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ABSTRACT 

The aim of PROTEUS -- a system for the analysis of short technical texts -- is to increase the 
reliability of the analysis process through the integration of syntactic and semantic 
constraints, domain knowledge, and knowledge of discourse structure. This system is 
initially being applied to the analysis of messages describing the failure, diagnosis, and repair 
of selected pieces of equipment. This has required us to develop a detailed model of the 
structure and function of the equipment involved. We focus in this paper on the nature of 
this model and the roles it plays in the syntactic and semantic analysis of the text. 
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I .  I n t r o d u c t i o n  

Cons iderab le  p rogress  has been made  in deve loping  sys tems  which unders tand shor t  
passages of  technical text.  Several p ro to types  have been deve loped ,  for  such domains  as 
patient  medical  records [Sager 1978], e q u i p m e n t  fai lure repor t s  [Marsh  1984], and 
intelligence messages  [ M o n t g o m e r y  1983]. Excep t  for  very  na r row domains  such as wea the r  
repor ts ,  howeve r ,  none of  these sys tems seem tO be robus t  enough  for  opera t iona l  use. 
Typical  success rates - where  any are repor ted  - are in the range  of  70 to 80% of sentences  
correct ly  analyzed;  substant ial ly bet ter  rates are very  hard to ob ta in ,  even  with careful  sys tem 

tuning ' .  

Our  object ive  in deve lop ing  P R O T E U S  (the P R O t o t y p e  T E x t  Unders t and ing  System) is 
to see if this rate  can be substantially improved  for  a domain  of  m o d e r a t e  complexi ty .  In 
o rder  to achieve this i m p r o v e m e n t ,  we mus t  bring to bear  on the language  analysis task the 
var ious syntactic,  semantic ,  and discourse constraints ,  a long with a fair ly detai led knowledge  
of  the domain  of  discourse.  Our  system is initially being appl ied to e q u i p m e n t  fai lure  repor t s  
( " C A S R E P s " )  for  selected equ ipment  on board  Navy ships (initially, the equ ipmen t  in the 
start ing air sys tem) ;  a sample  message  is shown in Figure  1. In this case,  the domain  
knowledge  is the knowledge  of  the s tructure and funct ion of  these pieces of  equ ipment .  

In this pape r  we first  p resent  an overv iew of  the P R O T E U S  sys tem.  We  then focus on 
the domain  informat ion:  how it is r ep resen ted ,  how it is in tegra ted  with the language  
processing,  and how it serves  to resolve ambigui t ies  in the input  text .  

2.  Pr ior  w o r k  

New York  Univers i ty  has been involved in the au toma ted  analysis  and s t ructur ing of  
technical text  for  ove r  a decade.  Most  of  this work  has been  on medica l  records  [Sager 1978, 
Hi r schman  1982], but we have also been  involved with the Naval  Resea rch  L a b o r a t o r y  on a 
system for  C A S R E P ' s  [Marsh  1984]. These  sys tems used domain-spec i f ic  f rame- l ike  target  
s tructures,  and em p l oyed  selectional constraints  to weed  out  bad  parses ,  but  did not 
incorpora te  detai led domain  models .  Our  exper ience  with these sys t ems  - in par t icular ,  the 
difficulty of  obta ining success rates (% of sentences  correct ly  ana lyzed)  much  above  75% - 
led us to our  w o r k  on P R O T E U S .  

The use of  detailed domain  models  in language process ing sys tems  is, of  course ,  not  
new. Scr ipt -based sys tems,  and some of the f r a m e - b a s e d  l anguage  analysis sys tems,  have  
been mot iva ted  by a desire to incorpora te  detai led domain  knowledge .  The  task we conf ron t ,  
however ,  differs  in severa l  regards f rom those of ear l ier  sys tems .  One  is the ma t t e r  of  scale; 
our  initial set  of  equ ipmen t  - the start ing air sys tem for  a gas turbine  - includes severa l  
hundred  separa te ly  nameab le  componen t s  (and many  lesser c o m p o n e n t s ,  such as bolts and 

D U R I N G  N O R M A L  S T A R T  C Y C L E  OF 1A G A S  T U R B I N E ,  A P P R O X  90 SEC 
A F T E R  C L U T C H  E N G A G E M E N T ,  L O W  L U B E  O I L  A N D  F A I L  T O  E N G A G E  
A L A R M  W E R E  R E C E I V E D  ON T H E  A C C .  ( A L L  C O N D I T I O N S  W E R E  
N O R M A L  I N I T I A L L Y ) .  SAC WAS R E M O V E D  A N D  M E T A L  C H U N K S  
F O U N D  IN O I L  P A N .  L U B E  O I L  P U M P  WAS R E M O V E D  A N D  WAS F O U N D  
T O  BE S E I Z E D .  D R I V E N  G E A R  W A S  S H E A R E D  ON P U M P  S H A F T .  

Figure 1. A sample  C A S R E P  about  a s tar t ing air c o m p r e s s o r  (SAC) .  

:: ~Substantially better rates have been cited for strongly expectation-based parsers, which are considered 
successful if they locate all the expected items within an input text. 
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gear  teeth,  without  specific names) .  While not raising any intrinsic difficulties, a domain of 
this size clearly provides a more  rigorous test of our  ability to acquire and organize  domain 
knowledge  than did many earl ier  "toy" domains.  

Another  unusual aspect is the nature of the domain  informat ion.  Scripts, fo r  example ,  
encode  essentially procedural  informat ion (how to pe r fo rm complex actions).  The 
informat ion  for  our  domain,  in contrast ,  is primarily structural  (par t -whole relationships,  
interconnect ions,  etc.) and to a lesser degree  functional .  This di f ference is ref lected in 
di f ferences  in the way the informat ion is used - in part icular,  in-the analysis of noun phrases,  
as we shall see below. Our domain informat ion bears grea ter  resemblance to that used in 
some equipment  simulation packages (e .g . ,  S T E A M E R  [Honan  1984]) and diagnosis 
packages [Cantone 1983] than it does to that convent ional ly  seen in natural language systems. 

The domain knowledge plays a role in many phases of the language processing task: in 
the recovery  of  implicit operands  and intersentential  relat ions,  in the analysis of  noun-phrase  
re fe rence ,  and in the determinat ion of syntactic and semantic  structure.  In part icular,  we 
shall consider below its role in the processing of  compound  nominals,  which appear  
f requent ly  in such technical domains.  There  have been several  prior studies of the processing 
of such compounds .  The work both of Brachman [1978] and of McDonald and Hayes -Roth  
[McDonald 1978] emphasized the use of  search procedures  within semantic networks  to 
identify the wide variety of implicit relations possible with compound  nominals .  We have 
also used network search techniques,  al though of a more  directed sort. H o w e v e r ,  their  work 
cited isolated examples f rom a variety of  areas to show the generali ty of  their  approach,  
while we have been concerned with achieving detailed and thorough coverage  within a 
na r rower  domain.  Finin [1980, 1986] has sought to develop,  within a sublanguage,  general  
semantic categories for  the relations and consituents involved in compounds.  Al though there 
are some similarities to our classification efforts ,  he also has aimed at providing a relatively 
broad and loose set of constraints.  In contrast ,  the detailed knowledge in our  equ ipment  
model  -- provided for several  purposes ,  of which noun phrase interpretat ion is only  one -- 
make  possible much tighter constraints in our  system. 

3. System overview 

The P R O T E U S  system has three major  components :  a syntactic analyzer ,  a semantic  
analyzer ,  and a discourse analyzer.  The syntactic analyzer  parses the input and regular izes  
the clausal syntactic structure. The semantic  analyzer  converts  this to a "logical fo rm"  
specifying states and actions with reference  to specific components  of the equ ipment .  The  
discourse component  establishes temporal  and causal links between these states and actions. 

Initial implementat ions have been completed  of  the syntactic and semantic components ,  
so that we are able to generate  semantic representa t ions  of  individual sentences.  The  
discourse component  is still under  deve lopment ,  and so will not  be discussed fu r the r  here .  

The syntactic analyzer uses an augmented-con tex t - f ree  g rammar  and an. active chart 
parser .  The  g rammar  is general ly based on linguistic string theory and the Linguistic String 
Project  English Grammar  [Sager 1981] and includes extensions to handle the var ious  sentence 
f ragment  forms found in these messages [Marsh 1983]; it is writ ten in a modif ied  fo rm of the 
Restr ict ion Language used by the N Y U  Linguistic String Parser  [Sager 1975]. Syntactic 
regular izat ion maps the various forms of clauses (active,  passive, relative,  reduced  relative,  
f ragmenta ry)  into a canonical form (verb operandi, operand2...) The regular izat ion is 
pe r f o r med  by a set of  interpretat ion rules which are associated with the individual 

product ions  and which build the regular ized syntactic s t ructure  composit ional ly.  2 

z The parser and syntactic regularization procedures were developed by Jean Mark Gawron. The 
regtllarization procedures were modeled after those developed for a GPSG parser [Gawron 1982], although the 
generated structures are quite different. 
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The semantic analysis component  consists of two parts: clause semantics and noun phrase 
semantics. The clause semantics maps a clause (a verb plus operands  which include syntactic 
case labels) into a predicate auith arguments  representing a state or action. Each verb and 
operand belongs to one or more  semantic classes. Clause semantics relys on a set of  pat tern-  
action rules to perform the translation, with one pat tern for  each valid combinat ion of verb 
and operand  classes. Noun phrase semantics maps a noun phrase into the identifier  of the 
equipment  component  specified by that phrase. Noun phrase semantics depends heavily on 
the equ ipment  model,  and so will be discussed fur ther  in a later  section. 

(The division between the two parts of semantic analysis is not  quite so neat as the 
foregoing would suggest. Some noun phrases are nominal izat ions  represent ing states or 
actions; these are processed by clause semantics. In many noun phrases,  some modif iers  
identify the object and the remainder  describe its state. For  example ,  in "broken hub ring 
gear",  hub and ring identify the gear,  broken describes its state. We return to this problem in 
our  descript ion of  noun phrase semantics below.)  

Our  long-term objective is to dynamically schedule among the three analysis 
components  (syntax, semantics,  and discourse),  as is done in some blackboard models .  For  
program development ,  however ,  we have found it bet ter  to use a sequential  organizat ion 
(first syntax,  then semantics, then discourse).  In o rde r  to have syntactic choices influenced 
by semantics and discourse, and semantic choices influenced by discourse,  each co m p o nen t  
may genera te  multiple analyses, some of which are rejected by later stages. Somet ime these 
multiple analyses are transmitted explicitly, as a list of al ternatives.  More  of ten ,  however ,  
they are transmitted using a representa t ion  neutral  with respect  to part icular  fea tures .  The  
output  of  syntactic analysis is neutral with respect to quant i f ier  scope. It is also neutral  with 
respect to the distribution of modif iers  in conjoined noun phrases ( for  example ,  in "filter 
change and adjustment of pressure regula tor ,"  whether  filter modifies adjustment and of 
pressure regulator modifies change). Fur the rmore ,  it does not assign structure to p renomina l  
adjectives and nouns (so for example,  in the phrase "low lube oil pressure alarm" it does not 
decide whe ther  low modifies lube, oil, pressure, or alarm). 

This system development  has been conducted in close Cooperation with a group at the 
System Deve lopment  Corp. ,  Paoli, PA. The i r  system, P U N D I T  [Palmer  1986], is wri t ten in 
P R O L O G  but has many points of commonal i ty  with P R O T E U S  in terms of overal l  s t ructure,  
g rammar ,  and semantic representat ion.  They  are involved in future  deve lopment  of several  
areas, including semantic representat ion,  t ime analysis, and anaphora  resolut ion,  for  both the 
P U N D I T  and P R O T E U S  systems. 

4. The equipment model 

The  equipment  model  current ly  serves three functions within our  system: 

object identification. The noun phrases in the message are matched  against the model  (by a 
p rocedure  outl ined in the next  section) in order  to identify the objects re fe renced  in the 
message.  This is important  both for syntactic disambiguat ion and as a prelude to applying 
domain-specif ic  inferences.  

identification of intersentential relations. The  identif ication of  these relations ( temporal ,  
causal, and others)  is impor tant  both for  disambiguation (of  adjuncts and anaphoric  
references ,  in particular) and for establishing the meaning of  the message as a whole.  Much 
of the informat ion  needed for this process - informat ion on the structure of  the equ ipment  
and the funct ion of its components  - is recorded in the equ ipmen t  model .  

display of equipment structure and status. In order  to provide  some feedback to indicate 
whether  the text was correct ly unders tood ,  our  system displays a structural diagram of the 
equ ipment  at several levels of  detail. Objects ment ioned in the text, and changes in 
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equipment  status described in the message,  can be shown on the display. The  informat ion  
for  generat ing these displays (positions, shapes,  etc.) is stored with the equ ipmen t  model .  

The  messages refer  to relatively low-level components ,  such as individual gears  within the air 
compressor .  We therefore  had to constuct  a relatively detailed model  of  the equipment  
involved. Our  model  has been developed through a study of the Navy manuals  for  this 
equipment .  

The model  is basically organized as two hierarchies:  a type-instance hierarchy and a 
part-whole hierarchy.  The  leaves of the par t -whole  hierarchy are called basic parts; the 
internal nodes (composi te  objects) are called systems. We record for  each system the pr imary 
medium which it provides,  conveys,  or t ransforms;  in our  starting air sys tem,  the three media  
are compressed air, lubricating oil, and mechanical  rotation. We have organized  our  part- 
whole hierarchy in part  along functional lines ( ra ther  than purely on physical proximity) ,  
grouping together  parts which are connected together  and operate  on the same medium.  

Since some parts are identified by their  physical location, we provide  a location field in 
both basic part and system nodes. Both types of nodes also have a function field, which 
indicates the effect  of this part on the media  or  o ther  parts. Nodes  of  specific types may 
have additional fields; for example,  some mechanical  components  have a speed field. 

All of the fields just ment ioned record pe rmanen t  characteristics of  the parts. In 
addition, each node has an operational-status field, which holds in format ion  about  a part  
which is repor ted in a message. 

The model  contains a lot of informat ion about  equ ipment  structure which is specific to a 
particular piece of equipment .  Some informat ion,  however ,  is more  general :  for  example ,  
that gears have tee th ,or  that impellors have blades. It would be most  uneconomic  to have a 
separate instance of tooth for  each gear in the model .  Instead we create an instance of  the 
teeth for a specific gear when it is re fe renced  in the text.  Such very- low-level  objects,  which 
are instantiated dynamically as needed,  are called components. 

The equipment  model  has been implemented  using f lavors on a Symbolics LISP 
Machine.  Types  of objects are represented by flavors;  instances of  objects are represented  by 
instances of flavors.  The  part-whole hierarchy and other  fields are s tored in instance 
variables. The structure display is pe r fo rmed  by procedures  associated with the f lavors .  The  
equipment  model ,  and its use in the system, are described in more  detail in [Ksiezyk 1986]. 

5. Noun phrase analysis 

The syntactic analysis component  analyzes the clause structure and delimits the noun 
phrases,  but does not assign any structure to the pre-nominal  modif iers .  The noun phrase 
analyzer  within the semantic component  the re fore  has a dual role: to de te rmine  the s tructure 
of  the pre-nominal  modifiers  and to identify the instance in the equ ipmen t  model  named  by 
the noun phrase (or  the set of instances, if this phrase could be applied to any of  several  
parts) .  (Although there are a limited number  of  instances, it is not  possible to record  a single 
name for  each par t  and then interpret  noun phrases by simply looking the name up in a table. 
A single part  can be named in many di f ferent  ways -- depending in part  on pr io r  context  -- so 
a full-fledged interpretat ion procedure  is required.  ) 

The noun phrase is analyzed bot tom-up using a set of reduct ion rules. Each reduct ion 
rule combines the head of a phrase with some of  its modif iers  to form a larger  consti tuent.  
By reference  to the model ,  each rule also determines  the set of  instances which can be named 
by the constituent;  if the set is empty,  the application of  the rule is rejected.  Reduct ions  are 
pe r fo rmed  repeatedly until the entire phrase is reduced to a single const i tuent .  If no such 
reduct ion is possible, the syntactic analysis is rejected;  in this way noun phrase  semantics can 
weed out some incorrect  syntactic analyses. 
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The applicable reductions are de te rmined  by the dict ionary entr ies  for  the words  in the 
noun phrase.  Each word  is assigned two proper t i es ,  its model class and its semantic class. 
The  model  class indicates how the word  can be related to some enti ty in the domain  model .  
One  value of  model  class is instance, specifying that the word  names  a set of  instances in the 
mode l ;  this set is also included in the dic t ionary entry .  Examples  are "pump" ,  "shaft" ,  
"gear" ,  etc. La rge r  consti tuents built while analyzing the noun phrase  are also cons idered  to 
be of  type instance. One reduct ion rule al lows us to combine  two instances: 

instance ~- i n s t a n c e -  instance 

for  example ,  "LO" + "P UM P "  - "LO P U M P " ,  "SAC" + ( "LO P U M P " )  - "SAC LO 
P U M P " .  The  set of  model  instances for  the result  consists of  those instances of the second 
const i tuent  which can be linked through some  path in the model  to some  instance of  the first 
consti tuent .  The  types of  links t raversed  in the search are a function of  the semantic class of -  
the first  const i tuent;  for example ,  "SAC" has the semant ic  class machinery, so we search the 
par t /whole  links, the location links, and the f rom/ to  links (which tie toge ther  c o m p o n e n t s  of  
the same sys tem).  

There  are several  o ther  model  classes and cor responding  reduct ion rules.  The  class 
slot-filler is used for  words  which are values  of  fea tures  of  instances,  but  are not  themse lves  
instances ( for  example ,  "LUB E"  in the phrase  " L U B E  OIL" ) .  The  class slot-name is used for  
words  which cor respond  to feature  names ,  such as "SPEED"  in " H I G H  S P E E D  
A S S E M B L Y " .  The class component is used for  parts  which (as expla ined  in the previous  
section) are not  instantiated in the p e r m a n e n t  equ ipmen t  model  but  can be instant iated 
dynamica l ly  as needed.  

Modif iers  describing the state of a part ,  such as "cracked" or  " sheared" ,  are handled 
dif ferent ly .  If noun phrase  semantics  gets the input  " sheared  ring gear"  it will look for  an 
instance of ring gear  with the operational-state "sheared" .  Such an instance would  be present  
if a previous sentence had ment ioned  that a gear  was sheared.  I f  such an instance is found,  it 
is identified as the correct  referent ;  noun  phrase  semant ics  has in e f fec t  done  anaph o ra  
resolut ion.  If  no instance is found,  noun phrase  semant ics  returns the instances of  "ring 
gear"  and the lef t -over  modif ie r  "sheared" .  Clause  semant ics  (which invokes  noun phrase  
semant ics)  then treats this like a clause "ring gear  was sheared" ;  later  in the process ing  of  this 
sentence,  this will cause "sheared"  to be assigned as the opera t iona l - s ta te  of  ring gear .  

A related technique can be used to handle  some  of the ambigui t ies  in cojoined noun 
phrases .  For  example ,  in the sentence ' . ' I N V E S T I G A T I O N  R E V E A L E D  S T R I P P E D  LO 
P U M P  D R I V E  A N D  H U B  R I N G  G E A R " ,  syntax alone cannot  de t e rmine  which of  the 
modi f ie r s  " S T R I P P E D " ,  "LO",  " P U M P " ,  or  " D R I V E "  also modi fy  " H U B  R I N G  G E A R " .  So 
syntax  marks  these as possibly appl icable  to " H U B  R I N G  G E A R "  and passes the phrase  to 
semant ics .  If  semantics  finds that  some of  these  modif ie rs  cannot  be in tegra ted  into the noun 
phrase ,  they will be ignored,  thus implicitly resolving the syntactic ambigui ty .  

6. Conclus ion 

We have descr ibed a new tex t -process ing  sys tem,  P R O T E U S ,  for  analyz ing  messages  
abou t  equ ipmen t  failure.  We have  focussed  on its equ ipmen t  mode l  and the role of  this 
mode l  in the process of  in terpret ing of  noun  phrases .  This process  is par t  of  semant ic  
analysis  but also plays a role in syntactic analysis  and discourse analysis.  

In addit ion to the e labora t ion  of  the exist ing componen t s ,  substant ia l  w o r k  will be 
requi red  in at least  two areas before  we can hope  to obtain  a robus t  text  process ing sys tem.  
First ,  we are developing a discourse c o m p o n e n t  to identify t empora l  and plausible  causal 
links be tween  sentences.  This in fo rmat ion  is needed  not only for  s o m e  of the appl icat ions 
(e~g., message  summar iza t ion)  but also to resolve some of the syntact ic  and semant ic  
ambigui t ies  in the messages .  Second, we will need to move  f rom a pass/fail  s t ra tegy for  
enforc ing  our  constraints  to a best-f i t  s t ra tegy.  Because of  imper fec t ions  in the input,  and the 
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inevitable omiss ions  in a model  as complex  as ours ,  we must  expect  that many  messages  will 
violate one or another  constraint;  by employing  a rich set  of constraints ,  however ,  and 
selecting the analysis which violates the fewest  constraints ,  we beleive that we will be able to 
identify the intended reading for  most  sentences.  

The initial mot ivat ion for the system has been the convers ion  of a s t ream of  messages  to 
a data base for  subsequent  querying,  summar iza t ion ,  and t rend analysis.  H o w e v e r ,  the use 
of  a detai led equ ipment  model ,  similar to that emp loyed  in s imulat ion and diagnostic 
systems,  suggests that it may be equally useful as an interface for such systems.  A diagnostic 
sys tem,  for  example ,  would then be able to accept initial observa t ions  in the fo rm of a brief  
textual s u m m a r y  rather  than force the user to go through an e labora te  ques t ionnai re ;  this 
may  be a substantial  advantage  for  b road-coverage  diagnostic sys tems,  which must  be able to 
accept  a wide var iety of  d i f f e ren t  symptoms .  
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