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Abstract

MIT’s Audio Notebook added great value to the
note-taking process by retaining audio record-
ings, e.g. during lectures or interviews. The key
was to provide users ways to quickly and easily
access portions of interest in a recording. Sev-
eral non-speech-recognition based techniques
were employed. In this paper we present a
system to search directly the audio record-
ings by key phrases. We have identified the
user requirements as accurate ranking of phrase
matches, domain independence, and reasonable
response time. We address these requirements
by a hybrid word/phoneme search in lattices,
and a supporting indexing scheme. We will in-
troduce the ranking criterion, a unified hybrid
posterior-lattice representation, and the index-
ing algorithm for hybrid lattices. We present
results for five different recording sets, includ-
ing meetings, telephone conversations, and in-
terviews. Our results show an average search
accuracy of 84%, which is dramatically better
than a direct search in speech recognition tran-
scripts (less than 40% search accuracy).

1 Introduction

Lisa Stifelman proposed in her thesis the idea of the
“Audio Notebook,” where audio recordings of lectures
and interviews are retained along with the notes (Stifel-
man, 1997). She has shown that the audio recordings are
valuable to users if portions of interest can be accessed
quickly and easily.

Stifelman explored various techniques for this, includ-
ing user-activity based techniques (most noteworthy time-
stamping notes so they can serve as an index into the
recording) and content-based ones (signal processing for
accelerated playback, “snap-to-grid” (=phrase boundary)
based on prosodic cues). The latter are intended for sit-
uations where the former fail, e.g. when the user has no
time for taking notes, does not wish to pay attention to it,
or cannot keep up with complex subject matter, and as a
consequence the audio is left without index. In this pa-
per, we investigate technologies for searching thespoken
contentof the audio recording.

Several approaches have been reported in the litera-
ture for the problem of indexing spoken words in au-
dio recordings. The TREC (Text REtrieval Conference)
Spoken-Document Retrieval (SDR) track has fostered re-
search on audio-retrieval of broadcast-news clips. Most
TREC benchmarking systems use broadcast-news recog-
nizers to generate approximate transcripts, and apply text-
based information retrieval to these. They achieve re-
trieval accuracy similar to using human reference tran-
scripts, and ad-hoc retrieval for broadcast news is consid-
ered a “solved problem” (Garofolo, 2000). Noteworthy
are the rather low word-error rates (20%) in the TREC
evaluations, and that recognition errors did not lead to
catastrophic failures due to redundancy of news segments
and queries.

However, in our scenario, requirements are rather dif-
ferent. First, word-error rates are much higher (40-
60%). Directly searching such inaccurate speech recog-
nition transcripts suffers from a poor recall. Second, un-
like broadcast-news material, user recordings of conver-
sations will not be limited to a few specific domains. This
not only poses difficulties for obtaining domain-specific
training data, but also implies an unlimited vocabulary of
query phrases users want to use. Third, audio recordings
will accumulate. When the audio database grows to hun-
dreds or even thousands of hours, a reasonable response
time is still needed.

A successful way to deal with high word error rates is
the use of recognition alternates (lattices). For example,
(Seide and Yu, 2004; Yu and Seide, 2004) reports a sub-
stantial 50% improvement of FOM (Figure Of Merit) for
a word-spotting task in voicemails. Improvements from
using lattices were also reported by (Saraclar and Sproat,
2004) and (Chelba and Acero, 2005).

To address the problem of domain independence, a
subword-based approach is needed. In (Logan, 2002)
the authors address the problem by indexing phonetic or
word-fragment based transcriptions. Similar approaches,
e.g. using overlappingM -grams of phonemes, are dis-
cussed in (Scḧauble, 1995) and (Ng, 2000). (James
and Young, 1994) introduces the approach of searching
phoneme lattices. (Clements, 2001) proposes a similar
idea called “phonetic search track.” In previous work
(Seide and Yu, 2004), promising results were obtained
with phonetic lattice search in voicemails. In (Yu and
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Figure 1: System architecture.

Seide, 2004), it was found that even better result can be
achieved by combining a phonetic search with a word-
level search.

For the third problem, quick response time is com-
monly achieved by indexing techniques. However, in
the context of phonetic lattice search, the concept of “in-
dexing” becomes a non-trivial problem, because due to
the unknown-word nature, we need to deal with an open
set of index keys. (Saraclar and Sproat, 2004) proposes
to store the individual lattice arcs (inverting the lattice).
(Allauzen et al., 2004) introduces a general indexation
framework by indexing expected term frequencies (“ex-
pected counts”) instead of each individual keyword oc-
currence or lattice arcs. In (Yuet al., 2005), a similar idea
of indexing expected term frequencies is proposed, sug-
gesting to approximate expected term frequencies byM -
gram phoneme language modelsestimated on segments
of audio.

In this paper, we combine previous work on pho-
netic lattice search, hybrid search and lattice indexing
into a real system for searching recorded conversations
that achieves high accuracy and can handle hundreds of
hours of audio. The main contributions of this paper
are: a real system for searching conversational speech, a
novel method for combining phoneme and word lattices,
and experimental results for searching recorded conver-
sations.

The paper is organized as follows. Section 2 gives an
overview of the system. Section 3 introduces the over-
all criterion, based on which the system is developed,
Section 4 introduces our implementation for a hybrid
word/phoneme search system, and Section 5 discusses the
lattice indexing mechanism. Section 6 presents the exper-
imental results, and Section 7 concludes.

2 A System For Searching Conversations

A system for searching the spoken content of recorded
conversations has several distinct properties. Users are
searching their own meetings, so most searches will be
known-item searches with at most a few correct hits in the

archive. Users will often search for specific phrases that
they remember, possibly with boolean operators. Rele-
vance weighting of individual query terms is less of an
issue in this scenario.

We identified three user requirements:

• high recall and accurate ranking of phrase matches;
• domain independence – it should work for any topic,

ideally without need to adapt vocabularies or lan-
guage models;

• reasonable response time – a few seconds at most,
independent of the size of the conversation archive.

We address them as follows. First, to increase recall
we searchrecognition alternatesbased onlattices. Lat-
tice oracle word-error rates1 are significantly lower than
word-error rates of the best path. For example, (Chelba
and Acero, 2005) reports a lattice oracle error rate of 22%
for lecture recordings at a top-1 word-error rate of 45%2.
To utilize recognizer scores in the lattices, we formulat-
ing the ranking problem as one of risk minimization and
derive that keyword hits should be ranked by theirword
(phrase) posterior probabilities.

Second, domain independence is achieved by combin-
ing large-vocabulary recognition with a phonetic search.
This helps especially for proper names and specialized
terminology, which are often either missing in the vocab-
ulary or not well-predicted by the language model.

Third, to achieve quick response time, we use anM -
gram based indexing approach. It has two stages, where
the first stage is a fast index lookup to create a short-list of
candidate lattices. In the second stage, a detailed lattice
match is applied to the lattices in the short-list. We call
the second stagelinear searchbecause search time grows
linearly with the duration of the lattices searched.

1The “oracle word-error rate” of a lattice is the word error
rate of the path through the lattice that has the least errors.

2Note that this comparison was for a reasonably well-tuned
recognizer setup. Any arbitrary lattice oracle error rate can be
obtained by adjusting the recognizer’s pruning setup and in-
vesting enough computation time (plus possibly adapting the
search-space organization).
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The resulting system architecture is shown in Fig. 1. In
the following three sections, we will discuss our solutions
in these three aspects in details respectively.

3 Ranking Criterion

For ranking search results according to “relevance” to the
user’s query, several relevance measures have been pro-
posed in the text-retrieval literature. The key element of
these measures is weighting the contribution of individual
keywords to the relevance-ranking score. Unfortunately,
text ranking criteria are not directly applicable to retrieval
of speech because recognition alternates and confidence
scores are not considered.

Luckily, this is less of an issue in our known-item style
search, because the simplest of relevance measures can
be used: A search hit is assumed relevant if the query
phrase was indeed said there (and fulfills optional boolean
constraints), and it is not relevant otherwise.

This simple relevance measure, combined with a vari-
ant of the probability ranking principle (Robertson,
1977), leads to a system where phrase hits are ranked by
their phrase posterior probability. This is derived through
a Bayes-risk minimizing approach as follows:

1. Let the relevance beR(Q, hiti) of a returned audio
hit – hiti to a user’s queryQ formally defined is 1
(match) if the hit is an occurrence of the query term
with time boundaries(thiti

s , thiti

e ), or 0 if not.

2. The user expects the system to return a list of audio
hits, ranked such that theaccumulative relevanceof
the topn hits (hit1...hitn), averaged over a range of
n = 1...nmax, is maximal:

1
nmax

nmax∑
n=1

n∑

i=1

R(Q, hiti) != max . (1)

Note that this is closely related to popular word-
spotting metrics, such as the NIST (National Insti-
tute of Standards & Technology) Figure Of Merit.

To the retrieval system, the true transcription of each
audio file is unknown, so it must maximize Eq. (1) in the
sense of an expected value

EWT |O

{
1

nmax

nmax∑
n=1

n∑

i=1

RWT (Q, hiti)

}
!= max,

where O denotes the totality of all audio files (O
for observation),W = (w1, w2, ..., wN ) a hypothe-
sized transcription of the entire collection, andT =
(t1, t2, ..., tN+1) the associated time boundaries on a
shared collection-wide time axis.

RWT (·) shall be relevance w.r.t. the hypothesized tran-
scription and alignment. The expected value is taken
w.r.t. the posterior probability distributionP (WT |O)
provided by our speech recognizer in the form of scored

lattices. It is easy to see that this expression is max-
imal if the hits are ranked by their expected relevance
EWT |O{RWT (Q, hiti)}. In our definition of relevance,
RWT (Q, hiti) is written as

RWT (Q, hiti) =





1 ∃k, l : tk = thiti

s

∧tk+l = thiti

e

∧wk, ..., wk+l−1 = Q
0 otherwise

and the expected relevance is computed as

EWT |O{RWT (Q, hiti)} =
∑

WT

RWT (Q, hiti)P (WT |O)

= P (∗, thiti

s , Q, thiti

e , ∗|O)

with

P (∗, ts, Q, te, ∗|O) =
∑

W T :∃k,l:tk=ts∧tk+l=te
∧wk,...,wk+l−1=Q

P (WT |O). (2)

For single-word queries, this is the well-knownword pos-
terior probability (Wesselet al., 2000; Evermannet al.,
2000). To cover multi-label phrase queries, we will call it
phrase posterior probability.

The formalism in this section is applicable to all sorts
of units, such as fragments, syllables, or words. The tran-
scriptionW and its unitswk, as well as the query string
Q, should be understood in this sense. For a regular word-
level search,W andQ are juststrings of wordsIn the con-
text of phonetic search,W andQ arestrings of phonemes.
For simplicity of notation, we have excluded the issue of
multiple pronunciations of a word. Eq. (2) can be trivially
extended by summing up over all alternative pronuncia-
tions of the query. And in a hybrid search, there would
be multiple representations of the query, which are just as
pronunciation variants.

4 Word/Phoneme Hybrid Search

For a combined word and phoneme based search, two
problems need to be considered:

• Recognizer configuration. While established solu-
tions exist for word-lattice generation, what needs
to be done for generating high-quality phoneme lat-
tices?

• How should word and phoneme lattices be jointly
represented for the purpose of search, and how
should they be searched?

4.1 Speech Recognition

4.1.1 Large-Vocabulary Recognition
Word lattices are generated by a common speaker-

independent large-vocabulary recognizer. Because the
speaking style of conversations is very different from, say,
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your average speech dictation system, specialized acous-
tic models are used. These are trained on conversational
speech to match the speaking style. The vocabulary and
the trigram language model are designed to cover a broad
range of topics.

The drawback of large-vocabulary recognition is, of
course, that it is infeasible to have the vocabulary cover
all possible keywords that a user may use, particularly
proper names and specialized terminology.

One way to address thisout-of-vocabulary problemis
to mine the user’s documents or e-mails to adapt the rec-
ognizer’s vocabulary. While this is workable for some
scenarios, it is not a good solution e.g. when new words
are frequently introduced in the conversations themselves
rather than preceding written conversations, where the
spelling of a new word is not obvious and thus inconsis-
tent, or when documents with related documents are not
easily available on the user’s hard disk but would have to
be specifically gathered by the user.

A second problem is that the performance of state-of-
the-art speech recognition relies heavily on a well-trained
domain-matched language model. Mining user data can
only yield a comparably small amount of training data.
Adapting a language model with it would barely yield a
robust language model for newly learned words, and their
usage style may differ in conversational speech.

For the above reasons, we decided not to attempt to
adapt vocabulary and language model. Instead, we use
a fixed broad-domain vocabulary and language model
for large-vocabulary recognition, and augment this sys-
tem with maintenance-freephonetic searchto cover new
words and mismatched domains.

4.1.2 Phonetic Recognition

The simplest phonetic recognizer is a regular recog-
nizer with the vocabulary replaced by the list of phone-
mes of the language, and the language model replaced by
a phonemeM -gram. However, such phonetic language
model is much weaker than a word language model. This
results in poor accuracy and inefficient search.

Instead, our recognizer uses “phonetic word frag-
ments” (groups of phonemes similar to syllables or half-
syllables) as its vocabulary and in the language model.
This provides phonotactic constraints for efficient decod-
ing and accurate phoneme-boundary decisions, while re-
maining independent of any specific vocabulary. A set
of about 600 fragments was automatically derived from
the language-model training set by a bottom-up group-
ing procedure (Klakow, 1998; Ng, 2000; Seide and Yu,
2004). Example fragments are /-k-ih-ng/ (the syllable-
king), /ih-n-t-ax-r-/ (inter-), and /ih-z/ (the wordis).

With this, lattices are generated using the common
Viterbi decoder with word-pair approximation (Schwartz
et al., 1994; Ortmannset al., 1996). The decoder has been
modified to keep track of individual phoneme boundaries
and scores. These are recorded in the lattices, while
fragment-boundary information is discarded. This way,

phoneme lattices are generated.
In the results section we will see that, even with a well-

trained domain-matching word-level language model,
searching phoneme lattices can yield search accuracies
comparable with word-level search, and that the best per-
formance is achieved by combining both into a hybrid
word/phoneme system.

4.2 Unified Hybrid Lattice Representation

Combining word and phonetic search is desirable because
they are complementary: Word-based search yields bet-
ter precision, but has a recall issue for unknown and rare
words, while phonetic search has very good recall but suf-
fers from poor precision especially for short words.

Combining the two is not trivial. Several strategies are
discussed in (Yu and Seide, 2004), including using a hy-
brid recognizer, combining lattices from two separate rec-
ognizers, and combining the results of two separate sys-
tems. Both hybrid recognizer configuration and lattice
combination turned out difficult because of the different
dynamic range of scores in word and phonetic paths.

We found it beneficial to convert both lattices into
posterior-based representations calledposterior lattices
first, which are then merged into a hybrid posterior lat-
tice. Search is performed in a hybrid lattice in a unified
manner using both phonetic and word representations as
“alternative pronunciation” of the query, and summing up
the resulting phrase posteriors.

Posterior lattices are like regular lattices, except that
they do not store acoustic likelihoods, language model
probabilities, and precomputed forward/backward proba-
bilities, butarc and node posteriors. An arc’s posterior
is the probability that the arc (with its associated word
or phoneme hypothesis) lies on the correct path, while a
node posterior is the probability that the correct path con-
nects two word/phoneme hypotheses through this node.
In our actual system, a node is only associated with a
point in time, and the node posterior is the probability
of having a word or phoneme boundary at its associated
time point.

The inclusion of node posteriors, which to our knowl-
edge is a novel contribution of this paper, makes an exact
computation of phrase posteriors from posterior lattices
possible. In the following we will explain this in detail.

4.2.1 Arc and Node Posteriors
A latticeL = (N ,A, nstart, nend) is a directed acyclic

graph (DAG) withN being the set of nodes,A is the
set of arcs, andnstart, nend ∈ N being the unique ini-
tial and unique final node, respectively. Nodes represent
times and possibly context conditions, while arcs repre-
sent word or phoneme hypotheses.3

Each noden ∈ N has an associated timet[n] and pos-
sibly an acoustic or language-model context condition.
Arcs are 4-tuplesa = (S[a], E[a], I[a], w[a]). S[a], E[a]

3Alternative definitions of lattices are possible, e.g. nodes
representing words and arcs representing word transitions.
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∈ N denote the start and end node of the arc.I[a] is
the arc label4, which is either a word (in word lattices)
or a phoneme (in phonetic lattices). Last,w[a] shall be
a weight assigned to the arc by the recognizer. Specifi-
cally,w[a] = pac(a)1/λ ·PLM(a) with acoustic likelihood
pac(a), language model probabilityPLM, and language-
model weightλ.

In addition, we definepaths π = (a1, · · · , aK) as
sequencesof connected arcs. We use the symbolsS,
E, I, andw for paths as well to represent the respec-
tive properties for entire paths, i.e. the path start node
S[π] = S[a1], path end nodeE[π] = E[aK ], path la-
bel sequenceI[π] = (I[a1], · · · , I[aK ]), and total path
weightw[π] =

∏K
k=1 w[ak].

Finally, we defineΠ(n1, n2) as the entirety of all paths
that start at noden1 and end in noden2: Π(n1, n2) =
{π|S[π] = n1 ∧ E[π] = n2}.

With this, the phrase posteriors defined in Eq. 2 can be
written as follows.

In the simplest case,Q is a single word token. Then,
the phrase posterior is just the word posterior and, as
shown in e.g. (Wesselet al., 2000) or (Evermannet al.,
2000), can be computed as

P (∗, ts, Q, te, ∗|O) =

∑
π=(a1,··· ,aK )∈Π(nstart,nend):
∃l:[S[al]]=ts∧t[E[al]]=te∧I[al]=Q

w[π]

∑
π∈Π(nstart,nend)

w[π]

=
∑

a∈A:t[S[a]]=ts
∧t[E[a]]=te∧I[a]=Q

Parc[a] (3)

with Parc[a] being thearc posteriordefined as

Parc[a] =
αS[a] · w[a] · βE[a]

αnend

with the forward/backward probabilitiesαn andβn de-
fined as:

αn =
∑

π∈Π(nstart,n)

w[π]

βn =
∑

π∈Π(n,nend)

w[π].

αn andβn can conveniently be computed from the word
lattices by the well-known forward/backward recursion:

αn =

{
1.0 n = nstart∑
a:E[a]=n

αS[a] · w[a] otherwise

βn =

{
1.0 n = nend∑
a:S[a]=n

w[a] · βE[a] otherwise.

4Lattices are often interpreted as weighted finite-state accep-
tors, where the arc labels are theinput symbols, hence the sym-
bol I.

Now, in the general case of multi-label queries, the phrase
posterior can be computed as

P (∗, ts, Q, te, ∗|O)

=
∑

π=(a1,··· ,aK ):
t[S[π]]=ts∧t[E[π]]=te∧I[π]=Q

Parc[a1] · · ·Parc[aK ]
Pnode[S[a2]] · · ·Pnode[S[aK ]]

with Pnode[n], thenode posterior5, defined as

Pnode[n] =
αn · βn

αnend

. (4)

4.2.2 Advantages of Posterior Lattices
The posterior-lattice representation has several advan-

tages over traditional lattices. First, lattice storage is re-
duced because only one value (node posterior) needs to be
stored per node instead of two (α, β)6. Second, node and
arc posteriors have a smaller and similar dynamic range
thanαn, βn, andw[a], which is beneficial when the val-
ues should be stored with a small number of bits.

Further, for the case of word-based search, the summa-
tion in Eq. 3 can also be precomputed by merging all lat-
tice nodes that carry the same time label, and merging the
corresponding arcs by summing up their arc posteriors.
In such a “pinched” lattice, word posteriors for single-
label queries can now be looked up directly. However,
posteriors for multi-label strings cannot be computed pre-
cisely anymore. Our experiments have shown that the im-
pact on ranking accuracy caused by this approximation is
neglectable. Unfortunately, we have also found that the
same is not true for phonetic search.

The most important advantage of posterior lattices for
our system is that they provide a way of combining the
word and phoneme lattices into a single structure – by
simply merging their start nodes and their end nodes. This
allows to implement hybrid queries in a single unified
search, treating the phonetic and the word-based repre-
sentation of the query as alternative pronunciations.

5 Lattice Indexing

Searching lattices is time-consuming. It is not feasible to
search large amounts of audio. To deal with hundreds or
even thousands of hours of audio, we need some form of
inverted indexing mechanism.

This is comparably straight-forward when indexing
text. It is also not difficult for indexing word lattices. In
both case, the set of words to index is known. However,
indexing phoneme lattices is very different, because the-
oretically any phoneme string could be an indexing item.

5Again, mind that in our lattice formulation word/phoneme
hypotheses are represented by arcs, while nodes just represent
connection points. The node posterior is the probability that the
correct path passes through a connection point.

6Note, however, that storage for the traditional lattice can
also be reduced to a single number per node by weight push-
ing (Saraclar and Sproat, 2004), using an algorithm that is very
similar to the forward/backward procedure.
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We address this by ourM -gram lattice-indexing
scheme. It was originally designed for phoneme lattices,
but can be – and is actually – used in our system for in-
dexing word lattices.

First, audio files are clipped into homogeneous seg-
ments. For an audio segmenti, we define theexpected
term frequency(ETF) of a query stringQ as summation
of phrase posteriors of all hits in this segment:

ETFi(Q) =
∑

∀ts,te

P (∗, ts, Q, te, ∗|Oi)

=
∑

π∈Πi:I[π]=Q

p[π]

with Πi being the set of all paths of segmenti.
At indexing time,ETFs of a list ofM -grams for each

segment are calculated. They are stored in an inverted
structure that allows retrieval byM -gram.

In search time, theETFs of the query string are es-
timated by the so-called “M -gram approximation”. In
order to explain this concept, we need to first introduce
P (Q|Oi) – the probability of observing query stringQ at
any word boundary in the recordingOi. P (Q|Oi) has a
relationship withETF as

ETFi(Q) = Ñi · P (Q|Oi)

with Ñi being the expected number of words in the seg-
menti. It can also be computed as

Ñi =
∑

n∈Ni

p[n],

whereNi is the node set for segmenti.
Like the M -gram approximation in language-model

theory, we approximateP (Q|Oi) as

P (Q|Oi) ≈ P̃ (Q|Oi)

=
l∏

k=1

P̃ (qk|qk−M+1, · · · , qk−1, O
i),

while the right-hand items can be calculated fromM -
gramETFs:

P̃ (qk|qk−M+1, · · · , qk−1, O
i)

=
ETFi(qk−M+1, · · · , qk)

ETFi(qk−M+1, · · · , qk−1)
.

The actual implementation uses onlyM -grams extracted
from a large background dictionary, with a simple backoff
strategy for unseenM -grams, see (Yuet al., 2005) for
details.

The resulting index is used in a two stage-search man-
ner: The index itself is only used as the first stage to de-
termine a short-list of promising segments that may con-
tain the query. The second stage involves a linear lattice
search to get final results.

Table 1: Test corpus summary.
test set dura- #seg- keyword set

tion ments (incl. OOV)
ICSI meetings 2.0h 429 1878 (96)
SWBD eval2000 3.6h 742 2420 (215)
SWBD rt03s 6.3h 1298 2325 (236)
interviews (phone) 1.1h 267 1057 (49)
interviews (lapel) 1.0h 244 1629 (107)

6 Results

6.1 Setup

We have evaluated our system on five different corpora of
recorded conversations:

• one meeting corpus (NIST “RT04S” development
data set, ICSI portion, (NIST, 2000-2004))

• two eval sets from the switchboard (SWBD) data
collection (“eval 2000” and “RT03S”, (NIST, 2000-
2004))

• two in-house sets of interview recordings of about
one hour each, one recorded over the telephone, and
one using a single microphone mounted in the inter-
viewee’s lapel.

For each data set, a keyword list was selected by an
automatic procedure (Seide and Yu, 2004). Words and
multi-word phrases were selected from the reference tran-
scriptions if they occurred in at most two segments. Ex-
ample keywords areoverseas, olympics, and“automated
accounting system”. For the purpose of evaluation, those
data sets are cut into segments of about 15 seconds each.
The size of the corpora, their number of segments, and
the size of the selected keyword set are given in Table 1.

The acoustic model we used is trained on 309h of the
Switchboard corpus (SWBD-1). The LVCSR language
model was trained on the transcriptions of the Switch-
board training set, the ICSI-meeting training set, and the
LDC Broadcast News 96 and 97 training sets. No ded-
icated training data was available for the in-house inter-
view recordings. The recognition dictionary has 51388
words. The phonetic language model was trained on the
phonetic version of the transcriptions of SWBD-1 and
Broadcast News 96 plus about 87000 background dictio-
nary entries, a total of 11.8 million phoneme tokens.

To measure the search accuracy, we use the “Figure
Of Merit” (FOM) metric defined by NIST for word-
spotting evaluations. In its original form, it is the aver-
age of detection/false-alarm curve taken over the range
[0..10] false alarms per hour per keyword. Because man-
ual word-level alignments of our test sets were not avail-
able, we modified the FOM such that a correct hit is a
15-second segment that contains the key phrase.

Besides FOM, we use a second metric – “Top Hit Pre-
cision” (THP), defined as the correct rate of the best
ranked hit. If no hit is returned for an existing query term,
it is counted as an error. Both of these metrics are relevant
measures in our known-item search.
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Table 2: Baseline transcription word-error rates (WER)
as well as precision (P), recall (R), FOM and THP for
searching the transcript.

test set WER P R FOM THP
[%] [%] [%] [%] [%]

ICSI meetings 44.1 80.6 43.8 43.6 43.6
SWBD eval2000 39.0 79.6 41.1 41.1 41.1
SWBD rt03s 45.2 72.6 36.3 36.3 36.0
interviews (phone) 57.7 68.8 31.6 29.3 31.3
interviews (lapel) 62.8 80.1 32.0 30.2 32.1
average 49.8 76.3 37.0 36.1 36.8

Table 3: Comparison of search accuracy for word,
phoneme, and hybrid lattices.

test set word phoneme hybrid
Figure Of Merit (FOM) [%]

ICSI meetings 72.1 81.2 88.2
SWBD eval2000 71.3 80.4 87.3
SWBD rt03s 66.4 76.9 84.2
interviews (phone) 60.6 73.7 83.3
interviews (lapel) 59.0 70.2 77.7
average 65.9 76.5 84.1
INV words only 69.4 77.0 84.7
OOV words only 0 73.8 73.8

Top Hit Precision (THP) [%]
ICSI meetings 67.2 65.0 78.7
SWBD eval2000 67.1 63.6 77.9
SWBD rt03s 59.6 59.1 71.7
interviews (phone) 55.7 64.4 73.1
interviews (lapel) 55.6 59.7 71.2
average 61.0 62.4 74.5
INV words only 64.5 62.4 75.3
OOV words only 0 60.5 60.5

6.2 Word/Phoneme Hybrid Search

Table 2 gives the LVSCR transcription word-error rates
for each set. Almost all sets have a word-error rates above
40%. Searching those speech recognition transcriptions
results in FOM and THP values below 40%.

Table 3 gives results of searching in word, phoneme,
and hybrid lattices. First, for all test sets, word-lattice
search is drastically better than transcription-only search.

Second, comparing word-lattice and phoneme-lattice
search, phoneme lattices outperforms word lattices on
all tests in terms of FOM. This is because phoneme lat-
tice has better recall rate. For THP, word lattice search
is slightly better except on the interview sets for which
the language model is not well matched. Hybrid search
leads to a substantial improvement over each (27.6% av-
erage FOM improvement and 16.2% average THP im-
provement over word lattice search). This demonstrates
the complementary nature of word and phoneme search.

We also show results separately for known words (in-
vocabulary, INV) and out-of-vocabulary words (OOV).
Interestingly, even for known words, hybrid search leads
to a significant improvement (get 22.0% for FOM and
16.7% for THP) compared to using word lattices only.

6.3 Effect of Node Posterior

In Section 4.2, we have shown that phrase posteriors can
be computed from posterior lattices if they include both
arc and node posteriors (Eq. 4). However, posterior rep-
resentations of lattices found in literature only include
word (arc) posteriors, and some posterior-based systems
simply ignore the node-posterior term, e.g. (Chelba and
Acero, 2005). In Table 4, we evaluate the impact on ac-
curacy when this term is ignored. (In this experiment,
we bypassed the index-lookup step, thus the numbers are
slightly different from Table 3.)

We found that for word-level search, the effect of node
posterior compensation is indeed neglectable. However,
for phonetic search it is not: We observe a 4% relative
FOM loss.

6.4 Index Lookup and Linear Search

Section 5 introduced a two-stage search approach using
anM -gram based indexing scheme. How much accuracy
is lost from incorrectly eliminating correct hits in the first
(index-based) stage? Table 5 compares three setups. The
first column shows results for linear search only: no index
lookup used at all, a complete linear search is performed
on all lattices. This search is optimal but does not scale
up to large database. The second column shows index
lookup only. Segments are ranked by the approximate
M -gram based ETF score obtained from the index. The
third column shows the two-stage results.

The index-based two-stage search is indeed very close
to a full linear search (average FOM loss of 1.2% and
THP loss of 0.2% points). A two-stage search takes under
two seconds and is mostly independent of the database
size. In other work, we have applied this technique suc-
cessfully to search a database of nearly 200 hours.

6.5 The System

Fig. 2 shows a screenshot of a research prototype for a
search-enabled audio notebook. In addition to a note-
taking area (bottom) and recording controls, it includes
a rich audio browser showing speaker segmentation and
automatically identified speaker labels (both not scope of
this paper). Results of keyword searches are shown as
color highlights, which are clickable to start playback at
that position.

7 Conclusion

In this paper, we have presented a system for searching
recordings of conversational speech, particularly meet-

Table 4: Effect of ignoring the node-posterior term in
phrase-posterior computation (shown for ICSI meeting
set only).

FOM word phoneme
exact computation 72.1 82.3
node posterior ignored 72.0 79.2
relative change [%] -0.1 -3.8
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Table 5: Comparing the effect of lattice indexing. Shown
is unindexed “linear search,” index lookup only (seg-
ments selected via the index without subsequent linear
search), and the combination of both.

test set linear index two-
search lookup stage

Figure Of Merit (FOM) [%]
ICSI meetings 88.6 86.4 88.2
SWBD eval2000 88.7 86.5 87.3
SWBD rt03s 87.3 85.1 84.2
interviews (phone) 83.8 81.2 83.3
interviews (lapel) 78.3 76.1 77.7
average 85.3 83.1 84.1

Top Hit Precision (THP) [%]
ICSI meetings 78.8 70.7 78.7
SWBD eval2000 78.0 71.4 77.9
SWBD rt03s 71.9 65.7 71.7
interviews (phone) 73.8 64.6 73.1
interviews (lapel) 70.8 65.9 71.2
average 74.7 67.7 74.5

ings and telephone conversations. We identified user re-
quirements as accurate ranking of phrase matches, do-
main independence, and reasonable response time. We
have addressed these by hybrid word/phoneme lattice
search and a supporting indexing scheme. Unlike many
other spoken-document retrieval systems, we search
recognition alternates instead of only speech recognition
transcripts. This yields a significant improvement of key-
word spotting accuracy. We have combined word-level
search with phonetic search, which not only enables the
system to handle the open-vocabulary problem, but also
substantially improves in-vocabulary accuracy. We have
proposed a posterior-lattice representation that allows for
unified word and phoneme indexing and search. To speed
up the search process, we proposedM -gram based lat-
tice indexing, which extends our open vocabulary search
ability for large collection of audio. Tested on five dif-
ferent recording sets including meetings, conversations,
and interviews, a search accuracy (FOM) of 84% has
been achieved – dramatically better than searching speech
recognition transcripts (under 40%).

Figure 2: Screenshot of our research prototype of a
search-enabled audio notebook.
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