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Abstract

In word sense disambiguation, a system attempts to
determine the sense of a word from contextual fea-
tures. Major barriers to building a high-performing
word sense disambiguation system include the dif-
ficulty of labeling data for this task and of pre-
dicting fine-grained sense distinctions. These is-
sues stem partly from the fact that the task is be-
ing treated in isolation from possible uses of au-
tomatically disambiguated data. In this paper, we
consider the related task of word translation, where
we wish to determine the correct translation of a
word from context. We can use parallel language
corpora as a large supply of partially labeled data
for this task. We present algorithms for solving the
word translation problem and demonstrate a signif-
icantimprovement over a baseline system. We then
show that the word-translation system can be used
to improve performance on a simplified machine-
translation task and can effectively and accurately
prune the set of candidate translations for a word.

Introduction

closely related senses pose a challenge both for auto-
matic disambiguation and hand labeling. Moreover,
the use of a very fine-grained set of senses, most of
which are quite rare in practice, makes it very diffi-
cult to obtain sufficient amounts of training data.

These issues are clearly reflected in the perfor-
mance of current word-sense disambiguation sys-
tems. When given a large amount of training data
for a particular word with reasonably clear sense
distinctions, existing systems perform fairly well.
However, for the “all-words” task, where all am-
biguous words from a test corpus must be disam-
biguated, it has so far proved difficult to perform sig-
nificantly better than the baseline heuristic of choos-
ing the most common sense for each wbrd.

In this paper, we address a different formulation
of the word-sense disambiguation task. Rather than
considering this task on its own, we consider a task
of disambiguating words for the purpose of some

The problem of distinguishing between multiplelarger goal. Perhaps the most direct and compelling
possible senses of a word is an important subtask épplication of a word-sense disambiguator is to ma-
many NLP applications. However, despite its conehine translation. If we knew the correct seman-
ceptual simplicity, and its obvious formulation as aic meaning of each word in the source language,
standard classification problem, achieving high lewwe could more accurately determine the appropriate
els of performance on this task has been a remarigords in the target language. Importantly, for this
ably elusive goal. application, subtle shades of meaning will often be
In its standard formulation, the disambiguationirrelevant in choosing the most appropriate words in
task is specified via an ontology defining the difthe target language, as closely related senses of a
ferent senses of ambiguous words. In the Sensgingle word in one language are often encoded by a
val competition, for example, WordNet (Fellbaum single word in another. In the context of this larger
1998) is used to define this ontology. However, ongoal, we can focus only on sense distinctions that a
tologies such as WordNet are not ideally suited thuman would consider when choosing the transla-
the task of word-sense disambiguation. In mantion of a word in the source language.
cases, WordNet is overly “specific”, defining senses We therefore consider the task of word-sense dis-
which are very similar and hard to distinguish. Folambiguation for the purpose of machine translation.
example, there are seven definitions of “respectRather than predicting the sense of a particular word
as a noun (including closely related senses such ag, we predict the possible translations ofnto the
“an attitude of admiration or esteem” and “a feel-
ing of friendship and esteem”); there are even More igee for example, results @enseval-3, available at
when the verb definitions are included as well. Suchttp://www.senseval.org/senseval3
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target language. We both train and evaluate the sys&ords in the source language. Thus, the words gen-
tem on this task. This formulation of the word-senserated byt; are independent of the words generated
disambiguation task, which we refer to a®rd by t; for eachj # 4. This means that correla-
trandation, has multiple advantages. First, a vergions between words in the source sentence are not
large amount of “partially-labeled” data is availablecaptured byP(s|t), and so the context we will use
for this task in the form of bilingual corpora (which in our word translation models to preditt given
exist for a wide range of languages). Second, thg is not available to a system making these inde-
“labeling” of these corpora (that is, translation frompendence assumptions. In this type of system, se-
one language to another), is a task at which humamsantic and syntactic relationships between words
are quite proficient and which does not generally reare only modeled in the target language; most or
quire the labeler (translator) to make difficult dis-all of the semantic and syntactic information con-
tinctions between fine shades of meaning. tained in the source sentence is ignored. The lan-
In the remainder of this paper, we first discusguage modelP(t) does introduce some context-
how training data for this task can be acquired audependencies, but the standard n-gram model used
tomatica”y from b|||ngua| corpora. We app|y ain machine translation is too weak to provide area-
standard learning algorithm for word-sense disanfonable solution to the strong independence assump-
biguation to the word translation task, with severalions made by the alignment model.
modifications which proved useful for this task.We .
present the results of our algorithm on word trans:—)’ Task Formulation
lation, showing that it significantly improves perfor-We define the word translation task as finding, for
mance on this task. We also consider two simpl@n individual worda in the source languagg, the
methods for incorporating word translation into macorrect translation, either a word or phrase, in the
chine translation. First, we can use the output drget languagel. Clearly, there are cases where
our model to help a translation model choose better is part of a multi-word phrase that needs to be
words; since general translation is a very noisy prdranslated as a unit. Our approach could be extended
cess, we present results on a simplified translatid?y preprocessing the data dhto find phrases, and
task. Second, we show that the output of our modénen executing the entire algorithm treating phrases
can be used to prune candidate word sets for tran@s atomic units. We do not explore this extension in
lation; this could be used to significantly speed ughis paper, instead focusing on the word-to-phrase

current translation systems. translation problem.
) ) As we discussed, a key advantage of the word
2 Machine Translation translation vs. word sense disambiguation is the

In machine translation, we wish to translate a seravailability of large amounts of training data. This
tences in our source language intoin our target data is in the form of bilingual corpora, such as
language. The standard approach to statistical mghe European Parliament proceedihgsSuch doc-

chine translation uses tiseurce-channel model , uments provide many training instances, where a
word in one language is translated into another.
argmax P(t[s) = argmax P(t) P(s|t), However, the data is only partially labeled in that

. we are not given a word-to-word alignment between
whereP(t) is thelanguage model for the target lan- 14 two languages, and thus we do not know what

guage, and>(s|t) is analignment model from the o1y word in the source languagetranslates to in
target language to the source language. Togethgy,

. . e target languagé&. While sentence-to-sentence
they define a generative model for the source/targgﬁignmem is a fairly easy task, word-to-word align-

pair (s, t): first t is generated according to the lan{yent is considerably more difficult. To obtain word-
guage modeP(t); thens is generated fromt ac-  5.\yord alignments, we used GIZA%#an imple-
cording toP(s|t).2 mentation of the IBM Models (specifically, we used

Typically, strong independence assumptions af@e output of IBM Model 4). We did not perform
then made about the distributioR(s|t). For ex- stemming on either language, so as to preserve suf-
ample, in the IBM Models (Brown et al., 1993), fix information for our word translation system and
each wordt; independently generates 0, 1, or morghe machine translation language model.

Note that we refer tbas the target sentence, even though in Let Ds be the set of sentences in the source lan-
the source-channel modeljs the source sentence which goes——5———— o
through the channel modél(s|t) to produce the observed sen-  “Available athttp://www.isi.edu/ koehn/

tences. “Available athttp://www.isi.edu/ och/GIZA++.html

772



fnrgn”tceggle)q”ency) ;g?r’]‘;'ﬁgon metric only rewards the algorithm for selecting the
leve(10), lever(17) standing up target Word/ph_rase that happened_to be used in the
hausse(58), a”%”:?nt(elfé%;):'ncrease(number) actual translation. Thus, accuracies measured us-

augmentation . . . e - .
interviens(53) to rise to speak ing this metric may be artificially low. This is a
naissance(21), source(10)| to be created, arise common problem with evaluating machine transla-
soulevé(10) raising an issue tion systems.

Another issue is that we take as ground truth the
alignments produced by GIZA++. This has two im-
plications: first, our training data may be noisy since
guage andD7 the set of target language sentencessome alignments may be incorrect; and second, our

The alignment algorithm can be run in either ditest data may not be completely accurate. As men-
rection. When run in th& — 7 direction, the al- tioned above, we only consider possible translations
gorithm aligns each word ih to at most one word Which occur some minimum number of times; this
in s. Consider some source sentesdiat contains 'emoves many of the mistakes made by GIZA++.
the worda, and letU, s .t = b1, ..., by be the set Even if the test set is not 100% reliable, though, im-
of words that align ta in the aligned sentende In ~ Provement over baseline performance is indicative
general, we can considéf, = {U,s .t }sep, to be Of the potential of a method.
the candidate set of translations foiin 7, where
D, is the set of source language sentences contaih- Word Translation Algorithms

ing a. However, this definition is quite noisy: awordthe word translation task and the word-sense dis-
b; might have been aligned witharbitrarily; or,b;  ampiguation task have the same form: each word
might be a word that itself corresponds to a multiig 5ssociated with a set of possible labéls given
word translation inS. Thus, we also align the sen- 5 sentence containing words, we must determine
tences in thg — S direction, and require that each\yhich of the possible labels i, to assign taz in

b; in t'he phrase gllgrjs el_ther V\(lmor with nothlng- the contexs. The only difference in the two tasks is

As this process is still fairly noisy, we only considery,q setl/,: for word translation it is the set of pos-

aword or phrasé € U, to be a candidate translation gj|e transiations of, while for word sense disam-

for ¢ if it occurs some minimum number of times in biguation it is the set of possible senses @i some

the data. ontology. Thus, we may use any word sense disam-
For example, Table 1 shows a possible candidaifiguation algorithm as a word translation algorithm

set for the English word “rise”, with French as thepy appropriately defining the senses (assuming that

target language. Note that this set can contain ng¢ie WSD algorithm does not assume that a particular

only target words corresponding to different meangntology is used to choose the senses).

ings of “rise” (the rows in the table) but also words  ~;r main focus in this paper is to show that ma-

which correspond to different grammatical forms inchine |earning techniques are effective for the word
the target language corresponding to different par{gyngation task, and to demonstrate that we can use
of speech, verb tenses, etc. So, disambiguation {Re output of our word translation system to im-
this case is both over senses and grammatical fom}ﬁ*ove performance on two machine-translation re-
The final result of our processing of the corpus isiated tasks. We will therefore restrict our atten-
for each source word, a set of target words/phrasestion to a relatively simple model, logistic regres-
U,; and a set of sentences, where, in each sen- sion (Minka, 2000). There are several motivations
tence,a is aligned to somé € U,. For any sen- for using this discriminative, probabilistic model.
tences € D,, aligned to some target sentente First, it is known both theoretically and empirically
let u,s € U, be the word or phrase it aligned (e.g., (Ng and Jordan, 2002)) that discriminative
with a. We can now treat this set of sentences agodels achieve higher accuracies than generative
a fully-labeled corpus, which can be split into a sefnodels if enough data is available. For the tradi-
used for learning the word-translation model and #@onal word-sense disambiguation task, data must be
test set used for evaluating its performance. hand-labeled, and is therefore often too scarce to al-
We note, however, that there is a limitation to ustow for discriminative training. In our setting, how-
ing accuracy on the test set for evaluating the perfoever, training data is acquired automatically from
mance of the algorithm. A source wosdn a given bilingual corpora, which are widely available and
context may have two equally good, interchangeablguite large. Thus, discriminative training is a viable
translations into the target language. Our evaluatiooption for the word translation problem. A second

Table 1: Aligned translations for “rise” occurring at
least 10 times in the corpus
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consideration is that, to effectively incorporate our Pga(b | a,s) = ! P

system into a statistical machine translation system, Zas

we would like to produce not just a single prediction, - _

but a list of confidence-rated possibilities. The opwith partition functionZ, s = >y <y, exp (0§ ™).

timization procedure of logistic regression attemptsrraining_ We train the logistic regression model to

to produce a distribution over possible translationg,aximize the conditional likelihood of the observed
which accurately represents the confidence of thepes given the features in our training set. Thus,
model for each translation. By contrast, a classicgj goal in training the model far is to maximize

Naive Bayes model often assigns very low proba-

bilities to all but the most likely translation. Other H Pye(ttas | a,5)
word-sense disambiguation models may not produce 6%\ Htas | &=/
confidence measures at all. s€Da

Features. Our word translation model for a word We maximize this objective by maximizing its log-

a in a sentence = wy, ..., wy, is based on features arithm (the log-conditional-likelihood) using conju-

constructed from the word and its context within thegate gradient ascent (Shewchuk, 1994).

sentence. Our basic logistic regression model usesOne important consideration when training using
the following features, which correspond to the feamaximum likelihood is regularization of the param-

ture space for a standard Naive Bayes model:  eters. In the case of logistic regression, the most
e the part of speech of (generated using the common type of regularization i, regularization;
Brill taggery; we then maximize

e abinary “occurs” variable for each word which

. . .. X ge . 2
is 1 if that word is in a fixed context centered Hexp <_( b,]) ) H Py (ttas | a,8).

at a (¢, words to the right and; words to the 202 5
S a

left), and O otherwise. J

We also consider an extension to this model, wherghis penalizes the likelihood for the distance of each
instead of the fixed context features above, we Useparameteﬁgj from 0; it corresponds to a Gaussian

e for each directiond € {i,r} and each possi- prior on each parameter with variancé.
ble context size:; € {1,...,Cy}, an “occurs”

variable for each word. 5 Word Translation Results

This is a true generalization of the previous confor our word translation experiments we used the
text features, since it contains features for all pos=uropean Parliament proceedings corpus, which
sible context sizes, not just one particular fixed sizecontains approximately 27 million words in each of

This feature set is equivalent to having one featurEnglish and French (as well as a number of other
for each word in each context position, except thdanguages). We tested on a set of 1859 ambigu-
it will have a different prior over parameters undetous words — specifically, all ambiguous words con-

standardL, regularization. This feature set allowstained in the first document of the corpus. For each
our model to distinguish between very local (ofterof these words, we found all instances of the word in

syntactic) features and somewhat longer range fethe corpus and split these instances into training and
tures whose exact position is not as important. test sets.

Let ¢™° be the set of features for wordto be We tested four different models. The first, Base-
translated, with sentence contex{the description line, always chooses the most common translation
of the model does not depend on the particular feder the word; the second, Baseline with Part of
ture set selected). Speech, uses tagger-generated parts of speech to
Model. The logistic regression model encodes th&h00seé the most common translation for the ob-
conditional distribution( P(uss = b | a,s) : b e Served word/part-of-speech pair. The third model,
U,). Such a model is parameterized by a set of vecMPIe Logistic, is the logistic regression model
tors2, one for each word and each possible target With the simpler feature set, a context window of a
b € U, where each vector contains a weigf; for fixed size. We selected the window size by eval-

a8 ) " uating accuracy for a variety of window sizes on
gi‘i?ge?;ra’j - We can now define our conditional 55 ¢ the 1859 ambiguous words using a random
istribution:

train-test split. The window size which performed
®Available athttp://www.cs.jhu.edu/ brill/ best on average extended one word to the left and
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Model Macro | Micro 6 Blank-Filling Task
Baseline 0.511 | 0.526 e ; ;

: . One of the most difficult parts of machine translation
Baseline with Part of Speech0.519 | 0.532| g jecoding — finding the most likely translation ac-
S'm.p'? Logistic 0.581 | 0.605 cording to some probability model. The difficulty
Logistic 0.596 | 0.620 |  gises from the enormous number of possible trans-

lated sentences. Existing decoders generally use ei-
ther highly pruned search or greedy heuristic search.
In either case, the quality of a translation can vary
greatly from sentence to sentence. This variation
_ _ is much higher than the improvement in “seman-
two words to the right (larger windows generally retjc” accuracy our model is attempting to achieve.
sulted in Overfitting). The fourth mOdeI, LOgiStiC, is Moreover, Currenﬂy available decoders do not pro-
the logistic regression model with overlapping convide a natural way to incorporate the results of a
text windows; the maximum window size for this\yord translation system. For example, Carpuat and
model was four words to the left and four words tayy (2005) obtain negative results for two methods
the right. We selected the standard deviatidrfor  of incorporating the output of a word-sense disam-
the logistic models by trying different values on theyiguation system into a machine translation system.
same small subset of the ambiguous words. For the 1,5 \e instead used our word translation model

Simple Logistic model, the best value was$ = 1; 5 5 simplified translation problem. We prepared a
for the Logistic model, it was.35. dataset as follows: for each occurrence of an am-
Table 2 shows results of these four models. Thgiguous words in an English sentence in the first
first column is macrO'averaged over the 1859 Wordgocument of the Europaﬂ corpus, we tried to de-
that is, the accuracy for each word counts equallermine what the correct translation for that word
towards the average. The second column shows th@s in the corresponding French sentence. If we
micro-averaged accuracy, where eac_h test exam@gund one and exactly one possible translation for
counts equally. We will focus on the micro-averaged@hat word in the French sentence, we replaced that
results, since they correspond to overall accuracy. word with a “blank”, and linked the English word

The less accurate of our two models, Simple Loto that blank. The final result was a set6@ sen-
gistic, improves around 8% over the simple baselingences with a total 03018 blanks.
and 7% over the part-of-speech baseline on aver- For example, the following English-French sen-
age. Our more complex logistic model, which is ablgence pair contains the two ambiguous woetds
to hal’ld|e |al’ger context SizeS W|th0ut Signiﬁcantl)ﬂr%andi%eand one possible transla‘[ion for each,
overfitting, improves accuracy by another 1.5%.  examiner andquestion:

There was a great deal of variance from word -
to word in the performance of our models relative ® Therefore, the commission shouiddress the
to baseline. For a few words, we achieved very 'SSuéonce and for all o _
large increases in accuracy. For instance, the noun® Par conséquent, la commission devra esfin
“agenda” showed a 31.2% increase over both base- aminer cettequestion particuliere.

lines.  Similarly, the word “rise” (either a noun \ye replace the translations of the ambiguous words

or a verb) had part-of-speech baseline accuracy gfith blanks; we would like a decoder to replace the

It is worth repeating that accuracies on this task p i | ission d it
are artificially low since in many cases a single word ® ; ar consequent, la co'mrF[ssmn evra erdith |
can be translated to many different words with the ~ dress] cette fissue] particuliere.

same meaning. Atthe same time, accuracies are ar-An advantage of this task is that, for a given distri-
tificially inflated by the fact that we only consider pytion P(t|S), we can easily write a decoder which
examples where we can find an aligned word ixhaustively searches the entire solution space for
the French corpus, so translations where a word {fe best answer (provided that there are not too many
dropped or translated as part of a compound wotglanks and thaP(t|s) is sufficiently “local” with re-
are not counted. spect tot). Thus, we can be sure that it is the prob-
One disadvantage of the EuroParl corpus is that &bility model, and not the decoder, which is deter-
is not “balanced” in terms of semantic content. It ismining the quality of the output. Also, we have re-
not clear how this affects our results. moved most or all syntactic variability from the task,

Table 2: Average Word Translation Accuracy
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Model Alm | Aga | Ada | Awt Acc 2
Language Modelonly| I 0 0 0 0.749
Source-Channel 1 1 0 0 0.821
LM + GA + DA 1 0.6" | 0.6" 0 0.833
LM+ GA + DA + WT 1 0.6" 0* 1.2" | 0.846

Table 3: Blank-filling results. Weights marked with
* have been optimized.

allowing us to better gauge whether we are choosir
semantically correct translations.

Let (a;, b;) be the pairs of words corresponding ta o
the blanks in sentenae Then the alignment model
decomposes as a product of terms over these pai

Word Translation Coefficient

e'g' P(S|t) X H(ai,bi) P(al|b7«) AnalogOUSIy’ we ’ 0't—7GenerativeCoefﬁcieml "
extend the word translation model &%,,(t|s)
H(ai,bi) Py (bils, a;). Figure 1: Accuracy on blank-filling task with\;,, = 1 and

The source-channel model can be used directluisc = 0 as afunction ofgen andAw:.
to solve the blank filling task; the language model

makes use of the French words surrounding eaghe CMU-Cambridge toolkif. The word translation

blank, while the alignment model guesses the apnodel for each ambiguous word was trained on all
propriate translation based on the aligned Englislocuments except the first.

word. As we have mentioned, this model does not Tape 3 shows results for several sets of weights.
take full advantage of the context in the English seny * genotes entries which we optimized (see be-
tence. Thus, we hope that incorporating the worgh,y- gther entries were fixed. For example, the third
translation moqel into the decoder will improve per{,,qdel was obtained by fixing the coefficient of the
formance on this task. ~ language model to 1 and the word-translation to O,

Conversely, simply using the word translationand optimizing the weights for the generative and
model alone for the blank-filling task would not takediscriminative alignment models.

advantage of the available French context. There 1ne language model alone is able to achieve rea-

are four probability distributions we might considerggnaple results: adding the alignment models im-

using: the language modeft,,(t); the “genera- proyes performance further. By adding the word-
tive” alignment modelPy,(s|t), which we calcu- {angjation model, we are able to improve perfor-
late using the training sar_npleg _fror_n the previous,ance by approximately 2.5% over the source-
section; the analogous “discriminative” alignmenthannel model, a relative error reduction of 14%,
model Py, (t]s), which corresponds to the Base-gng 139 over the optimized model using the
line system we compared to on the word translatiop,ngyage model and generative and discriminative

task; and our overlapping context logistic modelg|ignment models, a relative error reduction of 7.8%.

P,:(t|s), which also goes in the “discriminative” di- . . _
rection, but uses the context features in the sourceWe chose optimal coefficients for the combined

;s P fobability models by exhaustively trying all possi-
language fo_r determlnlng the distribution over eacﬁIe settin)g;s of the v?//eights at ayresleu%ion %f 01
word’s possible translations. ’ o

, ) , evaluating accuracy for each one on the test set. Fig-
_ We combine these models by simply taking & l0gyre 1 shows the performance on the blank-filling
linear combination: task as a function of the weights of the generative
alignment model and the word-translation model
(the optimum value of the discriminative alignment
model P(t|s) is always 0 when we include the
word-translation model). As we can see, the per-

The case ofy;, = Age = 1 @ndAsa = Awr = 018~ formance of this model is robust with respect to
duces to the source-channel model; other settings ife exact value of the coefficients. The “obvious”

corporate discriminative models to varying degree%etting of 1.0 for the generative model and 1.0 for
We evaluated this combined translation model othe word translation model performs nearly as well

the blank-filling task for various settings of the mix-

ture coefficients\. For our language model we used °®Available athttp://mi.eng.cam.ac.uk/ prc14/toolkit.html.

log P(t|s) o< Ay, 1og Py (t) + Agg log Pya(s|t)
+ Ada log Py, (t]s) + Ayt log Py (t]s).
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as the optimized setting. In the optimal region
the word-translation model receives twice as muc os
weight as the generative alignment model, indical |
ing that word-translation model is more informative
than the generative alignment model. Incorporatini
the discriminative alignment model into the source , °°
channel model also improves performance, but ncs osf
nearly as much as using the word-translation mode< |

An alternate way to optimize weights over trans
lation features is described in Och and Ney (2002
They consider a number of translation features, ir °¢
cluding the language model and generative and di o}
criminative alignment models.

0.65

0.5 L
0 2 4 6 8 10 12
Average number of possible translations

7 Search Space Pruning Figure 2: Accuracy ofbest-n strategy (dotted lines) anait-
As we have mentioned, one of the main difficultiegff strategy (solid lines). o = generative alignment, + = diseri
in translation is that there are an enormous numb#&|Atve alignment, *=word translation.
of possible translations to consider. Decoding alinstance, to achieve 95% recall (that is, for 95% of
gorithms must therefore use some kind of searctihe ambiguous words, we retain the correct transla-
space pruning in order to be efficient. A key partion), we only need candidate sets of averagesize
of pruning the search space is deciding on the séir the cut-off strategy using the word-translation
of words to consider in possible translations (Gemodel, whereas for the same strategy on the discrim-
mann et al., 2001). One standard method is to coinative alignment model we require an average set
sider only target words which have high probabilsize of6.7 words.
ity according to the discriminative alignment model.  As the size of the solution space grows exponen-
But we have already shown that the word translatiogially with the size of the candidate sets, the word-
model achieves much better performance on worganslation model could potentially greatly reduce
translation than this baseline model; thus, we woulghe search space while maintaining good accuracy.
expect the word translation model to improve accu- j;youid be interesting to use similar techniques to
racy when used to pick sets of candidate translationgarm nyll fertility (i.e., when a word has no trans-
Given a probability distribution over possible|ation in the target sentend?.
translations of a wordP(b|a,s), there are several
ways to choose a reduced set of possible transl§- Related Work
tions. Two commonly used methods are to oniBerger et al. (1996) apply maximum entropy meth-
consider the tom scoring words from this distribu- ods (equivalent to logistic regression) to, among
tion (best-n); and to only consider wordssuch that other tasks, the word-translation task. However, no
P(b|a,s) is above some fixed thresholcu-off ). guantitative results are presented. In this paper we
We use the same data set as for the blank-fillingemonstrate that the method can improve perfor-
task. We evaluate the accuracy of a pruning strate%g)ance on a large data set and show how it might
by evaluating whether the correct translation is ife used to improve machine translation.
the candidate set selected by the pruning strategy.Diab and Resnik (2002) suggest using large bilin-
To compare results for different pruning strategieggual corpora to improve performance on word sense
we plot performance as a function of average sizdisambiguation. The main idea is that knowing a
of the candidate translation set. Figure 2 shows tHerench word may help determine the meaning of the
accuracy vs. average candidate set size for the worchrresponding English word. They apply this intu-
translation model, discriminative alignment modeljtion to the Senseval word disambiguation task by
and generative alignment model. running off-the-shelf translators to produce transla-
The generative alignment model has the wordtons which they then use for disambiguation.
performance of the three. This is not surprising as it Ng et al. (2003) address word sense disambigua-
does not take into account the prior probability of théion by manually annotating WordNet senses with
target wordP(b). More interestingly, we see that thetheir translation in the target language (Chinese),
word-translation model outperforms the discriminaand then automatically extracting labeled examples
tive translation model by a significant amount. Fofor word sense disambiguation by applying the IBM
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Models to a bilingual corpus. They achieve compaproduce several candidate translations, which can be
rable results to training on hand-labeled examples.reranked using the word translation model. Unfortu-

Koehn and Knight (2003) focus on the task ofhately, we were unable to try these approaches, due
noun-phrase translation. They improve performand@ the lack of an appropriate publicly available de-
on the noun-phrase translation task, and show the@der. Carpuat and Wu (2005) recently observed
they can use this to improve full translations. A keythat simpler integration approaches, such as forcing
difference is that, in predicting noun-phrase transhe machine translation system to use the word trans-
lations, they do not consider the context of noundation model’s first choice, do not improve transla-
They present results which indicate that humans cdi®n results. Together, these results suggest that one
accurately translate noun phrases without |ookin§hOU|d incorporate the results of word translation in
at the surrounding context. However, as we have “soft” way, allowing the word translation, align-
demonstrated in this paper, context can be very useent, and language models to work together to pro-
ful for a (sub-human-level) machine translator. duce coherent translations. Given an appropriate de-

A similar argument applies to phrase-based tran§°0d€r, trying such a unified approach is straightfor-
lation methods (e.g., Koehn et al. (2003)). Whilevard, and Wc_)uld provide insight about the value of
phrase-based systems do take into account contd¥prd translation.
within phrases, they are not_at_)le to use Cpnteﬁeferences
across phrase boundaries. This is especially impor-
tant when ambiguous words do not occur as part @f. Berger, S. Della Pietra, and V. Della Pietra. 1996. A
a phrase — verbs in particular often appear alone. maximum entropy approach to natural language pro-

) cessing.Computational Linguistics, 22(1).
9 Conclusions P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and
In this paper, we focus on the word-translation prob- R. L. Mercer. 1993. The mathematics of statisti-
lem. By Viewing word-sense disambiguation in the cal machine translation.Computational Linguistics,
context of a larger task, we were able to obtain large 19(2).
amounts of training data and directly evaluate th&!. Carpuat and D. Wu. 2005. Word sense disambigua-
usefulness of our System for a real-world task. Our tion vs. statistical machine translatiofroc. ACL.
results improve over a baseline which is difficult toM. Diab and P. Resnik. 2002. An unsupervised method
outperform in the word sense disambiguation task. for word sense tagging using parallel corporroc.

The word translation model could be improved in ACL. _ ,
a variety of ways, drawing upon the large body O]C._Fellbaum, editor. 1998AbrdNet: An Electronic Lex-
work on word-sense disambiguation. In particular, '¢3 Database. MIT Press.
there are many types of context features which coulfd- Germann, M. Jahr, K. Knight, D. Marcu, and K. Ya-
be used to improve word translation performance, mada. 2001. Fast decoding and optimal decoding for
but which are not available to standard machine- machine translatiorProc. ACL.

translation systems. Also, the model could be e Koehn and K. Knight. 2003. Feature-rich statistical
tended to handle ph-rases ' translation of noun phraseBroc. ACL.

Lo . Koehn, F. Och, and D. Marcu. 2003. Statistical phrase-
To Qvaluate wqrd translatlon_ln the context of a{D based translatiorHLT/NAACL.
machine translation task, we introduce the nov . .
e ; ; . Minka. 2000. Algorithms  for
blank-filling task, which decouples the impact of ; likelihood logisti :
d translation from a variety of other factors, such maxifmum-1Ke1hoo _logistic regression.
wor . X L http://lib.stat.cmu.edu/ minka/papers/logreg.html.
as syntactic correctness. For this task, increas ng and M. Jordan, 2002. On discriminative vs. gen-
qud-translatl_on accuracy leads to improved ma- erative classifiers: A comparison of logistic regression
chine translation. We also show that the word trans-

lati del is effecti t choosi s of di and naive bayesroc. NIPS,
ation mode’ 1S ENECUVE al cnoosing Sets ot candiy, Ng, B. Wang, and Y. S. Chan. 2003. Exploiting

date translations, Suggesting_ that a word translation parallel texts for word sense disambiguation: An em-
component would be immediately useful to current pijca| study. Proc. ACL.

machine translations Systems. ) F. Och and H. Ney. 2002. Discriminative training
There are several ways in which the results of and maximum entropy models for statistical machine

word translation could be integrated into a full trans- translation.Proc. ACL.

lation system. Most naturally, the word translationy, shewchuk. 1994. An introduction to the conjugate gra-

model can be used directly to modify the score of dient method without the agonizing pain. http://www-

different translations. Alternatively, a decoder can 2.cs.cmu.edu/jrs/jrspapers.html.
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