
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 1011–1018, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Learning Mixed Initiative Dialog Strategies
By Using Reinforcement Learning On Both Conversants

Michael S. English and Peter A. Heeman
Center for Spoken Language Understanding

OGI School of Science & Engineering
Oregon Health & Science University

Beaverton OR, 97006, USA
menglish6@gmail.com and heeman@cslu.ogi.edu

Abstract

This paper describes an application of re-
inforcement learning to determine a dia-
log policy for a complex collaborative task
where policies for both the system and a
proxy for a user of the system are learned
simultaneously. With this approach a use-
ful dialog policy is learned without the
drawbacks of other approaches that re-
quire significant human interaction. The
specific task that the agents were trained
on was chosen for its complexity and re-
quirement that both conversants bring task
knowledge to the interaction, thus ensur-
ing its collaborative nature. The results of
our experiment show that you can use re-
inforcement learning to create an effective
dialog policy, which employs a mixed ini-
tiative strategy, without the drawbacks of
large amounts of data or significant human
input.

1 Introduction

The problem of developing a dialog manager can be
expressed as the task of building a specific dialog
policy for the dialog system to follow as it interacts
with the user. A dialog policy can be thought of as an
enumeration of all of the states a dialog system can
be in, and the corresponding action to take from each
of those states. Thus a policy completely specifies
the behavior of a dialog manager.

Most conventional approaches to accomplishing
this task seek to directly model human interactions
in some manner. These techniques include hand-
crafting a policy, using a Wizard-of-Oz approach in
an iterative manner and inducing a policy from a

human-human dialog corpus. All three approaches
have shortcomings that make them less than ideal for
developing dialog systems. The approach of hand-
crafting of a dialog policy is problematic as it is
difficult to predict how a user with interact with it,
making it difficult to craft an optimal policy. To get
around this, an iterative approach can be used, with
a Wizard taking the place of the system. However, it
is still difficult to train a wizard, and it is difficult to
explore many different strategies in order to find the
optimal one. Human-human dialog can be used for
policy generation, as this should represent optimal
behavior to accomplish a task. However, computers
are not capable of behaving exactly as a human. In
addition, humans might not interact with a computer
as they would another person.

Recently a number of researchers have proposed
using reinforcement learning to alleviating the prob-
lems encountered with more conventional methods
of developing dialog policies. With the development
of a good policy evaluation function, reinforcement
learning can effectively and quickly explore a large
policy space. There is the additional benefit that it
will learn a policy that is optimal for the capabilities
of the system.

The main drawback of reinforcement learning ap-
proaches is that they require some form of conver-
sational partner to train the system against. Con-
ventionally, these partners have taken the form of a
human (Walker, 2000; Singh et al., 2002) or a simu-
lated user (Levin et al., 2000; Scheffler and Young,
2002; Georgila et al., 2005). These two types of con-
versational partners limit the complexity and diver-
sity of policies that can be generated by reinforce-
ment learning. These two approaches to training
partners limit the whole system to the abilities of
the partners themselves. For a human partner we

1011



run into the significant time and effort problems that
were present in Wizard-of-Oz and handcrafting pol-
icy development. With a simulated user the system
is limited by the complexity and flexibility of the
simulated user, which itself can require a large de-
gree of handcrafting by its creator.

In this paper, we propose a solution to the con-
versational partner problem of generating a dialog
policy with reinforcement learning. We have taken a
complex collaborative task and used reinforcement
learning, applied to both participants, to develop a
dialog policy for the task. By training both agents
simultaneously we are able to avoid the uncertain-
ties of creating a user to train against, as well as the
time and data limitations of training directly against
humans. Our training approach allows us to avoid
these conventional drawbacks even while applying
reinforcement learning to complex tasks.

Section 2 provides a brief overview of previous
work in using reinforcement learning for dialog sys-
tems. Sections 3 and 4 describe the dialog task and
its specification as a reinforcement-learning prob-
lem. Section 5 and 6 present the results of this ex-
periment and a discussion of them.

2 Related Work

A number of researchers have explored using re-
inforcement learning to create a policy for a dia-
log system. Walker (2000) trained a dialog system,
ELVIS, to learn a dialog strategy for supporting spo-
ken language access to a user’s email. The main
function of ELVIS is to provide verbal summaries of
email folders. This summary could consist of simple
statements about the number of messages or a more
detailed description of current emails.

Reinforcement learning is used to determine the
best settings for a variety of properties of the sys-
tem. For example, the system must learn to choose
between email reading styles of reading back the full
email first, reading a summary of the email first, or
prompting the user with the two choices of reading
styles. The system also learns whether it is better to
take a mixed initiative or a system initiative strategy
when interacting with the user.

To enable the learning process, ELVIS utilized
human users as its conversational partner. Users per-
formed a set of tasks with ELVIS, with each run us-
ing different state-property values, which were ran-

domly chosen for that dialog. In order to support hu-
mans as a training partner Walker restricted the pol-
icy space so that it would only contain policies that
were capable of accomplishing the available system
tasks. Thus, during training the users would not be
faced with a system that simply could not perform
the tasks asked of it.

ELVIS was trained with a Q-learning approach
that sought to determine the expected utility at each
state, where utility was a subjective function involv-
ing such variables as task completion and user sat-
isfaction. The state variables utilized in the training
process were (a) whether the user’s name is known,
(b) what the initiative style is, (c) the task progress,
and (d) what the user’s current goal is. Given these
state variables, ELVIS was able to learn the best
style to adopt in responding to the user’s requests at
various points in the dialog. One major shortcoming
of the conversational partner used with ELVIS is its
reliance upon human interaction for training. This
shortcoming is somewhat mitigated by the fact that
the learning problem was one of fitting together pre-
existing policy components, but would be severely
limiting if the goal was to learn a complete dialog
policy. The amount of data necessary for learning a
complete policy makes direct human interaction in
the learning process unrealistic.

Levin et al. (2000) tackles a slightly different
reinforcement-learning task. She is learning a pol-
icy to use in a dialog system built from a small set
of atomic actions. This system is trained to provide
a verbal interface to an airline flight database. This
system is able to provide users with a way to find
flights that meet a dynamic set of criteria. The di-
alog agent’s state consists of information regarding
the departure city, destination city, flight date, etc.
Levin takes a useful approach in reducing the size
of true state space by simply tracking when a partic-
ular state variable has a value rather than including
the specific value in the state. For instance during
a dialog when the system determines that the de-
parture city is New York it does not distinguish this
from when it has determined that the departure city
is Chicago.

To converse with the dialog agent during rein-
forcement learning, Levin uses a “simulated user.”
The simulated user is created from a corpus of hu-
man dialogs with a prior airline system. In de-

1012



veloping this user Levin makes the simplifying as-
sumption that a user’s response is based solely on
the previous prompt. Then the specific probabilities
for each user response are determined by examin-
ing the corpus for exchanges that match the possible
prompts for the new dialog agent as well as hand
crafting some of the probabilities. During the actual
learning the agent used Monte Carlo training with
exploring starts in order to fully explore the state
space.

The “simulated user” method of supplying the
conversational partner seems difficult and not partic-
ularly applicable to tasks where a dialog corpus does
not already exist, but Kearns and Singh (1998) indi-
cates that the accuracy of the transition probabilities
for the probabilistic user is not critical for the dialog
agent to learn an optimal strategy. While this experi-
ment does allow for the dialog agent to learn a com-
plex strategy, the notion of learning against a sim-
ulated user limits the space of policies that will be
considered during training. Training against a con-
versational partner that is a model of a human au-
tomatically prejudices the system towards policies
that we would be inclined towards building by hand
and precludes the sincere exploration of all possible
policies.

3 Task Specification

For our experiment we use the task presented in
Yang and Heeman (2004), which is a modification
of the DesignWorld task of Walker (1995). The task
requires 2 conversants to agree on 5 pieces of furni-
ture to place in a room. Both conversants know all
of the furniture items that can be chosen, which dif-
fer by color, type and point value. Each conversant
also has private preferences about which furniture
items it wants in the room; such as ‘if there is a red
couch in the room, I also want a lamp in the room’.
Each preference has a score. As this is a collabora-
tive task, the conversants have the goal of finding the
5 furniture items that have the highest score, where
the score is the sum of the point value of each of
the 5 chosen furniture items less the scores for any
violated preferences of either conversant.

The conversational agents work to achieve their
goal by performing the following actions:propose,
accept, reject, inform , andrelease turn. If there
is not a current proposal, either agent canpropose

an item, which makes that item into the current pro-
posal. If there is a current proposal, the other conver-
sant canacceptit or reject it. Accepting an item re-
sults in that item being included in the task solution
and removes it as the current proposal. Rejecting
a proposed item removes it as the current proposal.
When an item has been rejected it remains a valid
choice for future proposals. In addition to accept-
ing or rejecting a proposal, either conversant may
inform the other conversant of preferences that are
violated by the current proposal. A preference is vi-
olated by the current proposal if the addition of that
proposed item to the solution set would cause the
solution set to violate the preference. When a con-
versant informs of a violated preference, that prefer-
ence becomes mutually known and so affects future
decisions by both participants. Only preferences that
are not known by the other conversant are commu-
nicated. For turn taking, we include the actionre-
lease turn, which the conversant that currently has
the turn can perform to signal that it is relinquishing
the turn (cf. Traum and Hinkelman, 1992). Note that
after a release turn, the other agent must make the
next move, which could itself be a release turn. The
inclusion of this action allows conversants to per-
form multiple actions in a row, such as a reject, an
inform, and a propose. Our approach to turn tak-
ing differs slightly from Yang and Heeman, as they
make it an implicit part of other actions.

In order to successfully utilize these actions in a
dialog, some reasoning effort is required of the con-
versants. Conversants must be able to determine
what preferences are violated by a pending proposal
and which of the remaining items makes the best
proposal. In order to keep the reasoning effort man-
ageable, we follow Yang and Heeman and use a
greedy algorithm to pick the item that results in the
best score for the item plus the set of items already
accepted. The conversants do not consider interac-
tions with the items that will be subsequently added
to the plan. Conversants using this greedy approach
can construct a plan that is very close to optimal.

4 Learning Specification

4.1 Agent Specification

In order to apply reinforcement learning to this task
we must formalize the conversants as reinforcement

1013



learning agents, specifying their state and actions,
as well as the environment they will interact in. In
order to reduce the size of the state space for this
task we simplified the representation of the state in
a manner similar to that done by Levin (2004). We
formulated the state of the dialog agents with many
of the more specific details of the actual state of the
task removed. For instance the agent state does not
include specific information about the furniture item
that is the pending proposal, rather the agent’s state
only indicates that there is a pending proposal.

The state specification for each agent includes
the following binary variables:Pending-Proposal,
I-Proposed, Violated-Preference, Prior-Violated-
Preferences, and Better-Alternative . Pending-
Proposal indicates whether an item has been pro-
posed but not accepted or rejected.I-Proposed in-
dicates if the agent made the most recent proposal.
Violated-Preferenceindicates that the pending pro-
posal has caused one or more violations of the
conversant’s private preferences.Prior-Violated-
Preferencesindicates whether the conversant had
one or more violated preferences when the pending
proposal was made. This variable allows the agent
to remember what its original response to a proposal
was, even after it may have shared all of its prefer-
ences that were violated (thus creating a state where
it no longer has any violated personal preferences).
Better-Alternative indicates that the agent thinks it
knows an item that would achieve a better score than
the item currently proposed.

The actions from Section 3 can be sequenced in
a number of different orders, leading to different
policies. Unlike Yang and Heeman, who compared
handcrafted policies, we use reinforcement learning
to learn policy pairs, one part of the pair for the sys-
tem, and the other for the simulated user. We have
restricted the space of policies that can be learned.
First, we reduce the space by only considering le-
gal sequences of actions. For example, if there is a
pending proposal, another item cannot be proposed.
Second, after 5 items have been accepted, the dialog
is automatically ended. Third, to keep the space of
dialog policies small, we force an inform to inform
of all violated preferences at once.

The Reinforcement Learning states and actions of
our dialog agents capture a subset of the true state
of the dialog. Our agents do not have the ability to

distinguish between, or develop distinct policies in
response to, the proposal of a blue chair versus a red
desk. Since our formulation of the dialog agents do
not encode specific information about items or pref-
erences, the dialog environment must maintain these
details. This extra information that must include the
currently proposed item, what each agent’s private
and currently violated preferences are, what pref-
erences are shared between each agent, what items
have been accepted as part of the task solution, and
what items are still available for selection. This tech-
nique of generalizing the state space is the same as
the one used by Levin (2000), and allows us to keep
the state space at a manageable size for our task.

4.2 Reinforcement Learning

For our Reinforcement Learning algorithm we chose
to use an on-policy Monte Carlo method (Sutton and
Barto, 1998). Our chosen task is naturally episodic
since the two agents agreeing upon five items indi-
cates task completion and thus the end of the dialog,
which constitutes one learning episode. We also im-
posed a limit of 500 interactions per dialog in order
to ensure that each learning episode was finite even
if the task was not successfully completed. For
some state-action pairs our task does not allow the
accurate specification of the resulting state. In fact,
due to the way that our state representation simpli-
fies the true task environment an action choice for
many states will necessarily lead to different states
depending upon the task environment. For instance,
proposing an item will sometimes lead to that items
acceptance and sometimes it will be rejected. Given
this uncertainty our learning approach necessarily
had to learn the expected rewards of actions instead
of states.

At the end of each dialog the interaction is given
a score based on the evaluation function and that
score is used to update the dialog policy of both
agents. The state-action history for each agent is
iterated over separately and the score from the re-
cent dialog is averaged in with the expected return
from the existing policy. We chose not to include
any discounting factor to the dialog score as we pro-
gressed back through the dialog history. The deci-
sion to equally weight each state-action pair in the
dialog history was made because an action’s contri-
bution to the dialog score is not dependent upon its

1014



proximity to the end of the task. An action that ac-
cepts a proposed item at the beginning of the dialog
should be rewarded as much as an action that accepts
a proposed item later in the same dialog.

In order for the learning agents to obtain a large
enough variety of experiences to fully explore the
state space some exploration technique must be
used. We chose to use e-greedy action selection in
order to achieve this goal. With this approach the
dialog agent makes an on policy action choice with
probability 1-e and a random valid action choice the
rest of the time.

Training both agents simultaneously causes each
agent to learn its policy as an optimal response to the
opposing agent. This can create problems in the ini-
tial stages of training as each agent has an immature
policy that is based on little experience. In this situ-
ation each of the agents will associate weights with
state action pairs based on action choices of the op-
posing agent that are themselves not well developed.
As training progresses the eccentricities of the ini-
tial immature policies are perpetuated and the learn-
ing process does not converge on an effective dialog
policy for either agent.

In order to combat the problem of converging to
an effective policy we divided up the agent training
process into multiple epochs. Each epoch is com-
posed of a number of training episodes. The initial
epsilon value is set to a large value and for each suc-
cessive epoch the epsilon value for action selection
is decreased. With an initially high epsilon value
the agents are able to develop a policy that is ini-
tially weighted more heavily towards a response to
random action selection than the immature policy of
the other agent. As the epsilon value decreases, each
agent slowly adjusts its learning to be weighted more
heavily towards a response to the other agent’s pol-
icy. This approach allows the agents to develop a
minimally coherent dialog policy before beginning
to rely too heavily upon the response of the oppos-
ing agent.

Utilizing this strategy of continuously decreasing
epsilon values we were able to get both agents to
converge to an effective and coherent dialog policy.
The initial epsilon value was set to 80

4.3 Objective Function

In the reinforcement learning process the objective
function provides the dialog agents with feed-back
on the success of each dialog. The specification of
this function requires input from a human. For our
learning specification we crafted a simple function
that attempted to model a human perception of a di-
alog’s quality. Our objective function is linear com-
bination of the solution quality (S) and the dialog
length (L), taking the form:

o(S, I) = w1S − w2L

wherew1 andw2 are positive constants. As higher
values forS and lower values forL indicate better
dialogs, we subtractw2L from w1S. Instead of at-
tempting to hand pick the constants in the objective
function, we explored the effects of different values,
which we report in Section 5.2.

For our experiment we trained the dialog agents
for 200 epochs, where each epoch consisted of 200
training episodes. After the training the agents, we
then had them perform 5000 dialogs with 100% on-
policy action selection (i.e. strictly following the
learned policy). The results of these 5000 dialogs
were then combined to obtain an average plan score
and average number of interactions for the policy of
the agents. These two values are then combined ac-
cording to the objective function to obtain a numeric
score for the learned policy.

5 Results

In this section, we present the results of the dialog
policies that we learned. We first present 3 baseline
policies to which we will compare the performance
of our learned policies. We will then present results
varying the weights in the objective function in com-
parison to the baseline policies. As we are learning
a pair of policies—one for the system and one rep-
resenting the user—we explore how well the system
policy does against handcrafted ones, that will repre-
sent what a user might do, rather than test it against
its learned counter-part.

5.1 Baseline Policies

In order to provide comparative data to evaluate the
effectiveness of our approach, we will compare the
performance of the policies learned for the system
and user against several pairs of handcrafted poli-

1015



cies. The first pair implement theunrestricted ini-
tiative strategy of Yang and Heeman. Here, one con-
versant, A, proposes an item and then the other, B,
informs A of any violated preferences. B then pro-
poses an alternative and A informs B of any violated
preferences. The process repeats until an item is pro-
posed that does not violate any of the other agent’s
preferences. The second pair of policies implement
therestricted initiative policy of Yang and Heeman,
in which A proposes an item and B informs A of
any violated preferences. However, the conversants
do not switch roles: it is always A who proposes
items and B that informs of preferences and accepts.
These two policies represent successful handcrafted
pairs of dialog policies. The third pair represents a
minimum performance: A proposes an item and B
simply accepts it. This is repeated for all 5 items,
with A making all of the proposals. This policy
is anun-collaborative approach, which represents
how well A can do on its own.

5.2 Impact of Weights on Learned Policy

We first explore the ability of the reinforcement
learning algorithm to learn a dialog policy pair that
is optimal with respect to the objective function. The
only important aspect of the weights is the ratio be-
tween the two:w2/w1. We varied the ratio from
0.1 to 0.5 in increments of 0.02. For each weight
setting, we learned 66 policy pairs, and tested each
policy pair on 1000 different task configurations. We
compared the average objective function score of the
learned policy pairs with the baseline restricted pol-
icy pair (cf. Scheffler and Young, 2002). Figure 1
shows the percentage of the learned policies that per-
form at least as well as the unrestricted policy pair

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
02

0.
06 0.

1
0.

14
0.

18
0.

22
0.

26 0.
3

0.
34

0.
38

0.
42

0.
46

w2/w1

P
e
r
c
e
n

t

Figure 1: Percentage of learned policies performing
better than unrestricted baseline pair.

at each weight setting. Interestingly, it is clear that
there is a lack of convergence in the learning pro-
cess, no weight ratio learns a good policy 100% of
the time. Additionally, we see that as the weight
ratio increases (putting more emphasis on shorter
dialogs), the ability of the algorithm to learn good
policies decreases. As the objective function gives
this aspect more weight, it is more difficult for the
objective function to learn the importance of solu-
tion quality. We think this lack of convergence is
due to learning both the system and a simulated user
at the same time, which is a more difficult reinforce-
ment learning problem than just learning the policy
for the system against a fixed user.

5.3 Lack of Convergence

To better understand the lack of convergence, we ex-
plore when a single weight is chosen for the objec-
tive function. For this analysis, we restricted our-
selves to the objective function having a ratio for
w2/w1 of 0.1, one of the best performing weights
from section 5.2. For this setting, we learned a num-
ber of policy pairs, each learned from a different se-
quence of task configurations. We then tested each
policy pair on 1000 task configurations, in which ac-
tions are selected strictly according to the learned
policy. This gives us 1000 dialogs for each policy
pair. We then computed the average objective func-
tion score for each policy pair and plotted them as a
histogram in Figure 2. As can be seen, at this weight
setting, 63% of the learned policies achieved an ob-
jective function score around 44.8. However, the
rest achieved a performance substantially less than
this. Hence, the reinforcement learning procedure
does not always converge on an optimal solution.

To better understand why reinforcement learning
is not always converging, we examined the compo-
nents of the objective function score: solution qual-
ity and dialog length. Figure 3 uses the same x-axis
as Figure 2: average objective function score. The
y-axis plots the average solution quality and average
dialog length. We see that at this weight ratio, all
learned dialogue pairs are very consistent in solution
quality, but that the difference in objective function
scores is mainly due to differences in dialog length.
This is consistent with our earlier observation that
the reinforcement learning strategy sometimes dis-
proportionately favors shorter dialog length.

1016



0

5

10

15

20

25

30

35

40

45

43.82 43.93 44.05 44.16 44.27 44.39 44.50 44.61 44.73 44.84

Objective Function Score

I
n

s
ta

n
c
e
s

Figure 2: Average objective function scores for poli-
cies learned withw2/w1 = 0.1.

0

5

10

15

20

25

30

35

40

45

50

43.82 43.93 44.05 44.16 44.27 44.39 44.50 44.61 44.73 44.84

Objective Function Score

Solution Quality Dialog Length

Figure 3: Variation of solution quality and dialogue
length versus objective function score for policies
learned withw2/w1 = 0.1.

5.4 Consistency of Policies

For the weight ratio of 0.1, the reinforcement learn-
ing algorithm usually finds a good policy pair. To
further improve the likelihood of this happening, we
could learn multiple policy pairs, and then pick the
best performing one. In this section, we compare
learned policies chosen in this way against the re-
stricted baseline pairs. We learned 10 sets of 10 dia-
logue pairs. We then ran each on 1000 task configu-
rations and chose the best performing policy pair in
each set. We then ran the resulting 10 policy pairs
on another set of 1000 task configurations. Table 1
gives the average objective function score for each of
the 10 learned policy pairs and the 3 baseline pairs.
From the table, we see that the learned policy pair
performs almost as well as the restricted policy pair,
for both solution quality and dialog length.

5.5 Robustness of Learned Policies

All of the results so far have used the learned pol-
icy for the system interacting with the corresponding
policy that was learned for the user. However, there

Objective Solution Dialog
Function Quality Length

Learned Policies 44.90 46.71 18.17
Restricted 45.04 46.89 18.44
Unrestricted 44.40 46.80 24.07
Uncollaborative 32.52 33.62 11.00

Table 1: Comparison of Learned Policies

is no guarantee that a real user will behave like the
learned policy. Thus, the true test of our approach
is to run the learned system policy against actual
users. The problem with testing our policies against
actual users is that there are a number of aspects
of dialog that we have not modeled, such as non-
understandings, misunderstandings, and even pars-
ing sentences into the action specification and gener-
ating sentences from the action specification. Thus,
as a simplification we tested our learned system pol-
icy on the handcrafted baseline policies.

For the weight ratio of 0.1, we learned 10 sets of
10 pairs of policies and choose the best policy pair
from each set. For each of the 10 policy pairs, we ran
the system policy against the 6 individual policies
from the 3 baseline policy pairs. We changed the
hand-crafted policies slightly from Yang and Hee-
man so that the policies would not fail if they en-
countered unexpected input. For example, for the
restricted policy for A (the conversant who proposes
but never informs), if the learned policy proposes an
item, A always rejects it. For the restricted policy
for B (the conversant who informs but never pro-
poses), if the learned policy releases the turn when
there is not an item proposed, B simply releases the
turn back to the learned policy.

Figure 4 shows the resulting average objective
function scores on 1000 dialog runs. For each base-
line policy, we show the performance with the pol-
icy pair, and then with each side of the baseline pol-
icy interacting with the learned policy. We see that
although the performance of the learned policy is
not as good as with the handcrafted pair, the perfor-
mance is close, with the major shortcoming being
a general increase in dialog length. Thus, the poli-
cies that we have learned our robust against different
strategies a user might want to use.

1017



Solution Quality

0

5

10

15

20

25

30

35

40

45

50

Uncollaborative Unrestricted Restricted

Learned with Baseline A Learned with Baseline B Baseline Pair

Dialog Length

0

5

10

15

20

25

30

35

40

45

50

Uncollaborative Unrestricted Restricted

Learned with Baseline A Learned with Baseline B

Baseline Pair

Figure 4: Learned dialogue policies interacting with
baseline policies.

6 Conclusion

In this paper, we proposed using reinforcement for
learning a dialog strategy for the system. Our ap-
proach differs from past research in that we learn
the system policy in conjunction with learning a user
policy. This approach of learning the user policy al-
lows us to minimize human involvement, as neither
a training corpus must be collected nor a simulated
user built. Thus, the only human input required for
this approach was to define the domain task and to
define success in that domain. While our training
approach did not always find an effective policy, we
overcame this obstacle by carefully choosing a ra-
tio for the weights in the objective function and by
running the learning algorithm multiple times. Our
approach resulted in learned system and user dia-
log policies that achieved comparable performance
with handcrafted system and user policy pairs. Fur-
thermore, the learned system policies were robust.
When the learned system policies ‘conversed’ with
the handcrafted user policies, the resulting dialogs
had comparable solution quality to what the hand-
crafted system and user policies achieved together.

Even with the lack of convergence our approach
could be applied to more complicated domains in or-

der to learn an effective dialog policy. Our approach
would be especially useful in situations where there
are no existing corpora of human-human interac-
tions for the domain or as a way to provide a check
against a policy based on human intuition. In most
situations where the domain requires significant col-
laboration between the dialog system and the user,
training both the system and a user simultaneously
will prove to be much less costly and labor intensive
approach.

7 Acknowledgments

The authors thank John Moody and Fan Yang for
helpful discussions. Partial funding for this research
was provided by the National Science Foundation
under grant IIS-0326496. The first author is now at
Google.

References
K. Georgila, J. Henderson, and O. Lemon. 2005. Learn-

ing user simulations for information state update dia-
logue systems. InEurospeech, Lisbon Portugal.

M. Kearns and S. Singh. 1998. Finite-sample conver-
gence rates for q-learning and indirect algorithms. In
NIPS, Denver CO.

E. Levin, R. Pieraccini, and W. Eckert. 2000. A stochas-
tic model of human-machine interaction for learning
dialog strategies.IEEE Transactions on Speech and
Audio Processing, 8(1):11–23.

K. Scheffler and S. J. Young. 2002. Automatic learn-
ing of dialogue strategy using dialogue simulation and
reinforcement learning. InHLT, pages 12–18.

S. Singh, D. Litman, M. Kearns, and M. Walker. 2002.
Optimizing dialogue managment with reinforcement
learning: Experiments with the njfun system.Journal
of Artificial Intelligence Research, 16:105–133.

R. Sutton and A. Barto. 1998.Reinforcement Learning.
MIT Press, Cambridge MA.

D. Traum and E. Hinkelman. 1992. Conversation acts in
task-oriented spoken dialogue.Computational Intelli-
gence, 8(3):575–599.

M. Walker. 1995. Testing collaborative strategies by
computational simulation: Cognitive and task effects.
Knowledge-Based Systems, 8:105–116.

M. Walker. 2000. An application of reinforcement learn-
ing to dialog strategy selection in a spoken dialogue
system.Journal of Artificial Intelligence Research.

F. Yang and P. Heeman. 2004. Using computer simu-
lation to compare two models of mixed-initiative. In
ICSLP.

1018


