Learning a Spelling Error Model from Search Query Logs

Farooq Ahmad
Department of Electrical and
Computer Engineering
University of Alberta
Edmonton, Canada
faroog@ualberta.ca

Abstract

Applying the noisy channel model to
search query spelling correction requires
an error model and a language model.
Typically, the error model relies on a
weighted string edit distance measure.
The weights can be learned from pairs
of misspelled words and their corrections.
This paper investigates using the Expec-
tation Maximization algorithm to learn
edit distance weights directly from search
query logs, without relying on a corpus of
paired words.

1 Introduction

There are several sources of error in written lan-
guage. Typing errors can be divided into two
groups (Kucich, 1992): typographic errors and cog-
nitive errors. Typographic errors are the result of
mistyped keys and can be described in terms of key-
board key proximity. Cognitive errors on the other
hand, are caused by a misunderstanding of the cor-
rect spelling of a word. They include phonetic er-
rors, in which similar sounding letter sequences are
substituted for the correct sequence; and homonym
errors, in which a word is substituted for another
word with the same pronunciation but a different
meaning. Spelling errors can also be grouped into
errors that result in another valid word, such as
homonym errors, versus those errors that result in
a non-word. Generally non-word errors are easier to
detect and correct. In addition to its traditional use
in word processing, spelling correction also has ap-
plications in optical character recognition and hand-

955

Grzegorz Kondrak
Department of Computing Science
University of Alberta
Edmonton, Canada
kondrak@cs.ualberta.ca

writing recognition. Spelling errors in this context
are caused by inaccurate character recognition.

Spelling correction is a well developed research
problem in the field of computational linguistics.
The first dictionary based approach to spelling cor-
rection (Damerau, 1964) considers all words that
can not be found in a dictionary as misspellings. The
correct word is found by making a single edit op-
eration (insertion, deletion, or substitution) on the
misspelled word and re-checking the dictionary for
the inclusion of the altered version. This method
works well for correcting most typos, but often mis-
spelled words are off by more than one character.
A method of quantifying string-to-string distance is
introduced in (Wagner and Fischer, 1974), allowing
the consideration of multiple edit operations when
determining candidate corrections. Each edit op-
eration is assigned a fixed cost. Edit operations,
though, can be more accurately modelled by consid-
ering every possible insertion, deletion, and substitu-
tion operation individually instead of having a fixed
cost for each operation. For example, the applica-
tion of probabilistic models to spelling correction is
explored in (Kernighan, Church, and Gale, 1990),
in which a confusion matrix describes the probabil-
ity of each letter being substituted for another. The
Bayesian noisy channel model is used to determine
the the error probabilities, with the simplifying as-
sumption that each word has at most one spelling
error. In (Ristad and Yianilos, 1997), a probabilistic
model of edit distance is learned from pairs of mis-
spelled words and their corrections. This extends
Kernighan’s approach by allowing multiple edit op-
erations rather than assuming a single edit. The
probability of edit operations is learned from a cor-
pus of pairs of misspelled words and corrections.

Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 955-962, Vancouver, October 2005. (©)2005 Association for Computational Linguistics

Search query correction is an interesting branch
of spelling correction. Due to the wide variety of
search queries, dictionary based spelling correction
is not adequate for correcting search terms. The con-
cept of using query logs to aid in spelling correction
is explored in (Brill and Cucerzan, 2004). It is noted
that using traditional Levenshtein distance as an er-
ror model can lead to inappropriate corrections, so a
weighted distance measure is used instead.

This paper focuses on deriving a language model
and probabilistic error model directly from search
query logs without requiring a corpus of misspelled
words paired with their corrections. The task of
search query spelling correction is analyzed, and
an implementation of the Expectation Maximization
(EM) algorithm to learn an error model is described,
with reference to similar approaches. In Section 2,
the make-up of search queries is analyzed in the
context of spelling correction. Section 3 details the
noisy channel model spelling correction framework
and describes how the EM algorithm is applied to
learn an error model. The learned error model is ex-
plored in Section 4. The derived model is tested in
Section 5 by comparing its performance in the single
word spelling correction task to popular spell check-
ing applications. Finally, conclusions and directions
for future work are presented in Section 6.

2 Analysis of Search Queries

Search queries present a difficult challenge for tradi-
tional spelling correction algorithms. As mentioned
above, dictionary-based approaches cannot be used
since many search terms include words and names
that are not well established in the language. Fur-
thermore, search queries typically consist of a few
key words rather than grammatically correct sen-
tences, making grammar-based approaches inappro-
priate. In addition, spelling errors are more com-
mon in search queries than in regular written text,
as approximately 10-15 % of search queries contain
a misspelling (Brill and Cucerzan, 2004). The suit-
ability of query logs as a corpus for spelling correc-
tion is investigated in this section.

The metaspy website! displays search queries
submitted to the popular metacrawler search engine
in real time. Over a period of five days in the last

'www.metaspy.com

956

130,000
160,000 -0 B
140,000 =
120,000

100,000 f---- -

Fraqmancy

60,000

40,000 -

] a 10

2000 -

|
!
20,000 - |
I
|
I

Jmery Length (Words)

Figure 1: Query Length Frequency Histogram

week of March 2005, 580,000 queries were ex-
tracted from the site. Several interesting observa-
tions can be made from the analysis of the search
queries.

2.1 Query Length

On average, each query consisted of approximately
3 words. Figure 1 shows the distribution of query
lengths.

As illustrated in Figure 1, over 80% of queries
include more than one search term. Thus word n-
gram probabilities provide useful statistical knowl-
edge that can be exploited to improve spelling cor-
rection. Although word cooccurrences are not used
for spelling correction in this paper, the possibilities
for n-gram analysis are explored in Section 3.2. The
longer queries (>5 terms) often contain quotations,
song lyric excerpts or very specific product names.

The frequency of words in written text has been
shown to follow Zipf’s law. That is, if the words are
ordered in terms of frequency, the relationship be-
tween frequency and rank can be approximated with
the following equation.

)]

where F' is the frequency, r is rank, C' is a constant,
and m is an exponent close to 1. In logarithmic
form,

log(F") = log(C') —m *log(r) (2)

The frequency and rank of search query tokens
approximately follow the same distribution, with
some deviation at the high and low ends. Figure 2
shows the frequency distribution for dictionary and

Frequancy vs Rank for Dictionary Words
L)

Log|Frequecy]

1000

Frequency vs Rank for Non-Dictionary Words

Log|Frequency)

10000

Figure 2: Token Frequency vs. Rank for Dictionary and Non-Dictionary Words

non-dictionary search query tokens. The word list
available on most Unix systems /usr/dict/words is a
comprehensive list that contains 96,274 words, in-
cluding names, plurals, verbs in several tenses, and
colloquialisms. Following tokenization of the query
logs, the tokens were divided into dictionary and
non-dictionary words. The frequency-rank relation-
ship is similar for both types of words, except that
nearly all of the 100 most frequent query tokens are
dictionary words. The exponent m, the (negative)
slope of the linear best fit lines shown in Figure 2,
was determined to be 1.11 for dictionary words, and
1.14 for non-dictionary words. As in (Baeza-Yates,
2005), the exponent is slightly higher than 1, partly
due to the less frequent use of function words such
as the in search queries relative to formal writing.

Although the majority of search tokens can be
found in a standard dictionary, a large proportion of
the less common queries are not dictionary words.
In fact, 73% of unique word types were not found
in the dictionary. Taking token frequency into con-
sideration, these non-dictionary tokens account for
approximately 20% of query search words, includ-
ing correctly and incorrectly spelled words. How-
ever, the majority of the non-dictionary tokens are
correctly spelled words, illustrating the unsuitabil-
ity of traditional dictionary based spelling correction
for search query correction.

What are these non-dictionary words? An anal-
ysis of the top two hundred non-dictionary words
in the query logs allows categorization into a few
main groups. The percentage of non-dictionary
words belonging to each category, and some exam-
ples from each category are shown in Table 1. The
first category, e-speak, includes words and abbre-

957

Word Class | Percent | Examples

1 | E-speak & | 45% pics, html, multiplayer,
new words clipart, mpeg, midi

2 | Companies 18% google, xbox, ebay,
& Products hotmail , playstation

3 | Proper 16% (los) angeles, ratzinger,
Names ilios, mallorca

4 | Medical 5% ERBS, mesothelioma,
terms neuropsychological,

alzheimers

5 | Misspellings | 9% womens, realestate

6 | Foreign 6% lettre, para
Words

Table 1: Classes of Non-Dictionary Words

viations that are commonly used online, but have
not crossed over into common language. This cat-
egory includes words such as pics, multiplayer, and
clipart. The second category is closely related to
the first, and includes company and product names,
such as google, xbox, and hotmail. Many of these
terms refer to online entities or computer games.
Incorrectly spelled words are another main class
of non-dictionary tokens. Among the top 20 non-
dictionary tokens are words with missing punctua-
tion, such as womens and childrens, or with miss-
ing spaces, such as realestate. Names of people
and locations are also common search queries, as
well as medical terminology. Finally, foreign words
make up another class of words that are not found
in an (English) dictionary. The 20 highest frequency
non-dictionary tokens from the extracted query logs
are pics, html, multiplayer, googletestad, google,
xbox, childrens, ebay, angeles, hotmail, womens,
ERBS, clipart, playstation, ratzinger, llios, lettre,
realestate, tech and mallorca.

3 Spelling Correction for Search Queries

The spelling correction problem can be considered
in terms of the noisy channel model, which consid-
ers the misspelled word v to be a corrupted version
of the correctly spelled word w.

P(vfw) P(w)

P(wlv) = P(0)

3)
Finding the best candidate correction W involves
maximizing the above probability.
W = argmaz,, P(v|w)P(w) 4)
The denominator P(v) in Equation 3 is the same
for all w and can be eliminated from the calculation.
P(v|w) models the errors that corrupt string w into
string v, and P(w) is the language model, or prior
probability, of word w.

3.1 Error Model

Given two strings v and w, P(v|w) is the probability
that v is transmitted given that the desired word is
w. One method of describing the noise model is to
consider P(v|w) to be proportional to the number of
edit operations required to transform w into v. This
gives

P(vjw) «< ED(v,w) 5)

where ED (v, w) is the edit distance between v and
w.

The traditional edit distance calculation assigns a
fixed cost for each insertion, deletion, and substi-
tution operation. For example, each insertion and
deletion may be assigned a cost of 1, while substitu-
tions are assigned a cost of 1.5. The edit distance
calculation can be accomplished by dynamic pro-
gramming.

The error model can be improved if each edit op-
eration is considered separately, rather than assign-
ing a fixed cost to each operation. For example, the
substitution of the letter ¢ for the letter e may be
much more likely than k for e. Thus if a string .S
differs from string S by one e — 4 substitution, it
should be considered more similar to S5 than a string
S3 that differs from S7 by an e — k substitution.

Generating an accurate error model that consid-
ers each edit operation individually requires learn-
ing edit distance weights. As described in (Ristad

958

and Yianilos, 1997), character-to-character edit dis-
tance costs F2D(e) can be related to edit probability
P(e) by means of the equation:

ED(e) = —log[P(e)] ©)
where e is an edit operation consisting of a sub-
stitution of one alphanumeric character for another
(c1 — ¢2), an insertion (- — ¢p), or a deletion
(c1 —).

Thus higher probability edits will have lower edit
distances, and the string to string edit distance cal-
culation proceeds in the same way as the tradi-
tional calculation. This convenient representation
allows whole string-to-string edit probability to be
expressed in terms of the edit distance of the edit
sequence [e]...ep,]:

P(w|v) = IIP(e;)

= P(e1) * P(ea) ... x P(ey,) (7)
Taking the log of both sides gives
log[P(wlv)] =log[P(e1)] + log[P(e2)]
+ ... + log[P(ey)])]

Finally, by combining 6 and 8 we can relate the
probability of misspelling a string w as v to string-
to-string edit distance.

log[P(w|v)] = —ED(w,v))
The edit probabilities can be estimated using the

expectation maximization (EM) algorithm as de-
scribed in Section 3.3.

3.2 Language Model

Along with the error model, a language model is
used to determine the most likely correction for ev-
ery input query. Often, spelling correction programs
use N-gram language models that use nearby words
to help determine the most probable correction. For
example, it is noted in (Brill and Cucerzan, 2004)
that employing a trigram language model can sub-
stantially improve performance relative to a unigram
model. However, if search query logs are not very
large, bigram or trigram data may be too sparse to
be helpful. Nevertheless, a word unigram model can
be used for training the error model. The unigram

model is determined by tokenizing the query logs
and determining the frequency of each token. The
language model P(w) is the frequency of the word
C(w) divided by the total number of tokens NV in the

query log:
(10)

Add-One smoothing is used to account for words not
present in query logs.

3.3 Determining Edit Probabilities with
Expectation Maximization

The EM algorithm is used to determine the parame-
ters of the probability distribution for a given a set of
data. It can be considered to be a soft-clustering al-
gorithm: given several data points, the task is to find
the cluster parameters which best represent the data.
The EM algorithm is applied iteratively to each data
point in a two-step process; the expectation step de-
termines the degree to which data agrees with each
cluster/hypothesis, and the maximization step up-
dates the parameters to reflect the inclusion of the
new data.

Prior to running the EM algorithm, the edit dis-
tance table is seeded with initial values. The ini-
tialization stage assigns high probability (low edit
distance) to characters being typed correctly, and
a lower probability for character substitutions. For
each character [, substitution distance is equally dis-
tributed over all other characters and the deletion
operation (I — _). Specifically the initial prob-
ability for a character match was set to 90%, and
the remaining 10% was equally distributed over the
other 26 possible substitutions. Essentially, the first
edit distance calculated in the EM algorithm will be
equivalent to the fixed-weight Levenshtein distance.
After this preprocessing stage, the edit probability
matrix is iteratively improved with the E-Step and
M-Step described below. The operation of the EM
algorithm is illustrated in Figure 3.

For each query token, possible corrections are
harvested from the query word list. The entire word
list is searched, and any word within a threshold
edit distance is considered as a candidate. Since the
query logs can be quite large, determining the ex-
act weighted edit distance between the input query
and each logged query is quite computationally ex-
pensive. Instead, the candidate queries are first nar-

959

E-Step

Use updated error
model to generate

candidate W

Candidate Word

M-Step
Update Error Model

Edit Frequency
Matrix

Normalization

Edit Sequences Edit Probability
Matrix
ED = -log[P(I1,I2)]
v ‘
Language Edit Distance
Model Matrix

Figure 3: The EM process

rowed down using a fast approximate string match-
ing algorithm (Wu and Manber, 1990) to determine
all candidates within k unweighted edit operations.
Then, the candidate queries that are within a second
tighter threshold T, based on weighted edit distance,
are kept.

Candidates(v) = {w;| ED(w;,v) < T}

Generally several words in the query logs will
meet the above criteria. The threshold 7" is chosen
to ensure the inclusion of all reasonable corrections,
while maintaining a manageable computation time.
If T were infinite, every query log token would need
to be considered, taking too much time. On the other
hand, if T’ is too small, some corrections may not be
considered. In practice, K was set to 3 unweighted
edits, and 7" was set as a constant proportion of word
length.

The expectation of each candidate correction is
the probability that the word w; was desired given
that the query was v:

P(v|w;) P(w;)

(11)
where P(v|w) and P(w) are determined using the
error and language models described in Equations
(9) and (10).

If the value of T' is set high enough, it can be
assumed that the correct word w is within the set
of candidates. So, the sum of probabilities over all
candidates is normalized to P(v) in accordance with
Bayes Rule of Total Probability.

P(v) =X, P(vjw;)P(w,) (12)

Correction| Error Language| Total Normal-
Model Model Proba- ized
bility
equipment | 0.0014 0.00078 1.1e-6 0.77
equpment | 0.64 5.0e-7 3.4e-7 0.23
equpiment | 0.0005 5.0e-7 1.0e-9 0.0005

Table 2: Candidate Corrections for equpment

This gives us the following formula for the expecta-
tion value

o = SRS o
J J J

The E-step is used to generate candidate correc-
tions for input query tokens. For example, input
query “equpment” returns the candidate corrections
and their probabilities shown in Table 2.

Note that several incorrectly spelled words, in-
cluding “equpment” itself, are given as candidate
corrections. However, the language model derived
from the query logs assigns a low probability to
the incorrect candidates. In the case of a correctly
spelled query, the most likely candidate correction
is the word itself. However, occasionally there is a
correctly spelled but infrequent word within a small
edit distance of another more common word. In this
case, the language model will bias the correction
probability in favor of an incorrect edit. Neverthe-
less, overall these cases do not seem to cause a sig-
nificant impact on the error model except in the case
of plural nouns as discussed in Section 4.

The maximization step updates the edit distance
probabilities and edit distance table to reflect the
query considered in the E-Step. For each can-
didate correction, the required edits are added to
the edit frequency table, weighted by the proba-
bility of the correction. Then, the probability of
an edit for each character is normalized to 1 and
the edit probabilities are stored in a table. Finally,
Equation 6 is used to generate the edit probabil-
ity table. For example, for the input query “equp-
ment” in response to the first candidate correction
(equpment — equipment), the following substitu-
tion frequencies will each be incremented by 0.77:
e—eq—q,u— Uui— _,p—Dpm—me—
e,n — n,t — t. The (i — _) edit represents dele-
tion of the letter .

960

Letter ‘ Subs ‘ Letter ‘ Subs ‘
a e_qo n _tkb
b grnw 0 a_ei
c _ksm P nfrm
d ds_nk q glk_
e a0_i r _sdm
f btpj S -mdn
g o_ks t _yir
h _rab u _rio

i _aue v awem
] blhm w pregk
k vots X gtms
1 r_is y ioaje
m nkvs z skmt

Table 3: Most Common Substitutions

4 The Learned Error Model

Approximately 580,000 queries were extracted from
the metaspy site over a period of 5 days. After gener-
ating a language model by analyzing token frequen-
cies, the EM algorithm was run on a subset of the
queries to find the edit probability matrix.

After 15,000 iterations, several patterns can be
observed in the edit distance table. The most com-
mon edit operations are shown in Table 3. As ex-
pected, vowels are most commonly substituted for
other vowels. As can be seen in the table, vowel-
to-vowel edits are more probable than vowel-to-
consonant transitions. The letter e is most com-
monly mistyped as a, o, and ¢; the letter ¢ is most
often mistyped as a, u, and e. For the most part,
vowel substitutions can be considered to be cogni-
tive errors (except o — ¢ may be a cognitive error or
typographic error). The effect of keyboard key prox-
imity is also evident; b is often typed as g; d as s; m
as n; and so on. Other errors seem to be a result of
phonetic similarity; c is misspelled as k and s; g as g
and k; and v as w. In general, the edit probabilities
roughly match those derived using a corpus of word
pairs in (Kernighan, Church, and Gale, 1990).

The insertion probabilities for each letter are
shown in Figure 4. Equation 6 is used to convert the
edit distances to probabilities. Words in the plural
form cause problems for the algorithm, as is illus-
trated by the high probability of s insertion in Fig-

Q15 -

Q.1 cals =
0.as H
=0
L O

Figure 4: Letter Insertion Probabilities

Ins=rtion Probability

.anHHn e 0.

ijklmne pgrsta

i
h v WE ¥y =

Lether

ure 4. That is because high frequency query words
often appear in both singular and plural form. Every
time the singular form is encountered, the plural is
considered as a viable candidate correction, and the
s insertion probability is increased. Complementar-
ily, every time the plural form is seen, the singular
form is considered, increasing the s deletion proba-
bility. Indeed, as can be seen in Table 3, deletion is
the highest probability operation for the letter s.

5 Testing

To test the accuracy of the error model, the well-
known Unix based spelling correction programs Is-
pell* and Aspell® spell checking programs were used
for comparison. Ispell generates candidate cor-
rections by considering all words within 1 edit of
the misspelled word. Aspell uses the metaphone
algorithm (Philips, 1990), which divides English
words into phonetic segments, and generates al-
ternate spellings by substituting similar sounding
phones. The test data set* consists of 547 mis-
spelled words paired with their best correction as de-
termined by a human expert.Compound words were
removed from the test set, leaving 508 misspellings.
Several of the misspellings differ from the correction
by multiple edit operations. Only the error model
learned by the EM algorithm on the search engine
queries was used; instead of using the probabilis-
tic language model derived from the query logs and
used for training, the word list in /usr/dict/words was
used, with equal probability assigned to each word.

*International Ispell Version 3.1.20.
http://www.lasr.cs.ucla.edu/geoff/ispell.html
3Kevin Atkinson. Aspell ~ Version 0.29.

http://aspell.sourceforge.net/
*Kevin Atkinson. http://aspell.net/test/

961

Spell ISPELL | ASPELL| EMBED | Google
Checker | 3.1.20 0.29

Total 508 508 508 508
Tokens

Total 272 480 402 -
Found (53.5%) | (94.5%) | (79.1%)

Top 1| 197 302 211 291
(%) (38.8%) | (59.5%) | (41.5%) | (57%)
Top 5 | 260 435 331 -

(%) (51.2%) | (85.6%) | (65.2%)

Top 25 | 272 478 386 -

(%) (53.5%) | (94.1%) | (76.0%)

Table 4: Spelling Correction Accuracy

Since the test data is composed of single words of
varying prevalence, a language model does not sig-
nificantly aid correction. In practice, the language
model would improve performance.

Table 4 compares the performance of the As-
pell and Ispell spell checkers with the Expecta-
tion Maximization Based Edit Distance (EMBED)
spelling correction system described in this paper.
The percentages refer to the percentage of instances
in which the correct correction was within the top
N suggestions given by the algorithm. If only the
top recommended correction is considered, EMBED
fares better than Ispell, but worse than Aspell. For
the top 5 and 25 corrections, the rankings of the al-
gorithms are the same.

As Table 4 shows, in several cases the EMBED al-
gorithm did not find the correction within the top 25
suggestions. Typically, the misspellings that could
not be found had large edit distances from their
corrections. For example, suggestions for the mis-
spelling “’extions” included “actions” and “motions”
but not the desired correction “extensions”. In gen-
eral, by using a phonetic model to compress English
words, Aspell can find misspellings that have larger
edit distances from their correction. However, it re-
lies on a language specific pronunciation model that
is manually derived. EM based spelling correction,
on the other hand, can be learned from a unlabeled
corpus and can be applied to other languages with-
out modification. Although the test data set was
comprised of misspelled dictionary words for the
purposes of comparison, the spelling correction sys-
tem described here can handle a continuously evolv-
ing vocabulary. Also, the approach described here
can be used to train more general error models.

Comparison to online spelling suggestion systems
such as provided by the Google search engine is dif-
ficult since search results are returned for nearly ev-
ery query on account of the large lexicon. Conse-
quently, many suggestions provided by Google are
reasonable, but do not correspond to the golden stan-
dard in the test data. For example, “cimplicity” and
“hallo” are not considered misspellings since several
online companies and products contain these terms,
and “verison” is corrected to “verizon” rather than
“version.” While Google returns 291 corrections in
agreement with the data set (57%), another 44 were
judged to be acceptable corrections, giving an accu-
racy of 66%. In addition, several of the apparently
misspelled test strings are new words, proper names,
or commonly accepted alternate spellings that are
common on the web, so no suggestions were given.
Taking these words into account would further im-
prove the accuracy rating.

6 Conclusions and Future Work

The EM algorithm is able to learn an accurate error
model without relying on a corpus of paired strings.
The edit probabilities determined using the EM al-
gorithm are similar to error models previously gen-
erated using other approaches. In addition, the gen-
erated error model can be used to find the correct
spelling of misspelled words as described in Section
5. However, there are several improvements that
can be made to improve spelling error correction.
One step is increasing the size of the corpus. While
the corpus included nearly 580,000 queries, sev-
eral thousand of those queries were correctly spelled
words without any misspelled versions in the corpus,
or misspelled words without the correctly spelled
version available. This results in the misidentifi-
cation of candidate spelling corrections. Another
improvement that can improve candidate correction
identification is the use of better language models,
as discussed in Section 3.2. Since a large propor-
tion of queries contain more than one word, word
n-gram statistics can be used to provide context sen-
sitive spelling correction. Finally, a large proportion
of typos involve letter transpositions, and other oper-
ations that can not be captured by a single-letter sub-
stitution model. In (Brill and Moore, 2000), a more
general model allowing generic string to string ed-

962

its is used, allowing many-to-one and one-to-many
character substitution edits. Pronunciation modeling
in (Toutanova and Moore, 2002) further improves
spelling correction performance.

Acknowledgments

Support for this work was provided by the Natu-
ral Sciences and Engineering Research Council of
Canada.

References

Baeza-Yates, R. 2005. Web Usage Mining in Search
Engines. Chapter 14 in Web Mining: Applications
and Techniques. Ed. Anthony Scime. New York: Idea
Group Publishing, 2005. 307-321.

Brill, E. and Cucerzan, S. 2004. Spelling correction as an
iterative process that exploits the collective knowledge
of web users. Proceedings of EMNLP 04. 293-300.

Brill, E. and Moore, R. 2000. An improved error model
for noisy channel spelling correction. Proceedings of
the 38th Annual Meeting of the Association for Com-
putational Linguistics. 286 - 293.

Damerau, F. March 1964. A technique for computer
detection and correction of spelling errors. Communi-
cations of the ACM. 7(3):171-176.

Kernighan, M., Church, K., and Gale, W. 1990. A
spelling correction program based on a noisy channel
model. Proceedings of COLING 1990. 205-210.

Kucich, K. 1992. Techniques for automatically cor-
recting words in text. ACM Computing Surveys.
24(4):377-439.

Philips, L. 1990. Hanging on the metaphone. Computer
Language Magazine. 7(12):39.

Ristad, E. and Yianilos, P. 1997. Learning string edit
distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 20(5):522-532.

Toutanova, K. and Moore, R. 2002. Pronunciation mod-
eling for improved spelling correction. Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics. 144-151.

Wagner, R. and Fischer, M. January 1974. The string-
to-string correction problem. Journal of the ACM.
21(1):168-173.

Wu, S. and Manber, U. 1992. Fast text searching allow-
ing errors. Communications of the ACM. 35(10):83-
91

