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Abstract human-human dialog corpus. All three approaches
have shortcomings that make them less than ideal for
developing dialog systems. The approach of hand-
crafting of a dialog policy is problematic as it is
difficult to predict how a user with interact with it,

making it difficult to craft an optimal policy. To get

This paper describes an application of re-
inforcement learning to determine a dia-
log policy for a complex collaborative task

where policies for both the system and a

proxy for a user of the system are learned
simultaneously. With this approach a use-
ful dialog policy is learned without the

drawbacks of other approaches that re-

around this, an iterative approach can be used, with
a Wizard taking the place of the system. However, it
is still difficult to train a wizard, and it is difficult to
explore many different strategies in order to find the

quire significant human interaction. The
specific task that the agents were trained
on was chosen for its complexity and re-
quirement that both conversants bring task
knowledge to the interaction, thus ensur-
ing its collaborative nature. The results of
our experiment show that you can use re-
inforcement learning to create an effective
dialog policy, which employs a mixed ini-
tiative strategy, without the drawbacks of
large amounts of data or significant human
input.

optimal one. Human-human dialog can be used for
policy generation, as this should represent optimal
behavior to accomplish a task. However, computers
are not capable of behaving exactly as a human. In
addition, humans might not interact with a computer
as they would another person.

Recently a number of researchers have proposed
using reinforcement learning to alleviating the prob-
lems encountered with more conventional methods
of developing dialog policies. With the development
of a good policy evaluation function, reinforcement
learning can effectively and quickly explore a large
policy space. There is the additional benefit that it

1 Introduction will learn a policy that is optimal for the capabilities

The problem of developing a dialog manager can & the system.
expressed as the task of building a specific dialog The main drawback of reinforcement learning ap-
policy for the dialog system to follow as it interactsproaches is that they require some form of conver-
with the user. A dialog policy can be thought of as asational partner to train the system against. Con-
enumeration of all of the states a dialog system carentionally, these partners have taken the form of a
be in, and the corresponding action to take from eadiuman (Walker, 2000; Singh et al., 2002) or a simu-
of those states. Thus a policy completely specifidated user (Levin et al., 2000; Scheffler and Young,
the behavior of a dialog manager. 2002; Georgila et al., 2005). These two types of con-
Most conventional approaches to accomplishingersational partners limit the complexity and diver-
this task seek to directly model human interactionsity of policies that can be generated by reinforce-
in some manner. These techniques include hanthent learning. These two approaches to training
crafting a policy, using a Wizard-of-Oz approach irnpartners limit the whole system to the abilities of
an iterative manner and inducing a policy from g@he partners themselves. For a human partner we
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run into the significant time and effort problems thatlomly chosen for that dialog. In order to support hu-
were present in Wizard-of-Oz and handcrafting polmans as a training partner Walker restricted the pol-
icy development. With a simulated user the systernty space so that it would only contain policies that
is limited by the complexity and flexibility of the were capable of accomplishing the available system
simulated user, which itself can require a large deiasks. Thus, during training the users would not be
gree of handcrafting by its creator. faced with a system that simply could not perform

In this paper, we propose a solution to the conthe tasks asked of it.
versational partner problem of generating a dialog ELVIS was trained with a Q-learning approach
policy with reinforcement learning. We have taken dhat sought to determine the expected utility at each
complex collaborative task and used reinforcemerstate, where utility was a subjective function involv-
learning, applied to both participants, to develop &g such variables as task completion and user sat-
dialog policy for the task. By training both agentsisfaction. The state variables utilized in the training
simultaneously we are able to avoid the uncertairprocess were (a) whether the user’'s name is known,
ties of creating a user to train against, as well as th®) what the initiative style is, (c) the task progress,
time and data limitations of training directly againstand (d) what the user’s current goal is. Given these
humans. Our training approach allows us to avoidtate variables, ELVIS was able to learn the best
these conventional drawbacks even while applyingtyle to adopt in responding to the user’s requests at
reinforcement learning to complex tasks. various points in the dialog. One major shortcoming

Section 2 provides a brief overview of previousof the conversational partner used with ELVIS is its
work in using reinforcement learning for dialog sys+eliance upon human interaction for training. This
tems. Sections 3 and 4 describe the dialog task astortcoming is somewhat mitigated by the fact that
its specification as a reinforcement-learning probthe learning problem was one of fitting together pre-
lem. Section 5 and 6 present the results of this exxisting policy components, but would be severely
periment and a discussion of them. limiting if the goal was to learn a complete dialog
> Related Work policy. The amount of dat'a necessary _for Ieaming a

complete policy makes direct human interaction in
A number of researchers have explored using rehe learning process unrealistic.
inforcement learning to create a policy for a dia- Levin et al. (2000) tackles a slightly different
log system. Walker (2000) trained a dialog systenteinforcement-learning task. She is learning a pol-
ELVIS, to learn a dialog strategy for supporting spoicy to use in a dialog system built from a small set
ken language access to a user’'s email. The madaf atomic actions. This system is trained to provide
function of ELVIS is to provide verbal summaries ofa verbal interface to an airline flight database. This
email folders. This summary could consist of simplesystem is able to provide users with a way to find
statements about the number of messages or a mdlights that meet a dynamic set of criteria. The di-
detailed description of current emails. alog agent’s state consists of information regarding

Reinforcement learning is used to determine ththe departure city, destination city, flight date, etc.
best settings for a variety of properties of the systevin takes a useful approach in reducing the size
tem. For example, the system must learn to choosé true state space by simply tracking when a partic-
between email reading styles of reading back the fulllar state variable has a value rather than including
email first, reading a summary of the email first, othe specific value in the state. For instance during
prompting the user with the two choices of reading dialog when the system determines that the de-
styles. The system also learns whether it is better fwarture city is New York it does not distinguish this
take a mixed initiative or a system initiative strategyirom when it has determined that the departure city
when interacting with the user. is Chicago.

To enable the learning process, ELVIS utilized To converse with the dialog agent during rein-
human users as its conversational partner. Users pércement learning, Levin uses a “simulated user.”
formed a set of tasks with ELVIS, with each run us-The simulated user is created from a corpus of hu-
ing different state-property values, which were ranman dialogs with a prior airline system. In de-
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veloping this user Levin makes the simplifying as-an item, which makes that item into the current pro-
sumption that a user’s response is based solely @osal. If there is a current proposal, the other conver-
the previous prompt. Then the specific probabilitiesant caracceptit or reject it. Accepting an item re-
for each user response are determined by examisults in that item being included in the task solution
ing the corpus for exchanges that match the possibéd removes it as the current proposal. Rejecting
prompts for the new dialog agent as well as hand proposed item removes it as the current proposal.
crafting some of the probabilities. During the actualWhen an item has been rejected it remains a valid
learning the agent used Monte Carlo training witlthoice for future proposals. In addition to accept-
exploring starts in order to fully explore the stateang or rejecting a proposal, either conversant may
space. inform the other conversant of preferences that are

The “simulated user” method of supplying theviolated by the current proposal. A preference is vi-
conversational partner seems difficult and not partimlated by the current proposal if the addition of that
ularly applicable to tasks where a dialog corpus dogzoposed item to the solution set would cause the
not already exist, but Kearns and Singh (1998) indisolution set to violate the preference. When a con-
cates that the accuracy of the transition probabilitiegersant informs of a violated preference, that prefer-
for the probabilistic user is not critical for the dialogence becomes mutually known and so affects future
agent to learn an optimal strategy. While this experidecisions by both participants. Only preferences that
ment does allow for the dialog agent to learn a comare not known by the other conversant are commu-
plex strategy, the notion of learning against a simnicated. For turn taking, we include the actimn
ulated user limits the space of policies that will bdease turn which the conversant that currently has
considered during training. Training against a conthe turn can perform to signal that it is relinquishing
versational partner that is a model of a human auhe turn (cf. Traum and Hinkelman, 1992). Note that
tomatically prejudices the system towards policiesfter a release turn, the other agent must make the
that we would be inclined towards building by hanchext move, which could itself be a release turn. The
and precludes the sincere exploration of all possibli@clusion of this action allows conversants to per-
policies. form multiple actions in a row, such as a reject, an
inform, and a propose. Our approach to turn tak-
ing differs slightly from Yang and Heeman, as they
For our experiment we use the task presented make it an implicit part of other actions.
Yang and Heeman (2004), which is a modification In order to successfully utilize these actions in a
of the DesignWorld task of Walker (1995). The taskdialog, some reasoning effort is required of the con-
requires 2 conversants to agree on 5 pieces of furniersants. Conversants must be able to determine
ture to place in a room. Both conversants know allvhat preferences are violated by a pending proposal
of the furniture items that can be chosen, which difand which of the remaining items makes the best
fer by color, type and point value. Each conversangroposal. In order to keep the reasoning effort man-
also has private preferences about which furniturageable, we follow Yang and Heeman and use a
items it wants in the room; such as ‘if there is a re@reedy algorithm to pick the item that results in the
couch in the room, | also want a lamp in the room’best score for the item plus the set of items already
Each preference has a score. As this is a collaboraecepted. The conversants do not consider interac-
tive task, the conversants have the goal of finding thigons with the items that will be subsequently added
5 furniture items that have the highest score, wher® the plan. Conversants using this greedy approach
the score is the sum of the point value of each afan construct a plan that is very close to optimal.
the 5 chosen furniture items less the scores for any
violated preferences of either conversant. 4 Learning Specification

The conversational agents work to achieve their o
goal by performing the following actiongiropose 4.1  Agent Specification
accept reject, inform, andrelease turn If there In order to apply reinforcement learning to this task
is not a current proposal, either agent ganpose we must formalize the conversants as reinforcement

3 Task Specification
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learning agents, specifying their state and actiongjstinguish between, or develop distinct policies in
as well as the environment they will interact in. Inresponse to, the proposal of a blue chair versus a red
order to reduce the size of the state space for thttesk. Since our formulation of the dialog agents do
task we simplified the representation of the state inot encode specific information about items or pref-
a manner similar to that done by Levin (2004). Weerences, the dialog environment must maintain these
formulated the state of the dialog agents with mangletails. This extra information that must include the
of the more specific details of the actual state of theurrently proposed item, what each agent’s private
task removed. For instance the agent state does raotd currently violated preferences are, what pref-
include specific information about the furniture itemerences are shared between each agent, what items
that is the pending proposal, rather the agent’s stalmve been accepted as part of the task solution, and
only indicates that there is a pending proposal.  what items are still available for selection. This tech-
The state specification for each agent includesique of generalizing the state space is the same as
the following binary variablesPending-Proposa)] the one used by Levin (2000), and allows us to keep
I-Proposed, Violated-Preference Prior-Violated-  the state space at a manageable size for our task.
Preferences and Better-Alternative. Pending-
Proposal indicates whether an item has been pr
posed but not accepted or rejectdeRroposedin-  For our Reinforcement Learning algorithm we chose
dicates if the agent made the most recent propos#éh use an on-policy Monte Carlo method (Sutton and
Violated-Preferenceindicates that the pending pro- Barto, 1998). Our chosen task is naturally episodic
posal has caused one or more violations of thgince the two agents agreeing upon five items indi-
conversant’s private preferencedrior-Violated- cates task completion and thus the end of the dialog,
Preferencesindicates whether the conversant hadvhich constitutes one learning episode. We also im-
one or more violated preferences when the pendirmpsed a limit of 500 interactions per dialog in order
proposal was made. This variable allows the agemb ensure that each learning episode was finite even
to remember what its original response to a proposél the task was not successfully completed.  For
was, even after it may have shared all of its prefersome state-action pairs our task does not allow the
ences that were violated (thus creating a state whesecurate specification of the resulting state. In fact,
it no longer has any violated personal preferencesjue to the way that our state representation simpli-
Better-Alternative indicates that the agent thinks itfies the true task environment an action choice for
knows an item that would achieve a better score thanany states will necessarily lead to different states
the item currently proposed. depending upon the task environment. For instance,
The actions from Section 3 can be sequenced jroposing an item will sometimes lead to that items
a number of different orders, leading to differentacceptance and sometimes it will be rejected. Given
policies. Unlike Yang and Heeman, who comparethis uncertainty our learning approach necessarily
handcrafted policies, we use reinforcement learninigad to learn the expected rewards of actions instead
to learn policy pairs, one part of the pair for the sysef states.
tem, and the other for the simulated user. We have At the end of each dialog the interaction is given
restricted the space of policies that can be learned.score based on the evaluation function and that
First, we reduce the space by only considering lescore is used to update the dialog policy of both
gal sequences of actions. For example, if there isagents. The state-action history for each agent is
pending proposal, another item cannot be proposeiterated over separately and the score from the re-
Second, after 5 items have been accepted, the dialognt dialog is averaged in with the expected return
is automatically ended. Third, to keep the space dfom the existing policy. We chose not to include
dialog policies small, we force an inform to informany discounting factor to the dialog score as we pro-
of all violated preferences at once. gressed back through the dialog history. The deci-
The Reinforcement Learning states and actions afon to equally weight each state-action pair in the
our dialog agents capture a subset of the true stadéalog history was made because an action’s contri-
of the dialog. Our agents do not have the ability tdoution to the dialog score is not dependent upon its

o042 Reinforcement Learning
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proximity to the end of the task. An action that ac4.3 Objective Function

cepts a proposed item at the beginning of the dialog, the reinforcement learning process the objective
should be rewarded as much as an action that acCegfFction provides the dialog agents with feed-back
a proposed item later in the same dialog. on the success of each dialog. The specification of

In order for the learing agents to obtain a Iargihls function requires input from a human. For our

enough variety of experiences to fully explore th earning specification we crafted a simple function

state space some exploration technique must hat attempted to model a human perception of a di-

used. We chose to use e-greedy action selection ?Eogs quality. Our objective function is linear com-

order to achieve this goal. With this approach th pination of th? solution qua”tyso and the dialog
dialog agent makes an on policy action choice wit ength (), taking the form:
probability 1-e and a random valid action choice the o(S,I) = w1 S — wa L
rest of the time. wherew, andw, are positive constants. As higher
values forS and lower values for, indicate better
Training both agents simultaneously causes eaefialogs, we subtraci, L from w;S. Instead of at-
agentto learn its policy as an optimal response to thempting to hand pick the constants in the objective
opposing agent. This can create problems in the infunction, we explored the effects of different values,
tial stages of training as each agent has an immatufighich we report in Section 5.2.
policy that is based on little experience. In this situ- For our experiment we trained the dialog agents
ation each of the agents will associate weights witfor 200 epochs, where each epoch consisted of 200
state action pairs based on action choices of the ogaining episodes. After the training the agents, we
posing agent that are themselves not well developeghen had them perform 5000 dialogs with 100% on-
As training progresses the eccentricities of the inipolicy action selection (i.e. strictly following the
tial immature policies are perpetuated and the learfearned policy). The results of these 5000 dialogs
ing process does not converge on an effective dialagere then combined to obtain an average plan score
policy for either agent. and average number of interactions for the policy of
the agents. These two values are then combined ac-

In orde_r to cqmbat th_e_problem of converging tocording to the objective function to obtain a numeric
an effective policy we divided up the agent trainingy e for the learned policy

process into multiple epochs. Each epoch is com-
posed of a number of training episodes. The initias, Results

epsilon value is set to a large value and for each suc- _ _
cessive epoch the epsilon value for action selectidft this section, we present the results of the dialog

is decreased. With an initially high epsilon valuePolicies that we learned. We first present 3 baseline
the agents are able to develop a policy that is inolicies to which we will compare the performance
tially weighted more heavily towards a response tgf our learned policies. We will then present results
random action selection than the immature policy ofarying the weights in the objective function in com-
the other agent. As the epsilon value decreases, ed@{1S0n to the baseline policies. As we are learning
agent slowly adjusts its learning to be weighted mor@ Pair of policies—one for the system and one rep-
heavily towards a response to the other agent's pdiésenting the user—we explore how well the system
icy. This approach allows the agents to develop golicy does against handcrafted ones, that will repre-
minimally coherent dialog policy before beginning_sent what a user might do, rather than test it against
to rely too heavily upon the response of the oppod!S learned counter-part.

Ing agent. 5.1 Baseline Policies

Utilizing this strategy of continuously decreasingin order to provide comparative data to evaluate the
epsilon values we were able to get both agents &ffectiveness of our approach, we will compare the
converge to an effective and coherent dialog policyperformance of the policies learned for the system
The initial epsilon value was set to 80 and user against several pairs of handcrafted poli-
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cies. The first pair implement thenrestricted ini- at each weight setting. Interestingly, it is clear that
tiative strategy of Yang and Heeman. Here, one corthere is a lack of convergence in the learning pro-
versant, A, proposes an item and then the other, Bess, no weight ratio learns a good policy 100% of
informs A of any violated preferences. B then prothe time. Additionally, we see that as the weight
poses an alternative and A informs B of any violatedatio increases (putting more emphasis on shorter
preferences. The process repeats until an item is prdialogs), the ability of the algorithm to learn good
posed that does not violate any of the other agentf®licies decreases. As the objective function gives
preferences. The second pair of policies implemerthis aspect more weight, it is more difficult for the
therestricted initiative policy of Yang and Heeman, objective function to learn the importance of solu-
in which A proposes an item and B informs A oftion quality. We think this lack of convergence is
any violated preferences. However, the conversandiie to learning both the system and a simulated user
do not switch roles: it is always A who proposesat the same time, which is a more difficult reinforce-
items and B that informs of preferences and acceptsient learning problem than just learning the policy
These two policies represent successful handcraftéar the system against a fixed user.

pairs of dialog policies. The third pair represents a

minimum performance: A proposes an item and B-3 Lack of Convergence

simply accepts it. This is repeated for all 5 itemsJo better understand the lack of convergence, we ex-
with A making all of the proposals. This policy plore when a single weight is chosen for the objec-
is anun-collaborative approach, which representstive function. For this analysis, we restricted our-

how well A can do on its own. selves to the objective function having a ratio for
. _ we /wy Of 0.1, one of the best performing weights
5.2 Impact of Weights on Learned Policy from section 5.2. For this setting, we learned a num-

We first explore the ability of the reinforcementber of policy pairs, each learned from a different se-
learning algorithm to learn a dialog policy pair thatquence of task configurations. We then tested each
is optimal with respect to the objective function. Thepolicy pair on 1000 task configurations, in which ac-
only important aspect of the weights is the ratio betions are selected strictly according to the learned
tween the two:ws/w;. We varied the ratio from policy. This gives us 1000 dialogs for each policy
0.1 to 0.5 in increments of 0.02. For each weighpair. We then computed the average objective func-
setting, we learned 66 policy pairs, and tested eadion score for each policy pair and plotted them as a
policy pair on 1000 different task configurations. Wehistogram in Figure 2. As can be seen, at this weight
compared the average objective function score of tigetting, 63% of the learned policies achieved an ob-
learned policy pairs with the baseline restricted poliective function score around 44.8. However, the
icy pair (cf. Scheffler and Young, 2002). Figure 1rest achieved a performance substantially less than
shows the percentage of the learned policies that pdhis. Hence, the reinforcement learning procedure
form at least as well as the unrestricted policy paifloes not always converge on an optimal solution.

To better understand why reinforcement learning
is not always converging, we examined the compo-
nents of the objective function score: solution qual-
ity and dialog length. Figure 3 uses the same x-axis
as Figure 2: average objective function score. The
y-axis plots the average solution quality and average
dialog length. We see that at this weight ratio, all
learned dialogue pairs are very consistent in solution
quality, but that the difference in objective function
scores is mainly due to differences in dialog length.
This is consistent with our earlier observation that
Figure 1: Percentage of learned policies performinghe reinforcement learning strategy sometimes dis-
better than unrestricted baseline pair. proportionately favors shorter dialog length.
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Objective| Solution| Dialog
Function| Quality | Length
Learned Policies 44.90 | 46.71 | 18.17
Restricted 45.04 | 46.89 | 18.44
Unrestricted 44,40 | 46.80 | 24.07

Uncollaborative| 32.52 | 33.62 | 11.00
: I Table 1: Comparison of Learned Policies

Figure 2: Average objective function scores for poli-
cies learned withw, /w; = 0.1. is no guarantee that a real user will behave like the

learned policy. Thus, the true test of our approach

is to run the learned system policy against actual
\E users. The problem with testing our policies against

actual users is that there are a number of aspects
of dialog that we have not modeled, such as non-
understandings, misunderstandings, and even pars-
ing sentences into the action specification and gener-
ating sentences from the action specification. Thus,
as a simplification we tested our learned system pol-
icy on the handcrafted baseline policies.

Figure 3: Variation of solution quality and dialogue

length versus objective function score for policies For the weight ratio of 0.1, we learned 10 sets of
learned withws /w; = 0.1. 10 pairs of policies and choose the best policy pair

from each set. For each of the 10 policy pairs, we ran

the system policy against the 6 individual policies
5.4 Consistency of Policies from the 3 baseline policy pairs. We changed the
For the weight ratio of 0.1, the reinforcement learnhand-crafted policies slightly from Yang and Hee-
ing algorithm usually finds a good policy pair. ToMan so that the policies would not fail if they en-
further improve the likelihood of this happening, wecountered unexpected input. For example, for the
could learn multiple policy pairs, and then pick theestricted policy for A (the conversant who proposes
best performing one. In this section, we comparBut never informs), if the learned policy proposes an
learned policies chosen in this way against the rdtem, A always rejects it. For the restricted policy
stricted baseline pairs. We learned 10 sets of 10 difer B (the conversant who informs but never pro-
logue pairs. We then ran each on 1000 task configposes), if the learned policy releases the turn when
rations and chose the best performing policy pair if€re is not an item proposed, B simply releases the
each set. We then ran the resulting 10 policy pair!fn back to the learned policy.
on another set of 1000 task configurations. Table 1 rigyre 4 shows the resulting average objective
gives the average objective function score for each gfinction scores on 1000 dialog runs. For each base-
the 10 learned policy pairs and the 3 baseline pairfne policy, we show the performance with the pol-
From the table, we see that the learned policy pajgy pair, and then with each side of the baseline pol-
performs almost as well as the restricted policy paifey interacting with the learned policy. We see that
for both solution quality and dialog length. although the performance of the learned policy is
not as good as with the handcrafted pair, the perfor-
mance is close, with the major shortcoming being
All of the results so far have used the learned pol general increase in dialog length. Thus, the poli-
icy for the system interacting with the correspondingies that we have learned our robust against different
policy that was learned for the user. However, therstrategies a user might want to use.

5.5 Robustness of Learned Policies

1017



Solution Quality der to learn an effective dialog policy. Our approach
would be especially useful in situations where there
40 are no existing corpora of human-human interac-
tions for the domain or as a way to provide a check
against a policy based on human intuition. In most
situations where the domain requires significant col-
laboration between the dialog system and the user,
o training both the system and a user simultaneously

Uncollaborative Unrestricted Restricted

[BiCearned with Saseline A Blearmed with Baseline & WBseline Farr will prove to be much less costly and labor intensive
Dialog Length approach.
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