe that the
vodes in f,' will, even after the adjunction of §,’ in 7,°. However,
because the quadruple associated with X' are different, the
quadruples of the nodes above X' must reflect this change. It is easy
to check the existence of an auxiliary tree such that the nodes above
X' satisfy the requirements as stated above. [t can also be argued an
the basis of the design of grammar G,, that there exists trees which
allow this new auxiliary tree to be adjoined at the appropriate place.
This then allows us to conclude that there exist a derived tree for
each derived tree belongin to D(f) as in our claim. The next step is
o extend our claim to take into account all derived trees (ic.,
including the sentential trees). This can be done in a manner similar
to our treatment of derived trees belonging to D(f) for some
auxiliary tree § as above. Of course, we have to consider only the
case where the finite state automaton starts from the initial state q,,
and teaches some final state q¢ on the inpat which is the frontier of
tome sentential tree in G. This, thea allows us to conclude that Ly N
“Lg C L{G,). Hence, L{G;) = Lt N Lyg.

N

5. HEAD GRAMMARS AND TAG's

In this section, we attempt to show that Head Grammars (HG)
are remarkably similar to Tree Adjoining Grammars. It appears that
the basic intuition behind the two systems is more of fess the same.
Head Grammars were introduced in [Pollard,1084], but we follow the
notations used in [Roach,1984]. It has been observed that TAG's and
HG's share s lot of common formal propertics such as almost
identical closure results, similar pummping lemma.

Consider the basic operation in Head Grammars - the Head
Wrapping operation. A derivation from a non-oe'rminl pt?duc? Y
pair (i,8;...85--2,) (3 more conveaient representation for this pair is
4.4y 413y). The arrow denotes the head of the string, which in
turn determines where the string is split up when wrapping operttion
takes place. For example, cousider X->LLy(AB), a0d let A=t whyx

and B=$'ug'v.'l'hen we 63y, X=s'whu;lvx.

' We shall define some functions used in the HG form:li.s'm.
which we need here. If A derives in O or more steps the headed string
wl"x.x and B derives niv, then

1) 12 X -> LL,(A,B) is a rule in the gramsar then
X derives vgugvx

2) 1f X -> LL,(A.B) is a rule in the gramsar then
X derives whugvx
L 4

3) if X -> LC;(A,B) 1s a rule in the grammer then
X derives 'kmgv

4) 1 X -> LC;(A.B) is a rule in the greamsr then
X derives vhxugv
&

Nov consider hov a derivation in TAGs proceeds -

Let 8 be an auxilliary tree and let « be a sentential tree as in
Fig 5.1. Adjoining A st the root of the sub-tree 7 gives us the
sentential tree in Fig 5.1. We caa, now see how the string whx has
*wrapped around® the sub-tree i.cthe string ugv. This scems to
suggest that there is somethiog similiar in the role played by the foot
in an auxilliary tree and the head in a Head Grammar how the
adjoining operations and head-wrapping operations operate on
strings. We could say that if X is the root of an auxilliary tree 8 and
3;...3; X 3j,4...3, is the frontier of a derived tree 7 € D(6), then the
derivation of 7 would correspond to a detivation from a non-terminal
X to the string 2.3 (3;4y--2y i0 HG and the use of 7 in some
sentential tree would corrcspond to how the strings a,... a; and
2 41---3, are used in deriviog a string in HL.

= S B = X
* I\ I\
/ \ /- \
/I X \ / \
/I /,-\\) i—ix—}:
e WA W
1/ T\ .
ugev
S
I\
/I \
l1_x \
WA
!\
/X \
w /-\Ux
I_\Ne1
. ugv
Figure 5.1

221

Based on this observation, we attempt to show the close
relationship of TAL's and HL's. It is more convinient for us to think
of the headed string (i,a;...,) as the string a,..a, with the bead
pointing in between the symbols 8; and a;,, rather than at the
symbol a;. The definition of the derivation operators can be extended
in o straightforward manner to take this into account. However, we
can acheive the same effect by considering the definitions of the
operators LLLC,etc. Pollard suggests that cases such as LL,(X}) be
left undefined. We shall assume that if X ==why then LL,_(;,X) -

- - - e A -

whly, LL,(AX) = X, LCy(x,\) = x}, LC,(A\X) = X, LC,(x}) = %,
and LC,(\ x) =)x. *

We, thea say that if G is 2 Head Grammar, then wy == whx belongs
to L(G) it and only if S derives the headed string whx or whix.
With this new definition, we shall show, without giving the pro’o!,
that the cluss of TAL's is contained in the class of HL's, by
systematically converting any TAG G to a HG G'. We shall assume,
without loss of generality, that the constraints expressed at the nodes
of elementary trees of G are -

1) Nothing can be adjoined at a node (NA),

2) Any appropriate tree (symbols at the node and root of the
auxilliary tree must match) can be adjoined (AA), or

3) Adjoining at the node is obligatory (OA).

It is easy to show that these constraints are enough, and that
selective adjoining can be expressed in terms of these and additional
non-terminals. We know give a procedural description of obtaining
an equivalent Head Grammar from a Tree-Adjoining Grammar. The
procedure works as follows. It is a recursive procedure
(Convert _to_HG) which takes in two parameters, the first
representing the node on which it is being applied and the second the
label appearing on the left-hand side of the HG productions for this
node. If X is a nonterminal, for each auxiliary tree §.whose root has
the label X, we obtain a sequence of productions such that the first
one bas X on the left-hand side. Using these productions, we can
derive the string w,\w, where a derived tree in D(f) has a frontier
w,Yw,. If Y is 2 node with with label X in some tree where

adjoining is allowed, we introduce the productions

Y*' -> LL;(X,N') {80 that s derived tree with root

label X may wrap around the string derived from the subtree
belor this node}

N* -> LCy(Ay,...,Ay) {assuming that there

are § children of this node and the it child is the
ancestor of the foot node. By calling the procedure
recursively for all the j children of Y with A,k

ranging from 1 through j, ve can derive from ¥* the
frontier of the subtree belowv Y}

Y* -> N* { this is to handle the case vhere no
adjunction takes place at Y)

If G is a TAG. then we do the following -
Repeat for every Initial tree

Convert,_to HG(root,S') {S' will be the start symbol of
the nev Head Grammar}.

Repest for each Auxilliary tree

Convert_to HG(root, rootsyabol)

vhere Convert to HG(node,name) is defined s follovs

"if node is an internal node then

case 1 If the constraint at the node is AA

add productions Sya->LL;(node symbol,N'),
."’Lc‘(Al.,...,A",.,-.A")
Syl->LCl(A,',....At',....A,')

where N°,A;",Az"....A;" are nev non-terainal
syubols. Ay, ...,Ay correspond to the j childrea

of the node and i=1 if foot node is not & descendant
of node else =1 such that the 1** child of node s
ancestor of foot node,j=number of children of node

for k=1 to § step 1 do
Convert_to HG(k*» child of node.A,').
Case 2 The constraint at the node is NA.
Same as Case 1 except don't add the productions
Sym->LL;(node symbol,N'),
N‘->Lci(A,'.....A"),
Cage 3 The constraint at the node is OA.
Same as Case 1 except that ve don’t add
Sya->LCi (A", .. .A4")
else if the node has a terminal aymbol a,
then add the production Sym ->3
¢lse {it is & foot node }
if the constraint at the foot node is AA then
add the productions _ _
Sya ->LLj(node symbol,N\)/X\
1f the constraint is OA then add only the
production -
Sya ->LL;(node symbol,))

if the constraint is KA add the production
Sym .->\

We shall now give an example of converting 2 TAG G to a
HG. G contains a single initial tree a, and a single auxiliary tree g
as in Fig. 5.2.

s S (4)
a = | B = /\
° / \
[% s
/ 1\
/ 1\
/1 \
b S(¢) ¢
Figure 6.2

Obviously, L{G) = {atbac® [/ n > 0}

222

Applying the procedure Convert__to_HG to this grammar we
obtain the HG whoee productions are givea by-

$'-> LLy(S.4)
-3 X
-> I.C,(B C)
>3
-> LL,(5,D)/D
-> _LC,(E F,C)
->b
-> 'x
->%T
vhich can be rewritten as

s* -> s/x

$ -> LC(a,R")

A* => LLy(S.bAc) or A* -2LLy(S, be)
It can be nriﬂoﬁ that this grmJ' generates exactly
L.

n'-:nonm 0 o=

It is worth emphasising that the main point of this exercise was

to show the similarities between Head Grammars and Tree Adjoining

Grammars. We have shown how a HG G' (using our extended

deﬁultlons) can be obtained in a systematic fashion from a TAG

G. It is our belief that the extemsion of the definition may not

necessary. Yet, this conversion process should help us understand the
similarities between the two formalisms.

6. OTHER MATHEMATICAL PROPERTIES
OF TAG's

“~

Additional formal properties of TAG's bave been discussed in
[Vuay~Sbmhr and Joshi,1985]. Some of them are listed below
1) Pumping lemma for TAG's
2) TAL's are closed under substitution and homomorphisms
3 TAL's are not closed under the following operations

3) intersection with TAL's
b) intersection with CFL'e
¢) complementation

Some other propertics that have been considered in {Vijay-
Shankar and Joshi,1985] are as follows

1) closure under the following properties
a) inverse homomorphisa
b) gsm mappings

2) semilinearity and Parikh-boundedness.

223

- June 1977,

References

1. Abo,A.V,, and Ullman,J.D., 1073 *Theory of Parsing, Translation,
and Compiling, Volume 1: Parsing, Prentice-Hall, Eaglewood Cliffs,
N.J., 1073

2. Joshi,A K., 1983 "How much conlext-eensitivity is necessary for
charecterizing structural descriptions - tree adjoining grammars® in
Natural Language Processing - Theoretical, Computational, and
Psychological Perspectives (ed. D.Dowty, L.Karttunen, A.Zwicm
Cambridge University Press, New York, (originally preseated in
1983) to appear in 1985,

3. Joshi,AK., snd LevyL.S. 1977 ®Constraints on Structural
Descriptions: Local Transform:'.txons' SIAM Journal of Computing

4. Joshi,AK., Levy, .S, and Takahashi, M., 1975 *Tree adjoining
grammara®, Journa! of Computer Systems and Sciences, March 1975

5. Kroch, T., and Joski, A.K., 1085 *Linguistic relevance of tree
adjoining grammars®, Technical Report, MS-CIS-85-18, Dept. of
Computer and Information Science, University of Pennsylvania, April
1985

6. Pollard, C., 1984 *Generalized Fhrase Structure Grammars, Head
Grammars, and Natural language®, Ph.D dissertation, Stanford
University, August 1984

7. Roach, K., 1984 “Formal Properties of Head Grammars®,
unpublished manuscript, Stanford University, also presented at the
Mathematics of Langnages workshop at the University of Michigan,
Ann Arbor, Oct. 1084,

8. Vijay-Shankar, K., Joshi,A. K., 1935 *Formal Properties of Tree
Adjoining Grammars®, 'l‘erhmral Report, Dept. of Computer and
Information Scicace, University of Penusylvania, July 1985.

