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Abstract

We present a very efficient statistical in-
cremental parserfor LTAG-spinal, a vari-
ant of LTAG. The parser supports the
full adjoining operation, dynamic predi-
catecoordination, andnon-projective de-
pendencies, with a formalismof provably
stronger generative capacity ascompared
to CFG.Usinggold standardPOStagsas
input, onsection 23of thePTB, theparser
achievesanf-scoreof 89.3%for syntactic
dependency definedon LTAG derivation
trees,whicharedeeperthan thedependen-
ciesextracted from PTB alone with head
rules(for example, in Magerman’s style).

1 Introduction

Lexicalized Tree Adjoining Grammar(LTAG) is a
formalismmotivedby both linguistic andcomputa-
tional perspectives(for arelatively recent review, see
(Joshi and Schabes, 1997)). Becauseof the intro-
duction of theadjoining operation,theTAG formal-
ism is provably stronger than Context FreeGram-
mar(CFG)both in theweakandthestrong genera-
tive power. The TAG formalism provideslinguisti-
cally attractive analysis of natural language(Frank,
2002). Recentpsycholinguistic experiments(Sturt
andLombardo,2005) demonstratethat theadjoining
operationof LTAG is required for eager incremental
processing.

Vijay-Shanker and Joshi (1985) introduced the
first TAG parser in a CYK-lik e algorithm. Because
of the adjoining operation, the time complexity of
LTAG parsing is aslarge as �������
	 , compared with
�����
��	 of CFG parsing, where � is the length of
the sentence to be parsed. Many LTAG parsers
wereproposed, suchasthehead-drivenEarley style
parser (Lavelli andSatta,1991) andthehead-corner

parser (vanNoord,1994). Thehigh timecomplexity
prevents LTAG parsing from real-timeapplications.

In this paper, wework onLTAG-spinal (Shenand
Joshi, 2005), an interesting subset of LTAG, which
preservesalmostall of the strong generative power
of LTAG, and it is both weakly andstrongly more
powerful than CFG 1. We will present a statistical
incrementalparsing for LTAG-spinal. As far aswe
know, this parser is the first comprehensive attempt
of efficientstatistical parsing with aformalgrammar
with provably strongergenerative power thanCFG,
supporting the full adjoining operation, dynamic
predicatecoordination, aswell asnon-projectivede-
pendencies2.

2 LTAG-spinal and the Treebank

Wefirst briefly describetheLTAG-spinal formalism
andtheLTAG-spinal treebankto beusedin this pa-
per. More details are reported in (ShenandJoshi,
2005).

In LTAG-spinal, we have two different kinds of
elementary trees, initial trees and auxiliary trees,
which are the sameas in LTAG. However, as the
nameimplies, an initial tree in LTAG-spinal only
contains the spine from the root to the anchor, and
anauxiliary treeonly containsthespineandthefoot
nodedirectly connectedto a nodeon thespine.

Threetypesof operationsareused to connectthe
elementary treesinto a derivation tree, which are
attachment, adjunction and conjunction. We show
LTAG-spinal elementary treesand operations with
anexamplein Figure1.

In Figure1,eacharcis associatedwith acharacter
whichrepresentsthetypeof operation. WeuseT for
attach, A for adjoin, andC for conjoin.

1Further formal resultsare describedin (Shenand Joshi,
2005). Thereis alsosomerelationshipof LTAG-spinalto the
spinalform context-freetreegrammar, asin (FujiyoshiandKa-
sai,2000)

2In (Riezleret al., 2002), the MaxEnt model was usedto
reranktheK-bestparsesgeneratedby a rule-basedLFG parser.
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Figure1: An examplein LTAG-spinal. A=adjoin, T=attach, C=conjoin.

Attachment in LTAG-spinal is similar to sister
adjunction (Chiang, 2000) in TreeInsertion Gram-
mar(TIG) (SchabesandWaters,1995). It represents
a combination of substitution andsister adjunction.
Theattachment operation is designedto encode the
ambiguity of anargument andanadjunct.

Adjunction inserts part of the spine andthe foot
nodeof anauxiliary treeinto to thespine of another
tree. The adjunction operation can effectively do
wrapping, which distinguishesitself from sister ad-
junction. It is notdifficult to seethatadjunctiononly
happenson thespineof a tree.This property will be
exploited in theincrementalparser.

Conjunction is similar to what was originally
proposedin (Sarkar andJoshi, 1996). However, in
LTAG-spinal, theconjunction operation is mucheas-
ier to handle, since we only conjoin spinalelemen-
tary treesandwedo not needto enumeratecontrac-
tion sets for conjunction. In our formalization,con-
junction canbetreated asaspecial adjunction, how-
ever, this is beyond thescope of this paper.

We use the LTAG-spinal treebank described in
(Shenand Joshi, 2005), which was extracted from
thePennTreebank (PTB)(Marcuset al., 1994) with
Propbank (Palmeret al., 2005)annotations.

2.1 Relation to Traditional LTAG

LTAG-spinal preserves most of the strong genera-
tive power of LTAG. It can be shown that LTAG-
spinal with adjoining restrictions (Joshi and Sch-
abes, 1997) hasstrongergenerativecapacityascom-
paredto CFG.For example, thereexists an LTAG-
spinal grammarthat generates �
���������������������! "$#

, which is not a context-freelanguage.
A spinal elementary tree is smaller thana tradi-

tion LTAG elementary tree which contains all the
substitution nodes of the arguments. In the LTAG-
spinal formalism, both arguments andadjuncts are
expected to be directly attachedor adjoinedonto a
spine. In this sense, LTAG-spinal roughly satisfies
the fundamental TAG hypothesis: Every syntactic
dependency is expressed locally within a single el-
ementary tree (Frank, 2002). The only difference
is that, in LTAG-spinal, syntactic dependenciesare
represented via director local connections.

To better understand the meaning of this dif-
ference, we relate it to Frank’s (2002) model for
how theLTAG elementary trees areconstructed. In
Frank’s model,all theelementary treesarebuilt via
Marge and Move operations, starting with a local
lexical array. Theresulting LTAG elementary trees
arethencombined with adjunction andsubstitution
to build a derivationtree.

Thus,in asense, theLTAG-spinal grammaropens
a door to a parallel mechanism of building the el-
ementary treesand the derivation tree. The spinal
templates in LTAG-spinal only contain the path of
projection from theanchor to thetop node. A spinal
templateplustherootnodesof thesubtreesattached
to this templatecanbeviewedasatraditional LTAG
elementary tree. More specifically, it encodesa set
of possible elementary trees if we distinguish sub-
stitution from sister adjunction. Thus, the LTAG-
spinal parsing modelto beproposedin Section3 can
be viewed as a parserat the meta-grammar(Can-
dito, 1998;Kinyon andProlo,2002) level for tradi-
tional LTAG. Derivation treeconstruction andfull -
size elementary tree filtering are processedin par-
allel. Researchesin statistical CFGparsing (Ratna-
parkhi, 1997; Collins, 1999) andpsycholinguistics
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(Shieber andJohnson, 1993) showed that this strat-
egy is desirablefor NLP.

Furthermore, the way that we split a traditional
LTAG elementary tree along the spine is similar
to the methodwith which Evansand Weir (1997)
compiled the XTAG English Grammarinto finite
stateautomata. In their work, this methodwasde-
signed to employ shared structure in a rule-based
parser. But herewe extendthis techniqueto statisti-
cal LTAG parsing.

2.2 Relation to Propbank

In buildingtheLTAG-spinal Treebank, thePropbank
information is usedin the treebank extraction. As
reportedin (ShenandJoshi, 2005), treetransforma-
tion on PTB areemployedto make it morecompat-
ible with the Propbank annotations. It was shown
that8 simplepatternsof thepathfrom apredicateto
anargumentaccount for 95.5%of thetotal pred-arg
pairs. Thus,our high-quality parsing output will be
very useful for semanticrole labeling.

Arguments in Propbank arenot obligatory com-
plements. Therefore, we cannot treat the Propbank
argumentsasthe arguments in LTAG. Theambigu-
ity of argumentandadjunct is reflectedin the sim-
ilarity of substitution andsister adjunction. This is
oneof thereasons thatwe do not distinguishsubsti-
tution andsister adjunction in LTAG-spinal.

3 Incremental Parsing

We areespecially interestedin incrementalparsing
for the following two reasons. Firstly, the left to
right strategy usedin incrementalparsing givesrise
to adrasticboost in speed. Furthermore,thereis also
a strong connection betweenincrementalparsing
and psycholinguistics, and this connection is also
observed in the LTAG formalism (Ferreira, 2000;
SturtandLombardo,2005).

In recent years, therehave beenmany interesting
works on incremental or semi-incremental parsing.
By semi-incremental we meanthe parsers that al-
low several rounds of left to right scans instead of
one. Both left-cornerstrategy (Ratnaparkhi, 1997;
Roark,2001;Prolo,2003; Henderson,2003; Collins
and Roark, 2004) and head-corner strategy (Hen-
derson, 2000; YamadaandMatsumoto, 2003) were
employed in incrementalparsing. The head-corner

approach is more natural to the LTAG formalism
(Evansand Weir, 1997). In our approach,we use
a stackof derivation treelets to representthe partial
parsing result. Furthermore, the LTAG formalism
allows us to handle non-projectivity dependencies,
which cannot be generated by a CFG or a Depen-
dency parser.

In fact,theideaof incrementalparsing with LTAG
is closely relatedto thework onSupertagging (Joshi
andSrinivas, 1994). A supertagerfirst assigns the
correct LTAG elementary tree to eachword. Then
a Lightweight Dependency Analyzer(LDA) (Srini-
vas,1997) composesthewholederivation treewith
theseelementary trees.We useincrementalparsing
to incorporate supertager andLDA dynamically.

The model of incrementalLTAG parsing is also
similar to StructuredLanguageModeling (SLM) in
(ChelbaandJelinek, 2000). In SLM, the left con-
text of history is represented with a stackof binary
trees. At eachstep,onecomputesthe likelihood of
thecurrent word, its tagandtheoperationsover the
new context trees.

3.1 Treatment of Coordination

Predicate coordination appears in about1/6 of the
sentencesin PTB, therefore proper treatmentof co-
ordination, especially predicatecoordination, is im-
portant to parsing of PTB.

Somerecent results in psycholinguistic experi-
ments(Sturt and Lombardo,2005) showed a high
degree of eagerness in building coordination struc-
tureswhich is absent in a bottom-up approach; A
bottom-up parser waits for the second conjunct to
be completed before combining the two conjuncts
as for examplein VP coordination, and thencom-
bine the coordinatedVP with the subject of the left
conjunct. Psycholinguistic results suggest that the
right conjunct hasto have access to the subject NP
of the left conjunct. This can be achieved by first
building the entire S on the left andthenadjoining
theright VP conjunct to theVP nodeof theleft con-
junct (SturtandLombardo, 2005).

We follow the strategy suggestedby the psy-
cholinguistic experiments, treating conjoining as a
special adjoining operation.
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3.2 The Parsing Algorithm

Thereare four different types of operations in our
parser. Threeof them are described in Section2.
Thefourth operation is generation, which is usedto
generateapossible spine for agivenwordaccording
to thecontext andthelexicon.

Our left to right parsing algorithm is a variant of
the shift-reduce algorithm with beam-search. We
useastack of disconnectedderivation treeletsto rep-
resent the left context. When the parser readsa
word, it first generates a list of possible spinal el-
ementary treesfor this word, For eachelementary
tree, we first push it into the stack. Then we re-
cursively pop the top two treelets from the stack
andpushthe combined tree into the stackuntil we
choosenot to combinethetop two treelets with one
of the three combination operations (we can also
choosenot to popanything at thebeginning). Then
we shift to the next word. This model is calledthe
Flex Model in this paper.

A potential problem with the Flex Model is that
a single LTAG derivation treecanbe generatedby
several shift-reduce derivation steps, whichonly dif-
fer in the order of operations. For example, we
have threetrees % , & and ' . In LTAG derivation,
% adjoins to & , and & adjoins to ' . Then we
have two different shift-reduce derivations, which
are �(%*)+�(&,)-'.	/	 and �/�(%*)0&�	1)-'2	 .

Now we introduce the Eager Model, an eager
evaluation strategy. Any two elementarytreeswhich
are directly connectedin the LTAG derivation tree
arecombined immediately when they canbe com-
bined in somecontext. Furthermore,they cannot be
combined afterwards, if they miss the first chance.
In the previous example, the parserwill generate
�/�(%,)3&�	4)5'2	 , while �(%6) �(&7)8'.	/	 is ruled
out. Thenfor eachLTAG derivationtree,thereexists
a uniqueleft-to-right derivation.

The EagerModel is motived by the treatment of
coordination in (Sturt andLombardo, 2005), aswe
discussedin the previous section. For example, we
have thefollowing two sentences.
1. Quimbyknows Tomlikes Philly steak.
2. Quimbyknows Tomlikes Philly steakandJerry
likespizza.
Suppose we are parsing these two sentences, and
for eachcasethe current word is likes, the fourth

word. Now we have just the samelocal contexts
for both cases. According to the EagerModel, the
parser takes the sameaction according to the con-
text, whichis to combinetheknows treeandthelikes
tree. For sentence2, the second likes tree will be
conjoinedwith thefirst likes treelater. This is com-
patible with thepsycholinguistic preference.

In thefollowing section, wewill explain thepars-
ing mechanismfor the EagerModel with an exam-
ple. TheFlex Model is similar exceptthat theorder
of operations is flexible to someextent.

3.3 An Example

Figure2 shows theleft to right parsing of thephrase
a parser which seems new and interesting to me with
theEagerModel.

In Figure2, eacharc is associated with a number
anda character. Thenumberrepresents theorder of
operation, and the characterstands for the type of
operation asin Figure1. Furthermore we useG to
representGenerate.

In step1 and2, two disconnected spines aregen-
erated for a andparser. Thespine for a is attached
to thespine for parser on theNP node in step3.

In step6, the spinefor new, the first conjunct of
the predicate coordination, is generated. Then the
auxiliary treefor seems is adjoined to the spinefor
new at the nodeVP. the latter is further combined
with which, andis attachedto thetreefor parser.

In step13, the conjoin operation is usedto com-
bine the treelet anchoredon new andthe treelet an-
choredon interesting. Alignments between the two
spinesarebuilt, through which argumentsharing is
implementedin animplicit andunderspecified way.

In step15, for the spine for to, the visible nodes
of theconjoinedtreelet includenodes on someaux-
iliary treesadjoinedontheleft of thespines, like the
rootVP nodefor seems. In thisway, anon-projective
structure is generated,which is just thesameasthe
wrapping adjoining in LTAG.

3.4 Machine Learning Algorithm

Many machine learning algorithms have beensuc-
cessfully applied to parsing, incremental parsing,
or shallow parsing (Ratnaparkhi, 1997; Punyakanok
andRoth,2001; Lafferty et al., 2001; Taskaret al.,
2003), whichcanbeapplied to our incrementalpars-
ing algorithm.
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Figure2: Incrementalparsing with EagerModel. A=adjoin, T=attach, C=conjoin, G=generate

In thispaper, weusetheperceptron-likealgorithm
proposedin (Collins, 2002) which doesnot suffer
from the label bias problem, and is fast in train-
ing. Wealsoemploy thevotedperceptron algorithm
(Freundand Schapire, 1999) and the early update
techniqueasin (Collins andRoark,2004).

3.5 Features

Features are defined in the format of (operation,
main spine, child spine, spine node, context), where
the spine node is the nodeon the main spine onto
which the child spine is attached or adjoined. For
generate, child spine andspine node areundefined,
andfor conjoin spinenodeis undefined. context de-
scribes the constituent label or lexical item associ-
atedwith acertain node. Thecontext of anoperation
includesthe top two treelets involved in the opera-
tion aswell asthe two closest wordson both sides
of thecurrentword.

9 Context for generate :
- The(-2, 2) window in theflat sentence.
- Thevisible 3 spineson thetopmosttreelet.9 Context for attach andadjoin :
- The(0, 2) window in theflat sentence.
- The most recent spine previously attached
or adjoined to the samelocation on the main
spine.
- Theleftmost child spineattachedto thechild
spines.
- The spines that arevisible before the opera-
tion andbecomeinvisible aftertheoperation.9 Context for conjoin :
- The(0, 2) window in theflat sentence.

3Thedetailsarepresentedin (Shen,2005).

- Theleftmost child spine attachedto themain
spine, which is thefirst adjunct.
- The two leftmostchildren spines attachedto
thechild spine,which is thecurrent adjunct.

We have about1.4M featuresextracted from the
gold-standard parses,andabout 600K features dy-
namically extractedfrom thegeneratedparses in 10
roundsof training with theEagerModel.

4 Experiments and Analysis

We usetheLTAG-spinal treebankreportedin (Shen
and Joshi, 2005). The LTAG-spinal parsefor the
39434 sentencesextracted from WSJ section 2-21
areused asthe training data. Section 24 is usedas
thedevelopmentdata. Section23 areusedfor test4.

We usesyntactic dependency for evaluation. It
is worthmentioning that,for predicatecoordination,
we definethe dependency on the parent of the co-
ordination structure andeachof the conjunct pred-
icate. For example, in Figure 1, we have depen-
dency relation on (parser, new) and(parser, interest-
ing). Comparedwith other dependency parserson
PTB, the dependency definedon LTAG-spinal re-
vealsdeeper relations becauseof the treatment of
traditional adjoining andpredicatecoordination de-
scribedabove.

In the community of parsing, labeled recall and
labeled precision onphrasestructuresareoften used
for evaluation.However, in ourexperimentswecan-
not evaluate our parser with respect to the phrase
structures in PTB. As shown in (Shenand Joshi,
2005), various irrecoverable tree transformations

4TheLTAG-spinaltreebankcontains2401out of 2416sen-
tencesin section23.
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Figure3: f-scoreof syntacticdependency on thede-
velopment datawith theEagerModel

wereusedto extract the LTAG-spinal treebank ac-
cording thePropbank annotationonPTB. Therefore,
we usesyntactic dependency for evaluation.

4.1 Eager vs. Flex

We first train our incrementalparser with Eager
Model andFlex Model respectively. In thetraining,
beamwidth is setto 10. Lexical featuresarelimited
to wordsappearing for at least 5 timesin thetraining
data.Figure3 andFigure4 show thelearningcurves
onthetrainingandthedevelopmentdata. TheX axis
representsthe numberof iterations of training, and
theY axisrepresentsthef-scoreof dependency with
respectedto theLTAG derivation tree.

Since early update is used, the f-score on the
training datais very low at the beginning. In both
cases, the voted weights provide an f-score which
is more than 3% higher. The voted results con-
verge faster and are more stable. The result with
Flex Model is 0.6%higher thantheonewith Eager
Model,but theparsingtimeis muchlonger with Flex
Model aswewill showlater.

Weusethevotedweightsobtainedafter 10rounds
of iteration for the evaluation on the test data. We
achieveanf-scoreof 88.7% ondependency with the
EagerModel, and89.3% with theFlex Model. The
Flex Model achievesbetter performancebecauseit
allows the decision of operation to be delayed until
thereis enough context information.

4.2 K-Best Parsing

Thenext experiment is on K-bestparsing. As a first
attempt, wejustusethesamealgorithmasin thepre-
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Figure4: f-scoreof syntacticdependency on thede-
velopment datawith theFlex Model

Table 1: F-score of the oracle parse in the 10-
bestparses on the development datawith the Eager
Model

algorithm f-score%
top (eager) 87.3

oracle (eager) 88.5
top (eager+combinedparses) 87.4

oracle (eager+combinedparses) 91.0

vious section, except that we study theoracleparse,
or the bestparse, amongthe top 10 parses. The f-
scoreontheoracle in top10 in thedevelopmentdata
is 88.5%,while the f-score of the top candidate is
87.3%,asshown in Table1. However, we arenot
satisfied with thescoreon oracle, which is not good
enough for post-processing, i.e. parsereranking.

We notice that from a single partial derivation we
can generate a large set of different partial deriva-
tions, just by combining the elementary treeof the
next word. It is easyto seethatthese similar deriva-
tions may useup the search beamquickly, which
is not good for parse search. Many of the new
derivationsshare thesamedependency structure.So
we revised our learning procedure by combining
derivationswith the samedependency structurebe-
fore eachshift operation. We repeated the K-best
parsing experimentsby usingCombined Parses as
described above, andachieved significant improve-
menton theoracle,asshown in Table1.

Figure5 shows thef-scoreof theoracle onK-best
parsing usingcombinedparses on the testdata. For
eachK-bestoracle test, we setthebeam width to K
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Table2: Speedof parsingon the test dataset. Here
cp? = whether the method of CombinedParsesis
used; sen/sec = sentenceper second; top = top can-
didate givenby theparser; oracle = oracle of theK-
bestparseswhereK equalsthewidth of thebeam.

model cp? beam sen/sec f-score%
single best top

flex no 10 0.37 89.3
eager no 10 0.79 88.7

K-best oracle
eager yes 10 0.62 92.2
eager yes 20 0.31 92.9
eager yes 30 0.22 93.2
eager yes 50 0.13 93.7
eager yes 100 0.07 94.2

in parsing. Thef-score of oracle in 100-bestparsing
is 94.2% with theEagerModel + CombinedParses.

4.3 Speed of Parsing

Efficiency is important to the application of incre-
mentalparsing. This set of experimentsis related
to the speedof our parser on single best and K-
bestparsing with boththeEagerModelandtheFlex
Model. All the experimentsare performed on a
Linux nodewith two 1.13GHzPIII CPUsand2GB
RAM. Theparseris codedin Java.

Table2 shows that theEagerModel is morethan
two times faster than the Flex Model, as we ex-
pected. Thetime spent on K-bestparsing is propor-
tional to thebeamwidth.

5 Discussion and Future Work

The parserproposedin this paper is an incremen-
tal parser, so the accuracy on dependency is lower
than that for chart parsers, for example like those
reportedin (Collins,1999; Charniak, 2000). 5 How-
ever, it should be notedthat the dependenciescom-
puted by our parser aredeeper thanthosecalculated
by parsersworking directly on PTB. This is dueto
thetreatment of adjunction andcoordination.

Ontheother hand, theLTAG-spinal treebankused
in this paper shows a high degree of compatibilit y
with the Propbank, as shown in (Shenand Joshi,
2005), so the LTAG derivations given by the parser
arevery useful for predicate-argumentrecognition.
We plan to improve the parsing performanceby
reranking andextend our work to semanticparsing
(Mooney, 2004).

Another interesting topic is whetherthis parser
can be applied to languageswhich have various
long-distancescrambling, asin German.It appears
that by carefully modifying the definition of visi-
ble spines,we canrepresentscrambling structures,
which at present canonly be representedby Multi-
Component TAG (Becker et al., 1991).

6 Conclusions

In this paper, we present an efficient incremental
parser for LTAG-spinal, a variant of LTAG which
is both linguistically andpsycholinguistically moti-
vated. As far aswe know, the statistical incremen-
tal parser proposedin this paperis thefirst compre-
hensive attempt of efficient statistical parsing with
a formal grammarwith provably stronger genera-
tive power thanCFG,supporting the adjoining op-
eration, dynamic predicatecoordination, aswell as
non-projective dependencies.

We have trained and tested our parser on the
LTAG-spinal treebank, extracted from the Penn
Treebank with Propbank annotation, Using gold
standard POStagsas part of the input, the parser
achieves an f-score of 89.3% for syntactic de-
pendency on section 23 of PTB. Because of the
treatmentof adjunction andpredicatecoordination,
Thesedependencies, which are definedon LTAG-
spinal derivation trees,are deeper than the depen-
denciesextractedfrom PTBalonewith headrules.

5We planto work on a chartparserfor LTAG-spinal.
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