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Abstract words (e.g.{principle, principal}) are appropriate

for a given context. The labeled data comes “for
Recent work has shown that very large  free” by assuming that in most edited written text,
corpora can act as training data for NLP the words are used correctly, so training can be done
algorithms even without explicit labels. In directly from the text. Banko and Brill (2001) show
this paper we show how the use of sur-  that even using a very simple algorithm, the results
face features and paraphrases in queries continue to improve log-linearly with more training
against search engines can be used to infer  data, even out to a billion words. A potential limita-
labels for structural ambiguity resolution tion of this approach is the question of how applica-
tasks. Using unsupervised algorithms, we  ble itis for NLP problems more generally —how can
achieve 84% precision on PP-attachment we treat a large corpus as a labeled collection for a
and 80% on noun compound coordination.  wide range of NLP tasks?

In a related strand of work, Lapata and Keller
(2004) show that computing-gram statistics over
very large corpora yields results that are competi-

Resolution of structural ambiguity problems Sucﬁive with if not better than the best supervised and
as noun compound bracketing, prepositional phrad@owledge-based approaches on a wide range of
(PP) attachment, and noun phrase coordination rBlLP tasks. For example, they show that for the
quires using information about lexical items andProblem of noun compound bracketing, the perfor-
their cooccurrences. This in turn leads to the dat®@ance of am-gram based model computed using
sparseness problem, since algorithms that rely cﬁearch engine statistics was not significantly differ-
making decisions based on individual lexical item&nt from the best supervised algorithm whose pa-
must have statistics about every word that may b@meters were tuned and which used a taxonomy.
encountered. Past approaches have dealt with théey find however that these approaches generally
data sparseness problem by attempting to genera”@' to outperform supervised state-of-the-art models
from semantic classes, either manually built or autghat are trained on smaller corpora, and so conclude
matically derived. that web-based-gram statistics should be the base-
More recently, Banko and Brill (2001) have ad-line to beat.

vocated for the creative use of very large text col- We feel the potential of these ideas is not yet fully
lections as an alternative to sophisticated algorithmealized. We are interested in finding ways to further
and hand-built resources. They demonstrate the ideaploit the availability of enormous web corpora as
on a lexical disambiguation problem for which la-implicit training data. This is especially important
beled examples are available “for free”. The probfor structural ambiguity problems in which the de-
lem is to choose which of 2-3 commonly confusecaisions must be made on the basis of the behavior

1 Introduction
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of individual lexical items. The trick is to figure out lexical and conceptual classes derived from Word-
how to use information that is latent in the web as &let, achieving 82% precision on 500 randomly se-
corpus, and web search engines as query interfadested examples. Ratnaparkhi et al. (1994) cre-
to that corpus. ated a benchmark dataset of 27,937 quadruples
In this paper we describe two techniquesur- (v, n1,p, n2), extracted from the Wall Street Jour-
face featuresindparaphrases- that push the ideas nal. They found the human performance on this
of Banko and Brill (2001) and Lapata and Kellertask to be 88% Using this dataset, they trained a
(2004) farther, enabling the use of statistics gatheradaximum entropy model and a binary hierarchy of
from very large corpora in an unsupervised manword classes derived by mutual information, achiev-
ner. In recent work (Nakov and Hearst, 2005) wéng 81.6% precision. Collins and Brooks (1995)
showed that a variation of the techniques, when apised a supervised back-off model to achieve 84.5%
plied to the problem of noun compound bracketingprecision on the Ratnaparkhi test set. Stetina and
produces higher accuracy than Lapata and Kelldiakoto (1997) use a supervised method with a deci-
(2004) and the best supervised results. In this paion tree and WordNet classes to achieve 88.1% pre-
per we adapt the techniques to the structural disarision on the same test set. Toutanova et al. (2004)
biguation problems of prepositional phrase attachise a supervised method that makes use of morpho-

ment and noun compound coordination. logical and syntactic analysis and WordNet synsets,
yielding 87.5% accuracy.
2 Prepositional Phrase Attachment In the unsupervised approaches, the attachment

. _ .decision depends largely on co-occurrence statistics
A long-standing challenge for syntactic parsers 'Srawn from text collections. The pioneering work

the attgchmgntdemsmn for prepositional phrases. IH this area was that of Hindle and Rooth (1993).
a configuration where a verb takes a noun compl

) _ Jsing a partially parsed corpus, they calculate and
ment that is followed by a PP, the problem arises o ompare lexical associations over subsets of the tu-
whether the PP attaches to the noun or to the ver

. ) ) ) fe (v, n1,p), ignorin , and achieve 80% preci-
Consider the following contrastive pair of sentences; (v,m1,p), g gna °Pp

- Sion at 80% recall.
(1) Peter spent millions of dollars. (noun) M v R Khi (1998) developed
(2) Peter spent time with his family. (verb) ore recently, Ratnaparkhi ( ) developed an

In the first example, the Piillions of dollarsat- unsuperwseddme_tr;]od thatf coIIects Sta'[IStICZ from
taches to the noumillions, while in the second the teﬁ(tlaqno;[a;e V\:c't part-Ac\) -spe;ec i tagﬁ an t.mpr-
PPwith his familyattaches to the verdpent phological base lorms.  An extraction heuristic I

used to identify unambiguous attachment decisions,

Past work on PP-attachment has often cast the?‘e )

- or example, the algorithm can assume a noun at-
associations as the quadruglen,, p, na), wherev

is the verbp, is the head of the direct objegtjs the Eghg;?ﬂ; i :zegesiltiso:oinvzrb i\\,/velt:”:evx?e:gietoatrneon
preposition (the head of the PP) anglis the head brep 9 ' 9

of the NP inside the PP. For example, the quaclrupPether conditions. This extraction heuristic uncov-

. : . . ered 910K unique tuples of the forfa, p, n2) and
for (2) is (spent time, with, family). (n, p,ng), although the results are very noisy, sug-

21 Related Work gesting the correct attachment on.Iy'about 69% of the
time. The tuples are used as training data for clas-
Early work on PP-attachment ambiguity resolusifiers, the best of which achieves 81.9% precision
tion relied on syntactic (e.g., “minimal attachment’y, ihe Ratnaparkhi test set. Pantel and Lin (2000)
and "right association”) and pragmatic consideragescribe an unsupervised method that uses a collo-
tions. Most recent work can be divided into SUtation database, a thesaurus, a dependency parser,
pervised and unsupervised approaches. Supervisggy 5 large corpus (125M words), achieving 84.3%

approaches tend to make use of semantic classggcision on the Ratnaparkhi test set. Using sim-
or thesauri in order to deal with data sparseness

problems. Brill and Resnik (1994) used the su- When presented with a whole sentence, average humans

pervised transformation-based learning method ardore 93%.
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ple combinations of web-based n-grams, Lapata artd2.2 Web-Derived Surface Features

Keller (2005) achieve lower results, in the low 70’s.  Authors sometimes (consciously or not) disam-
Using a different collection consisting of Germarnbiguate the words they write by using surface-level
PP-attachment decisions, Volk (2000) uses the webarkers to suggest the correct meaning. We have
to obtain n-gram counts. He comparBd(p|n;) to  found that exploiting these markers, when they oc-
Pr(p|v), wherePr(p|z) = #(x,p)/#(x). Herex cur, can prove to be very helpful for making dis-
can ben; or v. The bigram frequencieg(z,p) ambiguation decisions. The enormous size of web
were obtained using the Altavista NEAR operatorsearch engine indexes facilitates finding such mark-
The method was able to make a decision on 58%rs frequently enough to make them useful.
of the examples with a precision of 75% (baseline For exampleJohn opened the door with a key
63%). Volk (2001) then improved on these resulta difficult verb attachment example because doors,
by comparingPr(p, na|n1) to Pr(p,najv). Using keys, and opening are all semantically related. To
inflected forms, he achieved P=75% and R=85%. determine if this should be a verb or a noun attach-

Calvo and Gelbukh (2003) experimented with dnent, we search for cues that indicate which of these
variation of this, using exact phrases instead of thrms tend to associate most closely. If we see paren-
NEAR operator. For example, to disambiguteo  theses used as follows:
al gato con un telescopjahey compared frequen- “OPpen the door (with a key)”
cies for phrases such as “ver con telescopio” an#iS suggests a verb attachment, since the parenthe-
“gato con telescopio”. They tested this idea on 18%€s signal that “with a key” acts as its own unit.
randomly chosen Spanish disambiguation exampleimilarly, hyphens, colons, capitalization, and other

labelling 89.5% recall with a precision of 91.97%. Punctuation can help signal disambiguation deci-
sions. Fordean ate spaghetti with saudgéwe see

“eat: spaghetti with sauce”
this suggests a noun attachment.

Table 1 illustrates a wide variety of surface fea-
tures, along with the attachment decisions they are
We computed two co-occurrence models; assumed to suggest (events of frequency 1 have been
(i) Pr(p|n1) vs. Pr(p|v) ignored). The surface features for PP-attachment
have low recall: most of the examples have no sur-
face features extracted.

Each of these was computed two different ways: \ye gather the statistics needed by issuing queries
usingPr (probabilities) and# (frequencies). We es- (5 \web search engines. Unfortunately, search en-
timate then-gram counts using exact phrase queriegines usually ignore punctuation characters, thus
(with inflections, derived from WordNet 2.0) using preventing querying directly for terms containing
the MSN Search Engine. We also allow for deterpyphens, brackets, etc. We collect these numbers
miners, where appropriate, e.g., between the preppygirectly by issuing queries with exact phrases and
sition and the noun when querying f@(p, n2). We  then post-processing the top 1,000 resulting sum-
add up the frequencies for all possible variationgyarieg, looking for the surface features of interest.

Web frequencies were reliable enough and did n@fie yse Google for both the surface feature and para-

need smoothing foii), but for (i), smoothing using phrase extractions (described below).

the technique described in Hindle and Rooth (1993%

led to better recall. We also tried back-off froii)( 2.2.3 Paraphrases

to (i), as well as back-off plus smoothing, but did not The second way we extend the use of web counts

find improvements over smoothing alone. We founés by paraphrasing the relation of interest and see-

n-gram counts to be unreliable when pronouns apng if it can be found in its alternative form, which

pear in the test set rather than nouns, and disabled; , )
. . We often obtain more than 1,000 summaries per example

them in these cases. Such examples can still be haj

cause we usually issue multiple queries per surface pattern,
dled by paraphrases or surface features (see belowy.varying inflections and inclusion of determiners.

2.2 Models and Features

2.2.1 n-gram Models

(it) Pr(p, n2|nq) vs. Pr(p, na|v).
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suggests the correct attachment decision. We utebe) The pattern substituteswith is andare, e.g.
the following patterns along with their associated atit will turn eath spaghettin; with/p saucenhs intois

tachment predictions: spaghettif; with/p saucerh,.
1) wvnang (noun) These patterns all allow for determiners where ap-
(2) vpnem (verb) propriate, unless explicitly stated otherwise. For a
B) pno*um (verb) given example, a prediction is made if at least one
(4) nipnow (noun) instance of the pattern has been found.
(5) wpronounpny (verb)

(6) benipns (noun) 2.3 Evaluation

The idea behind Pattern (1) is to determind-or the evaluation, we used the test part (3,097 ex-
if “ny p ny” can be expressed as a noun comamples) of the benchmark dataset by Ratnaparkhi et
pound; if this happens sufficiently often, we caral. (1994). We used all 3,097 test examples in order
predict a noun attachment. For examphaeet/ to make our results directly comparable.
demandsi; from/p customersi, becomesmeets Unfortunately, there are numerous errors in the
the customersk, demandst; . test set. There are 149 examples in which a bare

Note that the pattern could wrongly target ditrandeterminer is labeled as; or n, rather than the ac-
sitive verbs: e.g., it could turgaved an appleA; tual head noun. Supervised algorithms can compen-
to/p him/ns into gaved him/in, an appleh,. To pre-  sate for this problem by learning from the training
vent this, we do not allow a determiner beforg,  set that “the” can act as a noun in this collection, but
but we do require one beforg,. In addition, we unsupervised algorithms cannot.
disallow the pattern if the preposition ie and we In addition, there are also around 230 examples
require bothn; andn, to be nouns (as opposed toin which the nouns contain special symbols like: %,
numbers, percents, pronouns, determiners etc.). slash, &, ’, which are lost when querying against a

Pattern (2) predicts a verb attachment. It presugearch engine. This poses a problem for our algo-
poses that ny” is an indirect object of the verb  rithm but is not a problem with the test set itself.
and tries to switch it with the direct objegt, e.g., The results are shown in Table 2. Following Rat-
hadk a programh in/p placeh, would be trans- naparkhi (1998), we predict a noun attachment if the
formed intohadk in/p placehy a programh,. We  preposition iof (a very reliable heuristic). The table
requiren; to be preceded by a determiner (to prevergdhows the performance for each feature in isolation
“ny ny” forming a noun compound). (excluding examples whose prepositiorofs. The

Pattern (3) looks for appositions, where the PP hasurface features are represented by a single score in
moved in front of the verb, e.do/p himhs | gavely  Table 2: for a given example, we sum up separately
an appleh;. The symbol * indicates a wildcard po- the number of noun- and verb-attachment pattern
sition where we allow up to three intervening wordsmatches, and assign the attachment with the larger

Pattern (4) looks for appositions, where the PP hasumber of matches.

moved in front of the verb together with . 1t would We combine the bold rows of Table 2 in a majority
transformshakend confidencei; in/fp marketsf,  vote (assigning noun attachment to@instances),
into confidencel; in/p marketshs shakend. obtaining P=85.01%, R=91.77%. To get 100% re-

Pattern (5) is motivated by the observation thatall, we assign all undecided caseswverb (since
if ny is a pronoun, this suggests a verb attactthe majority of the remaining noof instances at-
ment (Hindle and Rooth, 1993). (A separate featur@ch to the verb, yielding P=83.63%, R=100%. We
checks ifn is a pronoun.) The pattern substitutesshow 0.95-level confidence intervals for the preci-
ny with a dative pronoun (we allowim andher), sion, computed by a general method based on con-
e.g., it will convertputiv a clienth; at/p oddsh, stant chi-square boundaries (Fleiss, 1981).
into put/v him atp oddshs. A test for statistical significance reveals that our
Pattern (6) is motivated by the observation that theesults are as strong as those of the leading unsuper-
verbto beis typically used with a noun attachment. 3Ratnaparkhi (1998) notes that the test set contains errors,
(A separate feature checksuifis a form of the verb but does not correct them.
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Example Predicts P(%) R(% [ Model [ P%) | R®%) ]
open Doorwithakey —noun  100.00  0.18 Baseline (noun attach) 41.82 | 100.00
(open) door with a key noun 66.67 0.28 #@,p) 58.91 83.97
open (door with a key) noun 7143 0.9¢ Pr([;\m) 66.81 83.97
open - door with a key noun 69.70 1.5p Pr(p|z) smoothed 66.81 83.97
open / door with a key noun 60.00 0.4b #(z,p,n2) 65.78 81.02
open, door with akey noun 65.77 5.11 Pr(p7 1;2|x) 68.34 81.62
open: door with akey noun 64.71 1.5¢ Pr(p7 nz|z) smoothed 68.46 83.97
open; door with akey noun 60.00 0.28 @) ; T2 11" 59.29 22.06
open. door witha key noun 64.13 4.24 ) *pnzvni 57'79 71'58
open? door with a key noun 83.33 0.55 (3)“ni * png v’ 65'78 20'73
open! door with a key noun 66.67 0.14 (4) “vpns ny” 81:05 8.'75
open door With a Key  verb 0.00 0.00 (5) “v pronounp ns” 75.30 30.40
(open door) with a key verb 50.00 0.09 (6) “beni p na” 63.65 30.54
open door (with a key) verb 7358 2.44 71 1S pronoun 08.48 3.04
open door - wjth akey verb 68.18 2.08 visto be 79:23 9:53
open door/withakey verb  100.00 0.14 Surface features (summed) 7313 9.26
open door, with akey  verb 58.44  7.0p Maj. vote, of— noun 850121 9177
open door win Eﬁi verb 7059 07B Maj. vote, of— noun, N/A— verb | 83.63:1.30 | 100.00
open door. with akey verb 60.77  5.99

opendoor! withakey verb 10000 0.18 Table 2:PP-attachment results, in percentages.

Table 1: PP-attachment surface features.Preci-

sion and recall shown are across all examples, n;%t ¢ 1if F i int of vi
just the door example shown. ity] of life]. From a semantic point of view, we

need to determine whether tloe in chronic dis-
eases or disabilitieseally meanr or is used as an
and (Agarwal and Boggess, 1992). Finally, we need

vised approach on this collection (Pantel and Lin ) ,
2000). Unlike that work, we do not require a collo-1© c00se betweenron-elidedand arelidedread-

cation database, a thesaurus, a dependency parl¥: [[chronic diseases] or disabilitiesys. [chronic

nor a large domain-dependent text corpus, whici‘?“seas"jS or disabilities]]

makes our approach easier to implement and to ex- B&low we focus on a special case of'the latter
tend to other languages. problem: noun compound (NC) coordination. Con-

sider the NCcar and truck production Its real
3 Coordination meaning iscar production and truck production

However, due to the principle of economy of ex-
Coordinating conjunctionsafd, or, but, etc.) pose pression, the first instance pfoductionhas been
major challenges to parsers and their proper hagempressed out by means of ellipsis. By contrast,
dling is essential for the understanding of the serin president and chief executiveresidents simply
tence. Consider the following “cooked” example: linked tochief executiveThere is also an all-way co-

The Department of Chronic Diseasasd Health ~ Ordination, where the conjunct is part of the whole,

Promotion leadsand strengthens global efforts to @S inSecurities and Exchange Commission
preventand control chronic diseasesr disabilies ~ More formally, we consider configurations of the

andto promote healttand quality of life. kind n1 ¢ na h, wheren; andny are nounsg is a

Conjunctions can link two words, two Con_coordmatl'on énd qr or) and/ is the head nqu’n_

. The task is to decide whether there is an ellipsis or
stituents (e.g., NPs), two clauses or even two Se?l-'[ independently of the local context. Svntacti
tences. Thus, the first challenge is to identify th&ob ependently ot the focal context. . syntac

boundaries of the conjuncts of each coordinationc.glly’ this can be expressed by the foIIowmg br,ack—
tings: [[n1 ¢ n2] h] versus hi ¢ [ns2 A]]. (Collins

The next problem comes from the interaction of . .
the coordinations with other constituents that attach® ~c" (Collins, 1997) always predicts a flat NP for

to its conjuncts (most often prepositional phrases?.UCh configurations.) In order to make the task more

In the example above we need to decide between +rye configurations of the kind h, ¢ hz (e.g.,companyi
[health and [quality of life]] and[[health and qual- carsh; andk truckshs) can be handled in a similar way.
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realistic (from a parser’s perspective), we ignore the | Example Predicts _ P(%) _ R(%

. L . (buy) and sell orders NO ellipsis  33.33 1.40
option qf aII_—way coordination and try to predict the buy (and sell orders) NO ellipsis  70.00  4.67
bracketing in Penn Treebank (Marcus et al., 1994) | buy: and sell orders  NO ellipsis ~ 0.00 0.0

; ; i i buy; and sell orders  NO ellipsis  66.67 2.80
for conflguratlons of t_hls_ kind. The Penn Treebank buy. and sell orders  NO ellipsis 6857  8.18
brackets NCs with ellipsis as, e.g., buyl...] and sell orders NO ellipsis ~ 49.00  46.73
(NP car/NN and/CC truck/NN production/NN) buy-and sellorders ellipsis 7727 514

; i buy and sell / orders ellipsis 50.54 21.73

and WIthOUt_ ellipsis as . (buy and sell) orders ellipsis 92.31 3.04
(NP (NP president/NN) and/CC (NP chief/NN exec- | puy and sell (orders) ellipsis 90.91 2.57
utive/NN)) buy and sell, orders ellipsis 92.86 13.08
. T . _ | buy and sell: orders ellipsis 93.75 3.74

The.NPs with ellipsis are flat, while _the_others CON- | |y and sell orders ellipsis 10000  1.87
tain internal NPs. The all-way coordinations can ap- | buy and sell. orders ellipsis 93.33 7.01
pear bracketed either way and make the task harder| buy and sell[...] orders _ellipsis 8519  18.93

3.1 Related Work Table 3:Coordination surface features.Precision

Coordinati biguity | q lored. d .tand recall shown are across all examples, not just the
oordination ambiguity is under-explored, despi ﬁuy and sell ordershown.

being one of the three major sources of structura
ambiguity (together with prepositional phrase at-

tachment and noun compound bracketing), and be- . 0 . -
longing to the class of ambiguities for which the P=75.0%, R_.69'3/°)' uUsing a decision tree to com-
. . hine the three information sources, he achieves 80%
number of analyses is the number of binary trees ~ " baseline 66%) at 100% Il for the 3
over the corresponding nodes (Church and Patf?,reCISIon ( asetine ) a o recat for the o
oun coordinations. For the 4-noun coordinations

1982), and despite the fact that conjunctions al L 0 . 0 0
among the most frequent words. I{j]aeﬁ precision is 81.6% (baseline 44.9%), 85.4% re-

Rus et al. (2002) present a deterministic rule- _
based approach for bracketifig contextof coor- Chantree et al. (2005) cover a large set of ambi-

dinated NCs of the kindy, ¢ ns h, as a necessary guities, not limited to nouns. They qlloyv the head
step towards logical form derivation. Their algo-V0rd to be a noun, a verb or an adjective, and the
rithm uses POS tagging, syntactic parses, semanfedifier to be an adjective, a preposition, an ad-
senses of the nouns (manually annotated), looku§'2: €tc. They extract distributional information
in a semantic network (WordNet) and the type of th&©m the British National Corpus and distributional
coordination conjunction to make a 3-way classifiSimilarities between words, similarly to (Resnik,
cation: ellipsis, no ellipsis and all-way coordination 1999)- In two different experiments they achieve
Using a back-off sequence of 3 different heuristics, =88-2%, R=38.5% and P=80.8%, R=53.8% (base-
they achieve 83.52% precision (baseline 61.529%) di1€ P=75%).
a set of 298 examples. When 3 additional context- Goldberg (1999) resolves tratachment of am-
dependent heuristics and 224 additional exampld¥guous coordinate phrasesf the kindny p ng ¢
with local contexts are added, the precision jumpgs, €.9.,box/n; of/p chocolatest; andk rosests.
to 87.42% (baseline 52.35%), with 71.05% recall. Using an adaptation of the algorithm proposed by
Resnik (1999) disambiguates two kinds of patRatnaparkhi (1998) for PP-attachment, she achieves
terns: n; and Ny N3 and n1y N9 and ng N4 P=72% (baseline P:64%), R=100.00%.
(e.g., [foodn; [handlinghs andik storagefis] Agarwal and Boggess (1992) focus on ttenti-
procedurests]). While there are two options for fication of the conjuncts of coordinate conjunctions
the former (all-way coordinations are not allowed)Using POS and case labels in a deterministic algo-
there are 5 valid bracketings for the latter. Follow+ithm, they achieve P=81.6%. Kurohashi and Na-
ing Kurohashi and Nagao (1992), Resnik makes degao (1992) work on the same problem for Japanese.
cisions based on similarity of form (i.e., numberTheir algorithm looks for similar word sequences
agreement: P=53%, R=90.6%), similarity of meanamong with sentence simplification, and achieves a
ing (P=66%, R=71.2%) and conceptual associatigprecision of 81.3%.
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Model

3.2 Models and Features P%) [ R(%) |

Baseline: ellipsis 56.54 | 100.00
3.2.1 n-gram Models (n1, h) vs. (n2, h) 80.33| 28.50
. ni,h) vs. (n1,c,n 61.14 | 45.09
We use the following:-gram models: En;cfnh,f) 1,6 n2) 8833 1207
i) #(n1, h) vs. #(ng, h (n2,h,c,n1) 76.60 | 21.96
(..) (m1, }3 (n2, 1) (n1, h,c,n2, h) 75.00 | 6.54
(ii) #(n1, h) vs. #(n1, c, ”?) o (n2, h,c,n1, h) 78.67| 17.52
Model () compares how likely it is that; mod- Heuristic 1 75.00 | 0.93
ifies h, as opposed ta, modifying . Model (i) Heuristic 4 64.29| 654
. . . . Heuristic 5 61.54 | 12.15
checks which association is stronger: betwegn Heuristic 6 87.09| 7.24
andh, or betweem; andnsy. Regardless of whether Number agreement 72.22 | 46.26
the coordination i®r or and, we query for both and Surface sum 8280 21.73
. Majority vote 83.82 | 80.84
we add up the corresponding counts. Majority vote, N/A— no ellipsis | 80.61 | 100.00
3.2.2 Web-Derived Surface Features Table 4:Coordination results, in percentages.

The set of surface features is similar to the one we

used for PP-attachment. These are brackets, slash, . o
comma, colon, semicolon, dot, question mark, ex@diectives modifyingu and/orn,. Heuristic 4 pre-

clamation mark, and any character. There are tV\E.'JiC_tS no ellipsis if b_Othnl angl ny are mo_dified by
additional ellipsis-predicting features: a dash afteRdiectives. Heuristic 5 predicts ellipsis if the coor-

ny and a slash after,, see Table 3. dination isor andn; is modified by an adjective,
but ns is not. Heuristic 6 predicts no ellipsis if;
3.2.3 Paraphrases is not modified by an adjective, but is. We used

versions of heuristics 4, 5 and 6 that check for deter-

We use the following paraphrase patterns: _ e
miners rather than adjectives.

(1) nocnih (ellipsis)

2) nohem (NO ellipsis) Finally, we included the number agreement fea-
(3) nihcngh (ellipsis) ture (Resnik, 1993): (a) ik; andne match in num-
(4) noheny b (ellipsis) ber, butn; andh do not, predict ellipsis; (b) i

If matched frequently enough, each of these pafind 72 do not match in number, but; and’ do,
terns predicts the coordination decision indicated iRrédict no ellipsis; (c) otherwise leave undecided.
parentheses. If found only infrequently or not founc% 3 Evaluation
at all, the opposite decision is made. Pattern (L)
switches the places of, andn; in the coordinated We evaluated the algorithms on a collection of 428
NC. For examplebar and pie graplcan easily be- examples extracted from the Penn Treebank. On ex-
comepie and bar graphwhich favors ellipsis. Pat- traction, determiners and non-noun modifiers were
tern (2) moves, andh together to the left of the allowed, but the program was only presented with
coordination conjunction, and placesto the right. the quadruplers, ¢, no, h). As Table 4 shows, our
If this happens frequently enough, there is no ellipeverall performance of 80.61 is on par with other ap-
sis. Pattern (3) inserts the elided héeaftern, with  proaches, whose best scores fall into the low 80’s for
the hope that if there is ellipsis, we will find the full precision. (Direct comparison is not possible, as the
phrase elsewhere in the data. Pattern (4) combintssks and datasets all differ.)
pattern (1) and pattern (3); it not only insehtsifter As Table 4 showsp-gram model i) performs
ny but also switches the placesof andn.. well, butn-gram modelif) performs poorly, proba-

As shown in Table 4, we included four of thebly because thén,, ¢, n2) contains three words, as
heuristics by Rus et al. (2002). Heuristic 1 predictopposed to two for the alternatie,, h), and thus
no coordination whem; andn, are the same, e.g., a priori is less likely to be observed.
milk and milk productsHeuristics 2 and 3 performa  The surface features are less effective for resolv-
lookup in WordNet and we did not use them. Heurising coordinations. As Table 3 shows, they are very
tics 4, 5 and 6 exploit the local context, namely thgood predictors of ellipsis, but are less reliable when
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predicting NO ellipsis. We combine the bold rowsMiriam Goldberg. 1999. An unsupervised model for statis-
of Table 4 in a majority vote, obtaining P=83.82% tically determining coordinate phrase attachment. Pto-

. . ceedings of ACL
R=80.84%. We assign all undecided cases to no el- 9
inci ialdi — 0 — 0 Donald Hindle and Mats Rooth. 1993. Structural ambiguity
lipsis, yielding P=80.61%, R=100%. and lexical relationsComputational Linguistigs19(1):103—

4 Conclusions and Future Work 120.

_ _ _ Sadao Kurohashi and Makoto Nagao. 1992. Dynamic pro-
We have shown that simple unsupervised algorithms gramming method for analyzing conjunctive structures in

that make use of bigrams, surface features and paraJaPanese. Iroceedings of COLING/olume 1.
phrases extracted from a very large corpus are éftirella Lapata and Frank Keller. 2004. The Web as a base-

; P ; line: Evaluating the performance of unsupervised Web-
fective for several structural ambiguity resolutions based models for a range of NLP tasks. Pimceedings of

tasks, yielding results competitive with the best un- HLT-NAACL pages 121128, Boston.

superwsed results, and Clo_se to superV|§e_d resuIm'rella Lapata and Frank Keller. 2005. Web-based models for
The method does not require labeled training data, natural language processinCM Transactions on Speech

nor lexicons nor ontologies. We think this is a andLanguage Processing:1-31.

promising direction for a wide range of NLP tasksuwitchell Marcus, Beatrice Santorini, and Mary Marcinkiewicz.
In future work we intend to explore better-motivated 1994. Building a large annotated corpus of English: The

evidence combination algorithms and to apply the Penn TreebankComputational Linguisticsl9(2):313—-330.

approach to other NLP problems. Preslav Nakov and Marti Hearst. 2005. Search engine statistics

. beyond the n-gram: Application to nhoun compound bracket-
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