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Abstract

We preset a very efficient statidical in-
cremendl parserfor LTAG-sphnal, a vari-
ant of LTAG. The parse supprts the
full adjoining operation, dynamic pred-
catecoordnation, and non{rojective de-
pencencies with aformalism of provably
strorger geneantive capadty ascomparel
to CFG. Usinggold stanchrd POStagsas
input, on section 23 of the PTB, theparser
achieesanf-score of 89.3%for syntactic
depereng definedon LTAG derivation
treeswhicharedeeperthan thedepemen-
ciesextraded from PTB alore with head
rules(for example,in Magermars style).

1 Introduction

Lexicalized Tree Adjoining Grammar(LTAG) is a
formalism motived by both linguistic andcomputa
tiond perspetives(for arelatively recentreview, see
(Josh and Schales, 1997)). Becauseof the intro-
duction of the adjoining opemtion,the TAG formal
ism is provably strorger than Contect Free Gram-
mar (CFG) bothin the weakandthe strong gerera-
tive power. The TAG formalism provideslinguisti-
cally attrective anaysis of naturd language(Frank,
2002. Recentpsycholinguistic experiments (Sturt
andLombardo2005) demongratetha theadjoining
opeifationof LTAG is required for eage incremental
processing

Vijay-Sharker and Josh (1985 introducedthe
first TAG parserin a CYK-lik e algorthm. Becaug
of the adjoining operdion, the time complexity of
LTAG parsng is aslarge asO(nf), compaed with
O(n3) of CFG parsing, wheren is the length of
the sertenceto be pared. Many LTAG parses
wereproposed suchasthe head-diven Earley style
parse (Lavelli andSatta,1991) andthe headcorne
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parse (vanNoord,1994). Thehigh time complexity
preverts LTAG parsirg from real-time apdications.

In this paperwe work on LTAG-spnal (Shenand
Josh, 2005), aninterestirg subgt of LTAG, which
presevesalmostall of the strong gereratve power
of LTAG, andit is both weakly and strongly more
powerful than CFG 1. We will presenm a statistcal
incrementalparsng for LTAG-spiral. As far aswe
know, this parer is the first comprénensve attampt
of efficient statigical parsirg with aformal grammar
with provably strorger generéive power thanCFG,
supporting the full adjoining opemtion, dynamic
predcatecoordnation, aswell asnon-grojedive de-
pencencies?.

2 LTAG-spinal and the Treebank

Wefirst briefly deribethe LTAG-sphal formalism
andthe LTAG-spiral treebankto be usedin this pa-
per More defils arerepored in (Shenand Joshi,
2005.

In LTAG-spnal, we have two different kinds of
elemenary trees, initial trees and auxiliary trees,
which are the sameasin LTAG. However, asthe
nameimplies, an initial tree in LTAG-spnal only
containsthe spine from the root to the ancha, and
anauxiliary treeonly contansthe spineandthefoot
nodedirectly conrectedto anodeon the spine

Threetypesof opefationsareusel to comectthe
elemenary treesinto a derivation tree, which are
attachment, adjunction and conjunction. We show
LTAG-spiral elemenary treesand operdions with
anexamplein Figurel.

In Figurel, eacharcis assocatedwith acharater
whichrepregntsthetypeof operaton. We useT for
attach, A for adjoin, andC for conjoin.

IFurtherformal resultsare describedin (Shenand Joshi,
2005). Thereis alsosomerelationshipof LTAG-spinalto the
spinalform contet-freetreegrammayasin (FujiyoshiandKa-
sai,2000

2In (Riezleret al., 2002, the MaxEnt model was usedto
reranktheK-bestparsegjeneratedy arule-based FG parser
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Figurel: An examplein LTAG-sphnal. A=adjoin, T=attad, C=conjan.

Attachment in LTAG-spiral is similar to sister
adjunction (Chiarg, 2000) in Tree Insetion Gram-
mar(TIG) (SchabesandWaters,1995). It represens
a combiration of substitution andsister adjunction.
The attachment operationis desigiedto encoa the
ambiguty of anargument andanadjunct.

Adjunction insets part of the spine andthe foot
nodeof anauxiliary treeinto to the spire of anaher
tree. The adjunction opeiation can effectively do
wrappirg, which distinguistesitsdf from sister ad-
junction. It is notdifficult to seethatadjunctiononly
happensonthespire of atree. This propety will be
exploited in theincrementalparse.

Conjunction is similar to what was originally
proposedin (Sarka and Joshi, 1996. However, in
LTAG-spiral, theconjunction operaton is mucheas-
ier to handk, since we only corjoin spinalelemen
tary treesandwe do not needto enumeatecontrac-
tion sets for conjunction. In our formalization, con-
junction canbetreatel asa spedal adjunction, how-
ever, thisis beyond the scope of this pape.

We use the LTAG-sphal treebak descibed in
(Shenand Josh, 2005), which was extracted from
thePennTreebak (PTB) (Marcusetal., 1994) with
Propbank (Palmeretal., 2005)anrptations.

2.1 Redation to Traditional LTAG

LTAG-spiral preserves most of the strong gerera-
tive power of LTAG. It can be showvn that LTAG-
spimal with adjoining restridions (Josh and Sch-
abes 1997 hasstrongergererative capacity ascom-
paredto CFG. For examplk, thereexists an LTAG-
spinal grammarthat gererates{a"b"cd"e™ | n >
0}, whichis notacontet-freelanguage.

A spimal elementary treeis smalle thana tradi-
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tion LTAG elemantary tree which contans all the
subgitution nodes of the amguments. In the LTAG-
spimal formalism, both aguments and adjuncts are
expeded to be directly attaded or adjoinedonto a
spire. In this sense LTAG-sphal roughly satigies
the fundamental TAG hypothesis: Every syntactic
dependency is expressed locally within a single €l-
ementary tree (Frank, 2002. The only difference
is that, in LTAG-sphal, synfactic dependeries are
representel via director local conrections.

To better undestand the meanirg of this dif-
fererce, we relateit to Frank's (2002 model for
how the LTAG elemenéry trees are condructed. In
Frank's model,all the elemenary treesare built via
Marge and Move opeiations startng with a local
lexical array. Theresuting LTAG elemertary trees
arethencombired with adjunction and substtution
to build aderivationtree.

Thus,in asensethe LTAG-spind grammaropers
a door to a parallel mechaism of building the el-
ementay treesandthe derivation tree. The spind
templaesin LTAG-spind only contan the path of
projection from theancthor to thetop node. A spind
templat plustheroot nodesof the subteesattaced
to thistemphtecanbeviewedasatradtional LTAG
elemernary tree. More speifically, it encoasa set
of possble elementay trees if we distinguish sub
stitution from sisteg adjurction. Thus, the LTAG-
spinal parsng modelto be propcsedin Section3 can
be viewed as a parserat the meta-gammar(Can-
dito, 1998;Kinyon andProlo, 2002 level for tradi-
tiond LTAG. Derivation tree constuction andfull -
size elemenary tree filtering are processedin par-
allel. Reseathesin statistcal CFG parsing (Ratna
parkhi, 1997 Collins, 1999 and psycholinguistics



(Shiebe andJohn®n, 1993 shaved thatthis strat
egy is desimablefor NLP.

Furthemore, the way that we split a tradtional
LTAG elemenary tree along the spine is similar
to the methodwith which Evansand Weir (1997)
compiled the XTAG English Grammarinto finite
stateautanata. In their work, this methodwasde-
signed to employ shaed strucure in a rule-basel
parse. But herewe extendthis technqueto staisti-
cal LTAG parsng.

2.2 Relation to Propbank

In buildingthe LTAG-spind Treebalkk, thePropbark
informationis usedin the treelank extracion. As
repatedin (ShenandJoshj 2005) treetrandorma-
tion on PTB areemployedto make it morecompat
ible with the Propbaik annoations It wasshaovn
that8 simplepatternsof the pathfrom a predicateto
anargumentaccount for 95.5%of thetotal pred-arg
pairs Thus,our high-quality parsng outpu will be
very usefu for semantiaole labeling.

Argumerts in Propbak are not obligatory com-
plemens. Therefae, we camot treatthe Propbaik
argumentsasthe arguments in LTAG. The ambigu
ity of agumentand adjurct is reflectedin the sim-
ilarity of subsitution andsister adjunction. This is
oneof thereasors thatwe do not distinguish substi
tution andsistea adjurctionin LTAG-spind.

3 Incremental Parsing

We are especially interestedin incrementalparsng
for the following two reasms. Firstly, the left to
right strakgy usedin incrementalparsing givesrise
toadrasticboog in spea. Furthermoe, thereis also
a strorg conrection betweenincremental parsng
and psydolinguistics, and this connestion is also
obseved in the LTAG formdism (Ferrera, 200Q
SturtandLombardo,2005).

In recent yeass, therehave beenmary interestirg
works on incremental or semi-ircremenéal parsirg.
By semi-incementd we meanthe parsers that al-
low several rounds of left to right scans instead of
one. Both left-corner straegy (Ratnapakhi, 1997,
Roark,2001;Prolo,2003 Hendeson,2003; Collins
and Roark, 2004) and head-orner stratgy (Hen-
dersm, 2000; Yamadaand Matsumob, 2003) were
employed in incrementalparsng. The headcorne
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appoachis more natual to the LTAG formalism
(Evansand Weir, 1997). In our approach,we use
a stackof derivation treelds to representthe partid
parsihg resut. Furthemore, the LTAG formalism
allows us to handke non{projedivity depemences,
which canrot be generéed by a CFG or a Depen
deng parser

In fact,theideaof incrementalparsng with LTAG
is closely relatedto thework on Supertaging (Josh
and Srinivas 1994). A supetagerfirst assgns the
correct LTAG elemettary treeto eachword. Then
a Lightweight Depeneng Analyzer(LDA) (Srini-
vas, 1997) compesesthe whole derivation treewith
theseelemenary trees. We useincrementalparsng
to incorporae supeatage andLDA dynamically.

The model of incrementalLTAG parsing is also
similar to Structued Languaye Modeling (SLM) in
(Chelbaand Jelinek, 2000. In SLM, the left con
text of history is representd with a stackof binary
trees At eachstep,onecompuesthe likelihood of
the current word, its tag andthe operatons over the
new context trees

3.1 Treatment of Coordination

Predicae coardinaion appersin about1/6 of the
sentecesin PTB, therdore proper treatmentof co-
ordination, esgecially predcatecoordnation, is im-
portant to parsirg of PTB.

Somerecen resuts in psydolinguistic experi
ments(Sturt and Lombardo,2006) shaved a high
degree of eagerness in building coordnation struc
tureswhich is absem in a bottom-ip appioach; A
bottom-up parse waits for the secom conjunct to
be completd befare combning the two conjuncts
asfor examplein VP coordination, and then com-
bine the coordnatedVP with the subject of the left
conjunct. Psychoinguistic resuls suggest that the
right conunct hasto have acces to the subject NP
of the left conjunct. This can be achiesed by first
building the entire S on the left andthenadjoining
theright VP conjunctto the VP nodeof theleft con
junct (SturtandLombard, 2005)

We follow the stratggy suggestedby the psy-
cholinguigtic experimeris, treating conjoining asa
spedal adjaning operation



3.2 TheParsing Algorithm

Thereare four different types of operdions in our
parsé. Threeof them are descibed in Section2.
Thefourth operdion is gener ation, whichis usedto
genegateapossble spinefor agivenword accordng
to the context andthe lexicon.

Our left to right parsng algarithm is a variart of
the shift-reduce algarithm with beam-sarch. We
useastadk of discannecedderivation tredetsto rep-
resen the left conext. When the parse readsa
word, it first generates a list of possble spind el-
ementay treesfor this word, For eachelemeriary
tree, we first push it into the stack. Thenwe re-
cursiwely pop the top two tredets from the stadk
and pushthe combineal treeinto the stackuntil we
chocsenotto combinethetop two treelds with one
of the three combiation operdions (we can also
chosenot to pop anything at the beginning). Then
we shift to the next word. This modelis calledthe
Flex Modél in this pape.

A potential prodem with the Flex Model is that
a singe LTAG derivation tree can be gengatedby
severd shift-reduce derivation stepswhich only dif-
fer in the order of operdions. For example, we
have threetreesA, B andC. In LTAG derivation,
A adjons to B, and B adjoinsto C. Thenwe
have two different shift-rediwce derivations which
are(A — (B — C)) and((A — B) — C).

Now we introduce the Eager Model, an eage
evaludion strateyy. Any two elementarytreeswhich
aredirectly conrectedin the LTAG derivation tree
are combinal immediatdy whenthey canbe com-
bined in somecontext. Furthemore,they canrot be
combired afterwards, if they missthe first charce.
In the previous example the parserwill geneate
((A — B) = C),while (A — (B — C)) isruled
out. Thenfor eachLTAG derivationtree,thereexists
aunique left-to-right derivation.

The EagerModel is motived by the treatment of
coorination in (Sturtand Lombardq 2005, aswe
discussedin the previous secton. For example we
have thefollowing two sentnces
1. Quimbyknows Tomlikes Philly steak.

2. Quimbyknows Tom likes Philly steakandJerry
likespizza.

Supposg we are parsng thes two sertences and
for eachcasethe current word is likes, the fourth
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word. Now we have just the samelocd contexts
for both case. According to the EagerModel, the
parse takesthe sameaction accordng to the con
text, whichis to combiretheknowstreeandthelikes
tree. For senence?2, the secand likes tree will be
conjoinedwith thefirst likes treelater. Thisis com-
patible with the psycholinguistc preference

In thefollowing secton, we will explainthepars
ing mecharmsmfor the EagerModel with an exam-
ple. The Flex Modelis similar exceptthatthe order
of opeationsis flexible to someextent.

3.3 AnExample

Figure2 shavs theleft to right parsirg of the phra®
a parser which seems new and interesting to me with
the EagerModel.

In Figure2, eacharcis as®ciated with a numbe
anda charater The numberrepresens the order of
opeition, and the chamacter stand for the type of
opemtionasin Figurel. Furthermoe we useG to
representGenerag.

In stepl and2, two discannectel spines aregen
eratel for a andparser. The spire for a is attated
to the spine for parser onthe NP nodein step3.

In step6, the spinefor new, the first conunct of
the predcate coordnation, is gengated. Thenthe
auxiliary treefor seems is adjaned to the spinefor
new at the node VP. the latter is further combined
with which, andis attadedto thetreefor parser.

In step13, the conjoin operdion is usedto com-
bine the treelet anclored on new andthe treelet an-
choredoninteresting. Alignment betwee the two
spinesare built, through which agumentsharng is
implemeriedin animplicit andundespedfied way.

In step15, for the spine for to, the visible nodes
of the conjoinedtreeld includenodes on someaux-
iliary treesadjoinedontheleft of thespines, like the
root VP nodefor seems. In thisway, anon-projectve
strudure is geneated,which is just the sameasthe
wrappirg adjaning in LTAG.

3.4 MachineLearning Algorithm

Many machire learring algarithms have beensuc-
cesstilly applied to parsirg, incremental parsirg,
or shdlow parsirg (Ratnagrkhi, 1997 Puryakanok
and Roth, 2001; Lafferty etal., 2001, Taskaretal.,
2003, whichcanbeapplied to ourincrementapars
ing algorithm.
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Figure2: Incrementalparsng with EagerModel. A=adjoin, T=attach C=conjdn, G=geneate

In this paper, we usetheperaeptran-like algorithm
proposedin (Collins, 2002 which doesnot suffer
from the label bias problem, andis fastin train-
ing. We alsoemploy the voted percepron algorithm
(Freundand Schapie, 1999 and the early update
techrigueasin (CollinsandRoark,2004).

3.5 Features

Featurs are definedin the format of (operation,
main spine, child spine, spine node, context), where
the spine node is the nodeon the main spine onto
which the child spine is attached or adjoined. For
generate, child spine andspine node are undefinel,
andfor conjoin spinenodeis unddined. context de-
scribes the constituent label or lexical item associ
atedwith acertan node Thecontext of anoperaion
includesthe top two treelds involved in the opera
tion aswell asthe two closes wordson both sides
of the currentword.

e Contet for generate :

- The(-2, 2) window in theflat serience.

- Thevisible ® spineson the topmosttredet.
Contet for attach andadjoin :

- The (0, 2) window in theflat senence.

- The most recen spine previously attaded
or adjoined to the samelocation on the main
spine

- Theleftmog child spine attadedto the child
spines.

- The spines that are visible befare the opera
tion andbecaneinvisible afterthe operdion.
Contet for conjoin :

- The(0, 2) window in theflat senence.

3Thedetailsarepresentedn (Shen,2005).
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- Theleftmod child spire attadedto the main
spine whichis thefirst adjunct.

- Thetwo leftmostchildren spines attadedto
the child spine, whichis the currert adjurct.

We have about1.4M featuesextraded from the
gold-standrd parses, and abaut 600K features dy-
namicdly extradedfrom thegeneatedparsein 10
roundsof training with the EagerModel.

4 Experimentsand Analysis

We usethe LTAG-sphal treelmankreportedin (Shen
and Josh, 20095. The LTAG-spnal parsefor the
3943 senencesextracted from WSJ section 2-21
areusal asthetraining data. Sectio 24 is usedas
thedevelopmentdata Section23 areusedfor test*.

We use syntactic depandengy for evaluaion. It
is worth mentioring that,for predcatecoordnation,
we definethe depereng on the paren of the co-
ordination strucure and eachof the conunct pred
icate For example,in Figure 1, we have depen
deng relaion on (parser new) and(parse, interest-
ing). Comparedwith other depemleny parserson
PTB, the dependery definedon LTAG-spina re-
veals deeger relations beauseof the treament of
traditional adjaning and predcate coordnation de-
scribedabove.

In the communty of parsirg, labeled recall and
labeled precision on phrasestrucuresareoften used
for evaluation. However, in our expelimentswe can-
not evaluae our parse with resgect to the phras
struduresin PTB. As shown in (Shenand Josi,
2009, various irrecoverable tree transformatbns

4The LTAG-spinaltreebankcontains2401 out of 2416sen-
tencedn section23.
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Figure3: f-score of syntacticdependeny onthede-
velopment datawith the EagerModd

were usedto extract the LTAG-spiral treetank ac-
cordng thePropbahk anndationon PTB. Therefae,
we usesyntactic depemlendg for evaludion.

4.1 Eager vs. Flex

We first train our incremental parse with Eager
Model andFlex Model respetively. In thetraining,
beamwidth is setto 10. Lexical featuresarelimited
towordsappeaing for atlead 5 timesin thetraining
data.Figure3 andFigure4 shav thelearning curves
onthetrainingandthedevelopmentdata TheX axis
representsthe numberof iteratons of training, and
theY axisrepresentshef-score of dependeny with
respetedto the LTAG derivation tree.

Since early update is used the f-scare on the
training datais very low at the beginning In both
cases the voted weights provide an f-scare which
is more than 3% higher. The voted resuls con
verge fastg and are more stable The resut with
Flex Model is 0.6% higher thanthe onewith Eager
Model, buttheparsngtimeis muchlonge with Flex
Model aswe will showlater.

We usethevotedweightsobtanedafter 10rounds
of iteration for the evaluaion on the testdata. We
achieeanf-score of 88.7% ondepemeny with the
EagerModel, and89.3% with the Flex Model. The
Flex Model achieves beter perfoomancebecaiseit
allows the decision of operdion to be delayel until
thereis enowgh context information.

4.2 K-Best Parsing

Thenext experimert is on K-bestparsng. As afirst
attempt we just usethe samealgorithmasin thepre-
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velopment datawith the Flex Model

Table 1: F-scoe of the orack parsein the 10-
bestparse on the development datawith the Eager
Model

algorithm f-score%
top (eage) 87.3
orade (eage) 88.5
top (eager+combinedparse) 87.4
orade (eage+combhnedparse 91.0

vious sectia, except that we study the oracleparse,
or the bestparse amongthe top 10 parses. The f-
scoreontheorackin top 10in thedevelopmentdata
is 88.5%, while the f-score of the top candidateis
87.3%,asshavn in Tablel. However, we arenot
satigied with the scoreon oracle which is not goad
enowgh for postprocessing i.e. parsererarking.

We notice thatfrom a singe partal derivation we
cangeneate a large set of different partial derva-
tions, just by combning the elemenary tree of the
next word. It is easyto seethatthes similar deriva-
tions may use up the seach beamquickly, which
is not good for pare seartr. Many of the new
derivationsshae the samedepaendeng strucure. So
we revised our learring procedure by combiring
derivationswith the samedependery structure be-
fore eachshift operaton. We repeded the K-best
parsng experimentsby usingCombined Parses as
descibed above, and achiewed significant improve-
mentontheoraclk, asshovn in Tablel.

Figure5 shavsthef-scoreof the orade on K-best
parsing usingcombired parse on the testdata For
eachK-bestorade test we setthe bean width to K
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Table2: Speedof parsingon the test dataset. Here
cp? = whether the methal of CombinedParsesis
used sen/se = sertenceper secorml; top = top can-
didate given by the parse; orade = orack of the K-
bestpareswhereK equalsthewidth of thebeam.

model | cp? | beam| sersec| f-scor%
singe best top
flex | no| 10 0.37 89.3
eager | no 10 0.79 88.7
K-best oracle
eager | yes| 10 0.62 92.2
eagr | yes| 20 0.31 92.9
eagr | yes| 30 0.22 93.2
eagr | yes| 50 0.13 93.7
eager | yes| 100 0.07 94.2

in parsng. Thef-score of orack in 100-bestparsng
is 94.2% with the EagerModel + CombinedParses.

4.3 Speed of Parsing

Efficiengy is important to the application of incre-
mentalparsng. This setof experimentsis related
to the speedof our parse on sinde bestand K-
bestparsirg with boththe EagerModel andthe Flex
Model. All the experiments are perfamed on a
Linux nodewith two 1.13GHzPIll CPUsand2GB
RAM. The parseris codedin Java.

Table2 shaws thatthe EagerModel is morethan
two times faste than the Flex Model, as we ex-
pectal. Thetime spent on K-bestparsng is propor-
tiond to the beamwidth.
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5 Discussion and Future Work

The parserproposedin this paper is an incremen-
tal parsey so the accuacy on depemleng is lower
than that for chat parses, for examplelike those
repatedin (Collins, 1999; Charni&, 2000. 5 How-

ever, it shauld be notedthatthe depandendges com-
puted by our parse aredeeper thanthose calaulated
by parsersworking directly on PTB. This is dueto
thetreatmem of adjunction andcoordnation.

Ontheothe hard, the LTAG-spiral treelankused
in this paper shavs a high degree of compaibility
with the Propbaik, as shownin (Shenand Josi,
2005, sothe LTAG derivations given by the parse
arevery usefu for predcate-argumentrecagnition.
We plan to improve the parsng perfarmanceby
rerarking and extend our work to semanticparsng
(Mooney, 2004).

Anothe interesting topic is whetherthis parse
can be apgied to languageswhich have various
long-distancescramlting, asin German.lIt appears
that by caretlly modifying the definition of visi-
ble spines, we canrepresentscramblig strudures,
which at preset canonly be representedby Multi-
Componat TAG (Beckeretal., 1991).

6 Conclusions

In this paper we presentan efficient incremental
parse for LTAG-spial, a variant of LTAG which
is bothlinguistically and psydolinguisically moti-
vated As far aswe know, the statistical incremen-
tal parse propcsedin this paperis thefirst compre
hensve attempt of efficient statigical parsirg with
a formal grammarwith provably stronger gerera-
tive power than CFG, suppating the adjoining op-
eraton, dynamic predcate coordnation, aswell as
non-{rojedive deenderies.

We have trained and tesed our parser on the
LTAG-spiral treebank, extracted from the Penn
Treebak with Propbak anndation, Using gold
standird POStagsas part of the input, the parse
achiewes an f-score of 89.3% for syrtactic de-
penceng/ on sectbn 23 of PTB. Becaug of the
treatmentof adjunction and predicate coordnation,
Thesedepemlences, which are definedon LTAG-
spinal derivation trees,are deepe thanthe depen
dendgesextractedfrom PTB alonewith headrules.

We planto work on a chartparserfor LTAG-spinal.
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