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Abstract

For natural language understanding systems designed for domains including reladvely
complex equipment, it is not sufficient to use general knowledge about this equipment.
We show problems which can be solved only if the system has access to a detailed
equipment model. We discuss features of such models, in particular, their ability to
simulate the equipment’s behavior. As an illustration, we describe a simulation model
for an air compressor. Finally, we demonstrate how to find referents in this model for
nominal compounds.

1. Introduction
The work presented here is part of the PROTEUS (PROtotype TExt Understanding
System) system currently under development at the Courant Institute of Mathematical
Sciences, New York University.! The objective of our research is to understand short natural
language texts about equipment. Our texts at present are CASualty REPorts (CASREPs)
which describe failures of equipment installed on Navy ships. Our initial domain is the
starting air system for propulsion gas turbines. A typical CASREP consists of several

sentences, for example:
Unable to maintain lube oil pressure to SAC [Starting Air Compressor]. Disengaged
immediately after alarm. Metal particles in oil sample and strainer.

It is widely accepted among researchers that in order to achieve natural language
understanding systems robust enough for practical application, it is necessary to provide them
with a lot of common-sense and domain-specific knowledge. However, so far, there is no
consensus as to what is the best way of choosing, organizing and using such knowledge.

The novelty of the approach presented here is that, besides general knowledge about
cquipment, we also use a quite extensive simulation model for the specific piece of
equipment which the texts deal with. We found that for understanding purposes it is more
appropriate to make the simulation qualitative rather than quantative. Thus, for example, we
are not interested in the precise value of oil pressure, but only whether it is too low or too
high. The model is built from instances of prototypes which contain the bulk of general
knowledge. It exists in the system permanently. In this situation the analysis of a piece of text
consists of two stages: (1) locating in the model the objects mentioned in text; (2) interpreting
the text using both the specific information residing in the model and the general knowledge
which is accessible from the model. There is no clear-cut distinction between these two stages
(sec discussion of the examples in the next section).

! An overview of the system is given in [Grishman 1986], submitted to the AAAI-86.
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We sce the following merits of having a simulation model:

(a) the model provides us with a reliable background against which we can check the
correctness of the understanding process on several levels: finding referents of noun phrases,
assigning semantic cases to verbs, establishing causal relationships between individual
sentences of the text.

(b) the requirements of simulation help us to decide what kind of knowledge about the
equipment should be included in the model, how it could best be organized and which
inferences it should be possible to make. It appears that the information needed for
simulation largely coincides with that necessary for language understanding.

(c) the ability to simulate the behavior of a piece of equipment provides a very nice
verification method for the understanding process at the level of interaction with a user - it is
relatively straightforward to build a dynamic graphical interface which allows the user to
have a friendly insight in the way his input has been understoood by the system. v

In the remainder of the paper we will show examples of problems which can be solved only
if the system has access to some kind of a simulation model of the domain equipment.
Having demonstrated the need for such a model, we will discuss the design decisions which
we found important for our domain and which seem to apply generally for complex
equipment. How these considerations influenced the model for the SAC may be seen in the
next section. Then we present a method of finding referents in the model for nominal
compounds describing SAC’s components. Finally, we briefly describe our future work.

2. Need for a Model

In most natural language understanding systems the knowledge about the domain of
discourse is organized in the form of prototypes for objects and actions, and for the relations
between them which are relevant for the domain. The prototypes are repositories for
knowiedge about the instances they subsume. This knowledge is highly structured - there are
many links through which apparently distant concepts may be connected. The text is
processed on a sentence by sentence basis. Usually, each sentence is split into linguistic
cntides with syntactic and semantic information attached. This information is used to
determine the prototype for each entity. Through these prototypes there is access to general
information about the concepts invoked by the sentence. This information is often necessary
for the adequate interpretation (i.e. understanding) of the sentence. To account for the fact
that the understanding of an utterance depends sometimes on the context in which the
utterance is set, it is necessary to maintain information about the discourse context. One way
of organizing this information is by creating and storing instances of prototypes for entities
from the text as they come under analysis. The combined information coming from the
context and from the processed sentence is used to solve problems like anaphora resolution,
connectivity, etc.

Assuming this approach, let’s consider the following sentence (let it be the first sentence in

the analyzed text):
Starting air regulating valve failed.

Having completed the syntactic and semantic analysis of the sentence, we would recognize
starting air regulating valve as an example of the prototype regulating valve. We would then
fetch its description and create an instance of a regulating valve. Next, using the general
knowledge about valves (of which regulating valve is a more specific case), and the semantic
information about starting air, we would modify the just created instance with the fact that
the substance the valve regulates is starting air. From the syntactic analysis we would know
that starting air regulating valve is the subject of verb fail. Using the prototype of the action
fail, we would create its instance and possibly also would further modify the instance of the
valve so that the fact about its operational state is recorded. These two instances would now
constitute the discourse context so far. Now, suppose the message continues with the
sentence:
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Unable to consistently start nr 1b turbine.
The processing would be similar to what has been described above for the first sentence. We
would create an instance of a gas turbine, would fill its proper name slot with ar /b and
finally use the instance as an argument in another instance recording the finding about start
problems.

These two sentences come from an actual CASREP. In the starting air system (our initial
domain) there are three different valves regulating starting air. Two questions might be
posed in connection with this short, two-sentence text: (1) which- of the three valves was
meant in the first sentence? (2) could the failure of the valve mentioned in the first sentence
be the cause of the trouble reported in the second sentence?

The general knowledge of equipment may tell us a lot about failures, such as: if a
machinery element fails, then it is inoperative, or if an element is inoperative, then the
element of which it is part is probably inoperative as well, etc. Unfortunately, such
knowledge is not enough: there is no way to answer these two questions (not only for an
artificial understanding system, but even for us, humans) without access to rather detailed
knowledge about how various elements of the given piece of equipment are interconnected
and how they work as an ensemble. In our case we could hypothesize (using general
knowledge about text structures) that there is a causal relationship between the facts stated in
the two sentences. To test this, we would have to consider each of the three valves in turn
and check how its inoperative state could affect the starting of the specific (i.e. nr 1b)
turbine. If one of the three valves, when inoperative, would make the turbine starting
unreliable, ‘then we could claim that this valve is the proper referent for the starting air
regulating valve mentioned in the first sentence. This finding would let us also answer
question (2) affirmatively.

The above example, as well as others of similar nature, demonstrate that in cases where
the domain is very specialized and complicated (a typical situation for real-life equipment),
language understanding systems should be provided not only with general knowledge about
the equipment but also have access to its model.

With an equipment model available, the processing of the two sentences would change: for
the first sentence, instead of building a new description for the starting air regulating valve,
we would rather try to find an object / objects in the model which could be described by this
noun phrase. We would treat ar 1b gas turbine similarly. The semantics of start would be a
kind of simulation procedure defined for the model. Now, let’s consider problems (1) and (2)
again. Viewing nr Ib as a proper name, we should easily find the object in the model which
corresponds to the referred turbine. The analysis of starting air regulating valve would leave
us with three pointers to the three objects in the model corresponding to the three starting air
regulating valves in the equipment. In order to resolve this ambiguity we could make the
following assumption, which seems very reasonable:

Suppose first, that the valve's failure has indeed caused problems for the

turbine. Now, if we confirm that at least one among the three valves, if

inoperative, has this effect, then our assumption was correct and we found the

right referent(s); if none of the three valves has any impact on the turbine, then

our assumption was wrong: it answers question (2) negatively and leaves (1) still

open. ’
Then we would proceed with the confirmation phase, considering each of the three candidates
separately. We would temporarily set its operational state to INOPERATIVE, initiate the
START procedure, and then check whether the functional state of the nr /b gas rurbine in the
model has been set to RUNNING (for simplicity reasons let’'s assume that there is no
consistently adverb in the second sentence). If for all three simulation experiments we wind
up with the value RUNNING for the turbine, then we must conclude that there is no causal
relationship between the sentences. Otherwise, we would claim to have found the right
referent for the valve. Having unambiguously located the object referred to in the first
sentence, we would modify its operational state accordingly.
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3. Characteristics of an Equipment Model

In the preceding section we tried to show that general knowledge about equipment is by
itself not enough to solve some problems of understanding. The decision to provide
PROTEUS with an equipment model confronted us with a new question. Where and how to
draw a division line between the knowledge about equipment in general and a model of a
specific piece of equipment? The ultimate objective of our research is to design PROTEUS in
such a way that it may be adapted easily to new equipment. Clearly, the model has to be built
anew each time we want to use PROTEUS for a new piece of equipment. The general
knowledge, on the other hand, should undergo, in such cases, only a slight extension due to
the new types of components in the new equipment. For example, moving from the starting
air system to the main reduction gear, we would have to build a new model for the gear, but
while doing this, we should be able to use many of the structures designed for modelling
components which also occured in the starting air system, like bearings, lubrication system
elements, etc. This goal can be achieved using prototypes and their instances: the model
would be built of instances of prototypes. The prototypes would constitute part of the
general knowledge data base. In the instances we would store only the information which is
specific to the object described by the instance. For example, in case of a gearbox, the
information about its function (i.e. speed change) should be stored in the prototype, and only
the ratio of this change should reside in the instance of a specific gearbox. Also the
information about how a specific gearbox is used in the domain equipment must be kept in
the instance. Of course, the prototype-instance scheme ensures that all the general knowledge
connected with the prototype is also accessible from instances of this prototype. We found
the rich repertoire of programming tools constituting the flavor system in Symbolics-Lisp a
very convenient vehicle for implementing this strategy.

On the level of prototypes we should apply the principle of generality as well. Hence, for
example, we should consider the prototype of a regulating valve as a special case of a valve
and have the knowledge characteristic for all possible types of valves connected with the
valve prototype. This knowledge could then be propagated down in the hierarchy if
necessary. Because the problems of structuring knowledge in the form of prototypes have
been extensively investigated (research on frames, scripts, semantic nets, etc.), we won't
elaborate on this here. We will comment on only one aspect of the hierarchy of prototypes. It
seems to us that, for purposes of equipment modelling, this hierarchy should bave the
structure of a graph rather than of a tree: its nodes should be allowed to have more than just
one immediate parent. We mentioned already that there are regulating valves in our
equipment. These are valves whose function is to regulate the medium in some maanner,
usually changing one of its parameters, like pressure or temperature. We also have other
valves whose function is different, for example relief or shut-off valves. Thus, is it
conceivable to divide valves into classes according to their function. However, this is not the
only dimension along which classification is possible. Valves may be also categorized
according to their operating principle as electric, hydraulic or pneumatic valves. Now, the
problem with a tree-like taxonomy is that we have to arrange the dimensions linearly: if we
decide to consider the functional aspect first, we will have to repeat the division according to
the operational aspect at each node of the functional level of the hierarchy tree. With the
reversed order of dimensions the problem remains the same. It would be therefore much
better to allow a node in the hierarchy to inherit properties from more than one immediately
preceding node. The flavor system, with its mechanism allowing flavors to be mixed, proved
to be very helpful here.

It’s obvious that any real-life equipment deserving a natural language front end is big and
complex. For example, the starting air system (our initial domain) consists of several
hundred elements each of which may be referred to by its descriptive name and be mentioned
in a casaulty report. A good measure of the system’s complexity is the size of its description
in the ship’s manual: 28 pages of text, figures and tables. What is the best way of organizing
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this vast amount of data into a managable model? Clearly, some simplification is
unavoidable. How much? Let us address the former problem first. A salient feature of a
piece of equipment is its task, i.c. what it should do. Generally speaking, all complex
cquipment may be viewed as processors of something - if this something is changed
qualitatively into something else (e.g. fuel into rotary movement) we may speak of
generators; if only some parameters of this something are changed (e.g. low-pressure air into
high-pressure air) we may speak of transformers. Usually only part of the equipment’s
components are directly involved in this primary task. The rest .are there to ensure that
special conditions are created at certain points in the equipment. This observation provides
us with an important structural hint: we can treat a piece of equipment as a functional system
consisting of component systems among which one is responsible for the primary function
(the equipment task) and the others fulfill auxiliary functions. If necessary, we may apply the
same approach recursively to any of the lower level systems. Systems of this kind may be
viewed as chains of components linked together in such a way that, at each node of the chain,
the processed substance changes slightly, becoming thus more similar to its desired form at
the end of the chain. Many of these components work properly only if special conditions are
created. Hence the need for auxiliary systems. Another, more conventional way of
structuring the model is in the form of a part/whole hierarchy. A natural question arises:
where one should stop with these two types of refinements (in system/basic-part and
part/whole hierarchies)? This is a more specific version of the question we posed above: how
much to simplify? A possible answer is to refine the hierarchy far enough so that everything
which potentially may be referred to in the reports would have a description in the model.

This, however, seems impractical. Consider, for example, the following sentence:
Borescope investigation revealed a broken tooth on the hub ring gear.

Considering that there are several different gears in our starting air system and each of
them has many teeth which are very much alike, it’s obvious that creating a separate
description for each of them wouldn’t be reasonable. The same remark is true for balls in
bearings or for connecting elements like screws, bolts or pins. On the other band,
information about the tooth conveyed in the above sentence cannot go unnoticed. The
solution we accepted for such elements is not to include their descriptions in the model on a
permanent basis but to keep the possibility open to create and to implant into the model their
descriptions if such a need arises during the analysis. A rule of thumb for deciding whether a
particular element deserves a permanent place in the model can be formulated in the form of
the question: how much information specific to this element is necessary to solve
understanding problems, like finding referents (sece the section on nominal compounds) or
making inferences? As an example of the latter, let’s consider a specific gear. We would like
to know, among other things, what is this gear’s role and place in the modelled equipment so
that, in case of its damage, we could determine the impact of this on the equipment.
Information of this type can be deduced neither from the analyzed text nor from general
knowledge about gears. It must be known in advance. Our way to achieve this is to keep the
gear’s description permanently in the model. )

There are, however, elements like teeth which have so little relevant structure that they are
always referred to as tooth, teeth together with the element higher up in the part/whole
hierarchy (let‘s call such an element a host). Thus, it is not necessary to maintain any specific
information about them in the model. It is enough, if we are able to create their descriptions
only when they occur in the text. All the possible information we will ever need to include
into such descriptions will come from the text. The information relating such elements with
other parts of the equipment will come from their hosts. For example, the impact of a
tooth’'s damage on the equipment may be derived from the functional information connected
with its host.

It is important to notice that there is nothing absolute in distinctions such as the one made
above. It is conceivable 10 have a piece of equipment of a larger scale than the SAC, where
elements like gears are not essential enough for us to be bothered with their shapes or
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locations; if broken they probably would be referred to by giving the higher-level element of
which they are part. In such cases we would rather treat gears like we treat teeth here.

It is desirable to be able to use the model on several levels of abstraction. For some
purposes it is enough to treat, say, a speed increasing gearbox as a system for which we only
know its outside behavior; in other cases, we would like to use information about its internal
structure as well. It should, of course, be possible to deduce the external behavior of an
object by analyzing its parts; however, it wouldn’t be practical to go down to the level of
basic components each time we need to know something about the behavior of the equipment
on the intermediate level. Our approach of gradually refined levels of functional systems
described above fulfills this desideratum. It seems inevitable that any division into levels will
always be artificial and therefore, whatever structure of the model we could design, we

always will find sentences which mention objects from different levels. Consider for example:
Believe the coupling from diesel to SAC lube oil pump to be sheared.

In our model for the starting air system the diesel and SAC are at the same level of
abstraction. The lube oil pump is two levels below the SAC in the hierarchy. How we solve
the problem of determining the referent for the above coupling is described in the section on
nominal compounds (see below). Here we want only to point out that for any multi-level
model, there must be mechanisms available for moving between abstraction levels flexibly.

In the preceding section we discussed two understanding problems. The solution we
proposed there relied heavily on the ability to simulate certain actions and processes of the
domain equipment. We have mentioned already in the introduction that it is sufficient to
simulate equipment behavior qualitatively. It is clear that the solution to the simulation
problem depends a lot on the structure of the model. Therefore, the simulation requirement
should be one of the important design criteria for the model. Dividing the equipment into
functional subsystems and modelling them as chains of components (comp. above) facilitates
the simulation task considerably.

There is another aspect of natural language understanding systems whose satisfactory
treatment depends a lot on an effective solution to the simulation problem. We may expect
that in real-life cases, the output of such systems is either fed into some expert system or
communicated to a human user. In both cases important decisions are presumably made,
based on this output - otherwise, why to spend money for building them. It is therefore very
important for such systems to provide users with means to check the quality of their
understanding. In the case of equipment, one quick and user-friendly way of verifying the
analysis is through graphics (we elaborate on this a little more in the section describing future
work, below). Because equipment is very dyxiamic, most texts, about them involve actions,
events, procedures occuring in a certain time sequence. In order to show this graphically, it is
necessary to simulate the essential aspects of this on the screen.

The simulation should be designed in such a way that its two independent applications in
the system (i.e. text understanding and communication with users) wouldn’'t require two
seperate simulation systems.

4. The Starting Air System Model

As mentioned above, the equipment we have chosen as our initial domain is the starting air
system on Navy ships. Its function is to supply a ship’s propulsion gas turbines with the
high-pressure air necessary to start the turbines. The main part of the starting air system is
its compressor (SAC - Starting Air Compressor). It is by far the most complicated element
and therefore is prone to various kinds of damage and malfunction. Because of its
importance, we started our efforts by building a model of the SAC. So far we have
implemented parts of it on a Svmbolics Lisp machine using Zeta-Lisp.
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Figure 1. Division of the SAC into subsystems.

Following the guidelines for equipment models given in the preceding section, we divided
the SAC into its three functional subsystems (comp. Fig. 1):

(2) Air System - this is the system partially responsible for the SAC's primary task: it
takes ambient air, compresses it to the desired pressure and outputs the flow to a system of
temperature and pressure regulating valves which precede the turbine starter;

(b) Motor System (auxiliary) - its function is to transmit mechanical rotation from the
diesel motor to the compressor blade assembly and lubrication oil pump;

(¢) Lubrication Oil (LO) System (auxiliary) - it distributes the oil throughout the SAC

and supplies it under pressure to such elements as bearings and some couplings.
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Figure 2. Division of the SAC Motor System into subsystems on level 1.
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Each of these three systems may be split into further systems. For example, we view the
Motor System as consisting of subsystems shown in Fig. 2. Each of these constituents is
again a system consisting of more basic clements. So, for example, onc of the two speed
increasing gearboxes consists of a hub, a ring gear, an arrangement of three star gears, and a
pinion mounted on a shaft.

Every system may be viewed on several levels of abstraction. For example, Fig. 2 shows
level 1 of the Motor System. Fig. 3 and 4 show the same system on level 0 and level 2,
respectively.

e |

Figure 3. The SAC Motor System on level 0.

All the figures presented here are Symbolics screen images generated by PROTEUS from
descriptions of the model’s elements used for the understanding process. As a matter of fact,
we have provided dynamic displays reflecting some of the simulation possibilities of the
model. Consider, for example, Fig. 4. It is possible, using the mouse, to position the cursor
on, say, the DIESEL ON switch and click on it causing the diesel to be turned on. The
compressor starts to run: the small globes inside each of the square clements (from diesel
shaft to the clutch) start to rotate in circles with different speeds depending on their place in
the system (before or after the speed increasing gearbox); furthermore, all the elements
which should be lubricated (those which have in- and outlets in the form of arrows) get oil
influx (depicted as dots appearing inside the elements). This follows from the way the SAC
operates: the Motor System transmits the rotary movement to the lube oil pump, which starts
to work and to supply oil via the LO System (not shown here). Similarly, when we set the
clutch to the IN position, the other elements (following the clutch in the chain) will start to
rotate. Again, all this is achieved as a side effect of the simulation used for understanding
purposcs. We want to stress that the “movie” is not the point here. We have to know how the
rotary movement propagates in the system, if we want to conduct tests like the oné described
in section 2, above. Such tests are the primary reason why we equipped our model with a
simulation capability.
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Figure 4. The SAC Motor System on level 2.

Let’s turn now to the internal structure of our model for SAC. The structure of the model
is based od the Symbolics-Lisp flavor system. The prototypes of elements of which the mode!l
is built are represented as flavors. The specific elements of the model are encoded as
instances of their prototype flavors. The general knowledge about elements is stored in the
prototype flavors and can be divided into two parts: (1) declarative knowledge expressed in
the form of defaults and restrictions on instance variables; (2) procedural knowledge in the
form of methods defined for the flavors. The flavor instances contain only declarative
knowledge comprised of instance-variable -- value pairs (we will use more traditional names
bere: slot -- slot-filler). The prototype flavors are built as mixtures of component flavors,
cach of which captures a certain aspect(s) of the prototype. The component flavors, which
form a graph-like hierarchy, may be viewed as sets of isolated features common to several
different prototypes. The sopbisticated inheritance mechanism of the flavor system, which
works on the level of instance variables (slots) and on the level of methods, allows us to
design this hierarchy of flavors in a consisc manner. We illustrate these points below with a
couple of examples.

Every clement which is represented permanently in the model is an instance of a flavor
which has the %building-block flavor as one of its components flavors (directly or indirectly
through intermediate flavors). This reflects the observation that certain facts about model
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elements will have to be recorded for any kind of element. For example, for every element
we want to know its operational state (remember that the texts we are dealing with are about
equipment failures) or the system of which it is a part. So, we define:

(defflavor %building-block
(location operational-state part-of screen-location captiqn)

0

(:settable-instance-variables :screen-location :operational-state)
:gettable-instance-variables

(:initable-instance-variables :function :location :part-of)
(:default-init-plist :operational-state 'OK))

In the above definition the first element is the flavor's name, the second is a list of instance
variables, the third is a list of component flavors (empty here), and the rest of the definition
describes various aspects of instance variables, such as their defaults, how they can be
initialized, accessed, etc. (we have omitted this part from flavor definitions given below).
The permanent elements in the model fall into two categories: systems and basic parts.
systems are those building blocks which have structural information. They are chains of
elements united by a working substance which they process (for example, the lube oil
system). Systems are described at several levels of abstraction. The filler of the structure slot
is a list of descriptions of the system on different levels - each element in this list specifies,

among others, the start and end nodes of the chain of components on this level:
(defflavor %systern
(working-substance structure)
(%building-block))

basic parts are those building blocks which are at the bottom of the part/whole hierarchy. The
components slot is initially set to an empty list. It is provided as a destination for those
equipment parts which were not included into the model a priori but have to be recorded if

they occur in the analyzed text (see section 3 for our discussion on this issue).
(defflavor %basic-part
(cormponents)
(%building-block))

Another very common flavor describes the aspects of a building block which capture its
role as a component (a node) in some system. Itis used as a mixin flavor for building blocks
which are systems or basic parts. Its slots record how it is incorporated in the system (from,
to slots) and what its function is with respect to the working substance (i.e. how the substance
changes while passing this element). The filler of the function slot is a formula interpreted by
a method defined for the prototype flavor of the element. This method accesses values of
several slots of the instance to which it is applied, for example input or operational-state. The
latter is important because of the potential of failure or damage of the element (see our
discussion in section 2, above):

(defflavor %system-node
(from 10 input output function)
o)

Complex equipment is usually controlled from outside automatically or manually by service
personnel. There are, therefore, elements whose operational modes may be changed.
Examples of such elements in the SAC are the diesel and clutch. To account for such
elements, we defined a flavor %multiplexer, which may be mixed with other component
flavors to form a prototype. The filler of switch-locations is a list of all places from which
switching is possible (in our case these are the local and remote control consoles). swirch-
actions specifies for each possible switch position a procedure which has to be run in case the

element is set into this position.
(defflavor %multiplexer
(switch-locations switch-actions actual-switch-position)
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0))

None of the above are prototype flavors. They are component flavors which we can use to
define prototypes. Let us consider the prototype for diesel motors. It is a piece of equipment
complicated enough to treat as a system. Diesels generate rotary movement which is then
used to run other pieces of equipment. Thus they are parts of larger systems. Because they
run only if a need arises, there must be ways to influence their operational modes. All these
facts justify the following definition of a flavor which can serve as a prototype for diesel
motors. The point of this definition is to mix together several component flavors
corresponding to the just mentioned features.

(defflavor %diesel
0

(%system Z%system-node %multiplexer))

Now we are ready to introduce the instance of a specific diesel motor which is part of the
starting air system.
(setq @diesel-2 (make-instance '%diese!l

':part-of
'@ssdg-2

":working-substance
'(ROTATION)

':caption
'("Diesel™)

to ,

'((ROTATION @sac-2 RIGHT))
"from

'((OIL @container-2 LEFT)

(AIR @container-1 UP))

":function

'((ROTATION ((OIL . LOW) (AIR . LOW)) . (ROTATION . LOW)))
*istructure
'((0 . (DOWN . ((ROTATION OIL AIR) @diesel-2 (@diesel-2) (2 . 2))))

a. ¢.m)

This instance, its prototype, and the component flavors we showed, are in fact simplified
versions of the structures we use in our model. We have included here only these parts which
we considered helpful to convey the basic ideas of our prototype-instance scheme used for
building the model.

The examples discussed so far demonstrate only the declarative aspect (i.e. the inheritance
of instance variables) of the hierarchy we may build using flavors. We also define with each
flavor a set of methods which, when combined, provide each instance with a lot of procedural
knowledge. It is more difficult to show examples of this because methods are typically long
procedures. Describing the %system-node flavor above, we mentioned one such method.
Similarly, for %multiplexer we define a method which, using the data stored in instance’s
slots, simulates the switching action. Still another example of a2 method is a “drawing
procedure which we define for prototypes whose instances may be displayed on the screen.
The flavor system supports object-oriented programming. This is reflected in the way
methods are invoked - by sending messages (method names) to instances. This allow us to
use identically named methods to invoke quite different procedures. For example, it's
obvious from looking at the pictures that we use several different drawing procedures.
However, we may use the same name, say, :draw for all of them. Suppose we have
identified an element by locating its instance in the mode! and want to draw it. We don’t have
to bother about its prototype in order to know how to draw it - it's enough to send the :draw
message to this instance. The right method will be chosen automatically. This situation is
advantageous for the language understanding process as well. The first thing we do during
clause analysis is to find referents in the model (i.e. instances) for linguistic entities occuring
in the sentence. The semantics of the verb or predicate adjective is typically expressed in the
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form of a method. The interpretation of the clause with respect to the model consists then in
sending this method to one of the arguments. The part of PROTEUS which deals with the
interpretation of clauses hasn’t been implemented yet, so we won't go deeper into this subject
here.

5. Finding Referents for Nominal Compounds

One notable feature of technical texts is the heavy use of nominal-compounds. It seems that
their average length is proportional to the complexity of the discourse domain. In the domain

of the starting air system, examples like
stripped lube oil pump drive gear and hub ring gear,

are, by no means, seldom occurences.

The problem with nominal compounds is their ambiguity. The syntactic analysis is of
almost no help here. Semantically they are also very difficuit to deal with [Finin 1986]. The
problem may be metaphorically described as a jigsaw puzzle: given several pieces (compound
descriptions) put them together to build a sensible picture (nominal compound description).
The task becomes somewhat easier in cases when we know that nominal compounds refer to
objects existing in the system. In terms of our metaphor it translates into a hint: a set of
pictures is given with the assumption that the solution is one of these pictures.

The above observation is the next argument for maintaining an equipment model. Not all
nominal compounds fall into this category (a notable class here are verb nomalizations, like
borescope investigation). However, most of them (especially the longest ones) refer to objects
maintained in the model.

PROTEUS processes sentences sequentially (first syntax, then semantics, finally
discourse). Both the syntactic and semantic analyzers have been implemented already.
[Grishman 1986] describes the overall organization of PROTEUS in some detail. The
syntactic component delimits the noun phrases, but does not assign any structure to the pre-
nominal modifiers. The interpreter of nominal compounds takes as input an ordered list of
words of which the nominal compound consists, and tries to achieve two goals: (1) to
determine the structure of the pre-nominal modifiers; (2) to locate the instance(s) in the
equipment model referred to by the nominal compound.

The parsing of the nominal compound proceeds bottom-up without backtracking. The
words are analyzed from right to left. The parser maintains a Parse Stack where all possible
partial parses are kept. The information about each partial parse (State Vector) consists of
three lists: (1) the Word List: the unparsed part of the nominal compound; initially contains
the whole compound; (2) the Forest: list of partial parse trees for the part of the compound
which has been analyzed so far: initially empty; (3) the List of Referents: for each partial
parse tree in the Forest, a list of the model instances which may be named by the words in
that partial parse tree.

The condition for a successful parse is twofold: (1) the Werd List is empty; (2) the Forest
contains one tree (in such a case the List of Referents will, necessarily, also have one list of
instances - they will be considered the referents of the compound nominal). The parser works

as the following coroutine:
LOOP WHILE Parse Stack not empty
State-Vect = Pop (Parse Stack):
Word = next word from the Word List of State-Vecr;
Dict-Entry = dictionary entry for Word;
FOR each reduction rule applicable to State-Vecr and Dict-Entry
Create New-State-Vecr,
IF (termination conditons fuifilled for New-Stare-Vecr)
THEN return (New-State-Vect)
ELSE push {(Parse Stack New-State-Vect)

Each word in the dictionary is assigned two properties: its model class (MOD-C) and its
semantic class (SEM-C). We use five different model classes:
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Instance - a word of this class names a set of instances in the model; this set is part of the
dictionary entry (in Fig. 5§ the word pump is an example; (p] p2 p3) are instances of pumps
which occur in the model), :

Slot-Filler - a word of this class can carry information used as slot fillers in some instances;
taken alone it doesn’t name any model instance (in Fig. 5 the word lube is an example),

Slot-Name - a word of this class indicates how to interpret some other adajcent words in the
compound; an example is speed - it tells how to treat low in the nominal compound low speed
gearbox, -

Procedure - cach word of this class is assigned a procedure which, when called with
arguments coming from other parts of the noun phrase, returns a referent(s); an example is
coupling, as in coupling from diesel to sac lube oil pump - the coupling meant here is not a
single coupling, but a whole sequence of them on the path between diesel and lube oil pump;
this sequence has to be evaluated using the model,

Component - a word of this class names a set of objects in the domain equipment which are
not permanently present in the model (for examples and discussion of this issue see section
3).

DICTIONARY
(lube  {MOD-C Slot-Filler) (SEM-C Function))
(oil (MOD-C Instance (ol 02 03)) (SEM-C Working-Substance))
(pump (MOD-C Instance (pl p2 p3)) (SEM-C Machinery))
(SAC  (MOD-C Instance (sl)) (SEM-C Machinery))

SEM-C --> SLOT-NAME TABLE

{Function :function)

(Machinery :part-of :components :location)

(Working-Substance :working-substance)
INSTANCES

333 SAC lube oil pump
(setq p3 (make-instance %pump

':par.t-of "los2
:working-substance '(OIL . 03)))

333 SAC lube oil
(setq 03 (make-instance %working-substance

"function 'LUBE))

53 SAC lube oil system
(setq los2 (make-instance %system

":part-of 's1}))
3 SAC

(setq s1 (make-instance %system

Figure 5. Fragments of data used by the parser of nominal compounds.

The two most often used reduction rules are:

(1) instance + instance --> instance
(2) slot-filler + instance --> instance

In (1), the set of model instances for the result consists of those instances of the second
constituent which can be linked through some path in the model to some instance of the first
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constituent. In (2), the resulting instances are those instances of the second constituent which
have a slot whose filler may be matched with the first constituent. The types of links
traversed in the search (in the first case) or the checked slots (in the second case) arec a
function of the semantic class (SEM-C) of the first constituent. This function assigns to each
semantic class a set of slot names (see SEM-C --> SLOT-NAME TABLE in Fig. 5).

Let us illustrate the way the interpreter works with an example. Fig. 6 shows the trace of
parsing SAC lube oil pump. We enclosed State Vectors in square brackets; the lists delimited
by curled brackets represent (from left to right): the Word List, the Forest, and the List of
Referents. The words are represented by numbers; the names (p!, p2, p3, ol, ...) are model
instances taken from the dictionary (comp. Fig. 5). We analyze the words from right to left.
We start with pump. We remove it from the Word List, find its definition in the dictionary
(Fig. 5), and applying a rule not shown above, create the new State Vector (Fig. 6, first
vector above the compound). The next word is 0il. Now, two reduction rules are applicable: -
the same one we used for pump - resulting in the left branch on Fig. 6 and rule (1) above. To
apply rule (1), we first find in the dictionary that oil is of class [nstance and names the
instances (0l 02 03). Next, we try to find out whether any of these instances may be linked to
any of the (p! p2 p3). To do this we take the semantic class of oil from the dictionary (Fig.
5): Working-Substance. Then we check in the SEM-C --> SLOT-NAME TABLE (Fig. 5)
which slot names we should consider - the only candidate in this case is :working-substance.
Finally, we consider each of the instances (p! p2 p3) and check the fillers of their ‘working-
substance slots. In Fig. 5 we show only the instance p3 (the instances pl and p2 are similar).
For p3 we indeed find that it can be linked with one of the considered candidates (namely
with 03) through the :working-substance link. Thus, we include p3 into the resulting set. A
similar analysis for p! and p2 would result in including them into the resulting set as well.
Hence, the State Vector in the right branch in Fig. 6 has (3 4) as a partial parse tree whose
leaves, when combined into one constituent, refer to the set (pl p2 p3). The analysis at the
other points of the trace is similar.

(SUCCESS)
) (2 3) (9N} {(p3)Y]

(1) (2 3) (4N} {(sD) (p2 P}

(SUCCESS)
{1 {((2 3) (4N} {(p2 P3O} HHI) (2 3) (4ONH(P3H
({1} {(2 3) (9)} {(02 03) (p1 p2 p3)}] {IH{((2 3) (4N} {(p2 pD)}]

e

({1 2} {(3) ()} {(o1 02 03) (p1 p2 p3)}]

(DEAD END)
({1 2} {(3 9} {(p1 p2 p3)}]

({12 3} {(9)} {(p1 p2 p3)}]
({1234} {}{H
SAC lube o0il pump
m @ & @

Figure 6. The parsing trace for the nominal compound SAC lube oil pump.
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[Grishman 1986} discusses how to treat modifiers describing the state of a part, such as
cracked or sheared, and also how to handle some ambiguities in conjoined noun phrases (for
an example see the beginning of this section).

6. Future Work

The immediate next step in the development of cur system is to extend the coverage of the
interpreter of nominal compounds to full-fledged noun phrases (including relative clauses,
prepositional phrases and conjunctions). Then we plan to work on the interpretation of
clauses. It should be possible to define the semantics of most verbs from the domain as
operations on the equipment model. Finally, to obtain a robust system, it will be necessary to
develop components for finding temporal and causal links between sentences in the text. As
is known from previous research (e.g. [Charniak 1977]), success in this area depends mainly
on the quality of solutions to the knowledge representation and inference problems. As we
indicated in section 2 of this paper, one of the possible approaches to inference mechanism
involves the use of a simulation model.

The initial motivation for the system has been the conversion of a stream of messages to a
data for subsequent querying, summarization, and trend analysis. However, the use of a
detailed equipment model, similar to that employed in simulation systems (e.g. STEAMER
[Hollan 1984]), suggests that it may be equally useful as an interface for such systems.
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