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Abstract

Many learning tasks have subtasks for which
much training data exists. Therefore, we want
to transfer learning from the old, general-
purpose subtask to a more specific new task,
for which there is often less data. While work
in transfer learning often considers how the
old task should affect learning on the new
task, in this paper we show that it helps to
take into account how the new task affects the
old. Specifically, we perform joint decoding of
separately-trained sequence models, preserv-
ing uncertainty between the tasks and allowing
information from the new task to affect predic-
tions on the old task. On two standard text data
sets, we show that joint decoding outperforms
cascaded decoding.

1 Introduction
Many tasks in natural language processing are solved by
chaining errorful subtasks. Within information extrac-
tion, for example, part-of-speech tagging and shallow
parsing are often performed before the main extraction
task. Commonly these subtasks have their own standard
sets of labeled training data: for example, many large
data sets exist for learning to extract person names from
newswire text; whereas the available training data for new
applications, such as extracting appointment information
from email, tends to be much smaller. Thus, we need to
transfer regularities learned from a well-studied subtask,
such as finding person names in newswire text, to a new,
related task, such as finding names of speakers in email
seminar announcements.

In previous NLP systems, transfer is often accom-
plished by training a model for the subtask, and using its
prediction as a feature for the new task. For example, re-
cent CoNLL shared tasks (Tjong Kim Sang & De Meul-
der, 2003; Carreras & Marquez, 2004), which are stan-
dard data sets for such common NLP tasks as clause iden-

tification and named-entity recognition, include predic-
tions from a part-of-phrase tagger and a shallow parser as
features. But including only the single most likely sub-
task prediction fails to exploit useful dependencies be-
tween the tasks. First, if the subtask prediction is wrong,
the model for the new task may not be able to recover. Of-
ten, errors propagate upward through the chain of tasks,
causing errors in the final output. This problem can be
ameliorated by preserving uncertainty in the subtask pre-
dictions, because even if the best subtask prediction is
wrong, the distribution over predictions can still be some-
what accurate.

Second, information from the main task can inform the
subtask. This is especially important for learning trans-
fer, because the new domain often has different charac-
teristics than the old domain, which is often a standard
benchmark data set. For example, named-entity recog-
nizers are usually trained on newswire text, which is more
structured and grammatical than email, so we expect an
off-the-shelf named-entity recognizer to perform some-
what worse on email. An email task, however, often has
domain-specific features, such as PREVIOUS WORD IS
Speaker:), which were unavailable or uninformative to
the subtask on the old training set, but are very informa-
tive to the subtask in the new domain. While previous
work in transfer learning has considered how the old task
can help the new task, in this paper we show how the new
task can help itself by improving predictions on the old.

In this paper we address the issue of transfer by train-
ing a cascade of models independently on the various
training sets, but at test time combining them into a single
model in which decoding is performed jointly. For the in-
dividual models, we use linear-chain conditional random
fields (CRFs), because the great freedom that they allow
in feature engineering facilitates the learning of richer in-
teractions between the subtasks. We train a linear chain
CRF on each subtask, using the prediction of the previous
subtask as a feature. At test time, we combine the learned
weights from the original CRFs into a single grid-shaped
factorial CRF, which makes predictions for all the tasks
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at once. Viterbi decoding in this combined model im-
plicitly considers all possible predictions for the subtask
when making decisions in the main task.

We evaluate joint decoding for learning transfer on a
standard email data set and a standard entity recognition
task. On the email data set, we show a significant gain
in performance, including new state-of-the-art results. Of
particular interest for transfer learning, we also show that
using joint decoding, we achieve equivalent results to cas-
caded decoding with 25% less training data.

2 Linear-chain CRFs
Conditional random fields (CRFs) (Lafferty et al., 2001)
are undirected graphical models that are conditionally
trained. In this section, we describe CRFs for the linear-
chain case. Linear-chain CRFs can be roughly under-
stood as conditionally-trained finite state machines. A
linear-chain CRF defines a distribution over state se-
quences s = {s1, s2, . . . , sT } given an input sequence
x = {x1, x2, . . . , xT } by making a first-order Markov
assumption on states. These Markov assumptions imply
that the distribution over sequences factorizes in terms of
pairwise functions Φt(st−1, st,x) as:

p(s|x) =
∏

t Φt(st−1, st,x)
Z(x)

, (1)

The partition function Z(x) is defined to ensure that the
distribution is normalized:

Z(x) =
∑
s′

∏
t

Φt(s′t−1, s
′
t,x). (2)

The potential functions Φt(st−1, st,x) can be interpreted
as the cost of making a transition from state st−1 to state
st at time t, similar to a transition probability in an HMM.

Computing the partition function Z(x) requires sum-
ming over all of the exponentially many possible state
sequences s′. By exploiting Markov assumptions, how-
ever, Z(x) (as well as the node marginals p(st|x) and the
Viterbi labeling) can be calculated efficiently by variants
of the standard dynamic programming algorithms used
for HMMs.

We assume the potentials factorize according to a set
of features {fk}, which are given and fixed, so that

Φ(st−1, st,x) = exp

(∑
k

λkfk(st−1, st,x, t)

)
. (3)

The model parameters are a set of real weights Λ = {λk},
one for each feature.

Feature functions can be arbitrary. For example, one
feature function could be a binary test fk(st−1, st,x, t)
that has value 1 if and only if st−1 has the label SPEAK-
ERNAME, st has the label OTHER, and the word xt be-
gins with a capital letter. The chief practical advantage

of conditional models, in fact, is that we can include ar-
bitrary highly-dependent features without needing to es-
timate their distribution, as would be required to learn a
generative model.

Given fully-labeled training instances {(sj ,xj)}M
j=1,

CRF training is usually performed by maximizing the pe-
nalized log likelihood

`(Λ) =
∑

j

∑
t

∑
k

λkfk(sj,t−1, sj,t,x, t)

−
∑

j

log Z(xj)−
∑

k

λ2
k

2σ2
(4)

where the final term is a zero-mean Gaussian prior placed
on parameters to avoid overfitting. Although this maxi-
mization cannot be done in closed form, it can be op-
timized numerically. Particularly effective are gradient-
based methods that use approximate second-order infor-
mation, such as conjugate gradient and limited-memory
BFGS (Byrd et al., 1994). For more information on
current training methods for CRFs, see Sha and Pereira
(2003).

3 Dynamic CRFs
Dynamic conditional random fields (Sutton et al., 2004)
extend linear-chain CRFs in the same way that dynamic
Bayes nets (Dean & Kanazawa, 1989) extend HMMs.
Rather than having a single monolithic state variable,
DCRFs factorize the state at each time step by an undi-
rected model.

Formally, DCRFs are the class of conditionally-trained
undirected models that repeat structure and parameters
over a sequence. If we denote by Φc(yc,t,xt) the repe-
tition of clique c at time step t, then a DCRF defines the
probability of a label sequence s given the input x as:

p(s|x) =
∏

t Φc(yc,t,xt)
Z(x)

, (5)

where as before, the clique templates are parameterized
in terms of input features as

Φc(yc,t,xt) = exp

{∑
k

λkfk(yc,t,xt)

}
. (6)

Exact inference in DCRFs can be performed by
forward-backward in the cross product state space, if the
cross-product space is not so large as to be infeasible.
Otherwise, approximate methods must be used; in our
experience, loopy belief propagation is often effective
in grid-shaped DCRFs. Even if inference is performed
monolithically, however, a factorized state representation
is still useful because it requires much fewer parame-
ters than a fully-parameterized linear chain in the cross-
product state space.
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Sutton et al. (2004) introduced the factorial CRF
(FCRF), in which the factorized state structure is a grid
(Figure 1). FCRFs were originally applied to jointly
performing interdependent language processing tasks, in
particular part-of-speech tagging and noun-phrase chunk-
ing. The previous work on FCRFs used joint training,
which requires a single training set that is jointly labeled
for all tasks in the cascade. For many tasks such data
is not readily available, for example, labeling syntac-
tic parse trees for every new Web extraction task would
be prohibitively expensive. In this paper, we train the
subtasks separately, which allows us the freedom to use
large, standard data sets for well-studied subtasks such as
named-entity recognition.

4 Alternatives for Learning Transfer

In this section, we enumerate several classes of methods
for learning transfer, based on the amount and type of
interaction they allow between the tasks. The principal
differences between methods are whether the individual
tasks are performed separately in a cascade or jointly;
whether a single prediction from the lower task is used,
or several; and what kind of confidence information is
shared between the subtasks.

The main types of transfer learning methods are:

1. Cascaded training and testing. This is the traditional
approach in NLP, in which the single best prediction
from the old task is used in the new task at training
and test time. In this paper, we show that allowing
richer interactions between the subtasks can benefit
performance.

2. Joint training and testing. In this family of ap-
proaches, a single model is trained to perform all the
subtasks at once. For example, in Caruana’s work
on multitask learning (Caruana, 1997), a neural net-
work is trained to jointly perform multiple classifica-
tion tasks, with hidden nodes that form a shared rep-
resentation among the tasks. Jointly trained meth-
ods allow potentially the richest interaction between
tasks, but can be expensive in both computation time
required for training and in human effort required to
label the joint training data.

Exact inference in a jointly-trained model, such
as forward-backward in an FCRF, implicitly con-
siders all possible subtask predictions with confi-
dence given by the model’s probability of the pre-
diction. However, for computational efficiency, we
can use inference methods such as particle filtering
and sparse message-passing (Pal et al., 2005), which
communicate only a limited number of predictions
between sections of the model.

Main Task

Subtask A

Subtask B

Input

Figure 1: Graphical model for the jointly-decoded CRF.
All of the pairwise cliques also have links to the observed
input, although we omit these edges in the diagram for
clarity.

3. Joint testing with cascaded training. Although a
joint model over all the subtasks can have better per-
formance, it is often much more expensive to train.
One approach for reducing training time is cascaded
training, which provides both computational effi-
ciency and the ability to reuse large, standard train-
ing sets for the subtasks. At test time, though, the
separately-trained models are combined into a sin-
gle model, so that joint decoding can propagate in-
formation between the tasks.

Even with cascaded training, it is possible to pre-
serve some uncertainty in the subtask’s predictions.
Instead of using only a single subtask prediction
for training the main task, the subtask can pass up-
wards a lattice of likely predictions, each of which
is weighted by the model’s confidence. This has the
advantage of making the training procedure more
similar to the joint testing procedure, in which all
possible subtask predictions are considered.

In the next two sections, we describe and evaluate
joint testing with cascaded training for transfer learning
in linear-chain CRFs. At training time, only the best
subtask prediction is used, without any confidence infor-
mation. Even though this is perhaps the simplest joint-
testing/cascaded-training method, we show that it still
leads to a significant gain in accuracy.

5 Composition of CRFs

In this section we briefly describe how we combine
individually-trained linear-chain CRFs using composi-
tion. For a series of N cascaded tasks, we train indi-
vidual CRFs separately on each task, using the prediction
of the previous CRF as a feature. We index the CRFs
by i, so that the state of CRF i at time t is denoted si

t.
Thus, the feature functions for CRF i are of the form
f i

k(si
t−1, s

i
t, s

i−1
t ,x, t)—that is, they depend not only on

the observed input x and the transition (si
t−1 → si

t) but
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wt = w
wt matches [A-Z][a-z]+
wt matches [A-Z][A-Z]+
wt matches [A-Z]
wt matches [A-Z]+
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]
wt appears in list of first names,

last names, honorifics, etc.
wt appears to be part of a time followed by a dash
wt appears to be part of a time preceded by a dash
wt appears to be part of a date
Tt = T
qk(x, t + δ) for all k and δ ∈ [−4, 4]

Table 1: Input features qk(x, t) for the seminars data. In
the above wt is the word at position t, Tt is the POS tag
at position t, w ranges over all words in the training data,
and T ranges over all Penn Treebank part-of-speech tags.
The “appears to be” features are based on hand-designed
regular expressions that can span several tokens.

also on the state si−1
t of the previous transducer.

We also add all conjunctions of the input features and
the previous transducer’s state, for example, a feature that
is 1 if the current state is SPEAKERNAME, the previ-
ous transducer predicted PERSONNAME, and the previ-
ous word is Host:.

To perform joint decoding at test time, we form the
composition of the individual CRFs, viewed as finite-
state transducers. That is, we define a new linear-chain
CRF whose state space is the cross product of the states
of the individual CRFs, and whose transition costs are the
sum of the transition costs of the individual CRFs.

Formally, let S1, S2, . . . SN be the state sets and
Λ1,Λ2, . . . ΛN the weights of the individual CRFs. Then
the state set of the combined CRF is S = S1×S2× . . .×
SN . We will denote weight k in an individual CRF i by
λi

k and a single feature by f i
k(si

t−1, s
i
t, s

i−1
t ,x, t). Then

for s ∈ S, the combined model is given by:

p(s|x) =

∏
t exp

{∑N
i=1

∑
k λi

kf i
k(si

t−1, s
i
t, s

i−1
t ,x, t)

}
Z(x)

.

(7)
The graphical model for the combined model is the fac-
torial CRF in Figure 1.

6 Experiments
6.1 Email Seminar Announcements
We evaluate joint decoding on a collection of 485 e-mail
messages announcing seminars at Carnegie Mellon Uni-
versity, gathered by Freitag (1998). The messages are
annotated with the seminar’s starting time, ending time,
location, and speaker. This data set has been the sub-
ject of much previous work using a wide variety of learn-
ing methods. Despite all this work, however, the best
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Figure 2: Learning curves for the seminars data set on
the speaker field, averaged over 10-fold cross validation.
Joint training performs equivalently to cascaded decoding
with 25% more data.

reported systems have precision and recall on speaker
names of only about 70%—too low to use in a practical
system. This task is so challenging because the messages
are written by many different people, who each have dif-
ferent ways of presenting the announcement information.

Because the task includes finding locations and per-
son names, the output of a named-entity tagger is a use-
ful feature. It is not a perfectly indicative feature, how-
ever, because many other kinds of person names appear in
seminar announcements—for example, names of faculty
hosts, departmental secretaries, and sponsors of lecture
series. For example, the token Host: indicates strongly
both that what follows is a person name, but that person
is not the seminars’ speaker.

Even so, named-entity predictions do improve per-
formance on this task. We use the predictions from a
CRF named-entity tagger that we trained on the standard
CoNLL 2003 English data set. The CoNLL 2003 data
set consists of newswire articles from Reuters labeled as
either people, locations, organizations, or miscellaneous
entities. It is much larger than the seminar announce-
ments data set. While the named-entity data contains
203,621 tokens for training, the seminar announcements
data set contains only slightly over 60,000 training to-
kens.

Previous work on the seminars data has used a one-
field-per-document evaluation. That is, for each field, the
CRF selects a single field value from its Viterbi path, and
this extraction is counted as correct if it exactly matches
any of the true field mentions in the document. We com-
pute precision and recall following this convention, and
report their harmonic mean F1. As in the previous work,

751



System stime etime location speaker overall
WHISK (Soderland, 1999) 92.6 86.1 66.6 18.3 65.9
SRV (Freitag, 1998) 98.5 77.9 72.7 56.3 76.4
HMM (Frietag & McCallum, 1999) 98.5 62.1 78.6 76.6 78.9
RAPIER (Califf & Mooney, 1999) 95.9 94.6 73.4 53.1 79.3
SNOW-IE (Roth & Wen-tau Yih, 2001) 99.6 96.3 75.2 73.8 86.2
(LP)2 (Ciravegna, 2001) 99.0 95.5 75.0 77.6 86.8
CRF (no transfer) This paper 99.1 97.3 81.0 73.7 87.8
CRF (cascaded) This paper 99.2 96.0 84.3 74.2 88.4
CRF (joint) This paper 99.1 96.0 85.3 76.3 89.2

Table 2: Comparison of F1 performance on the seminars data. Joint decoding performs significantly better than
cascaded decoding. The overall column is the mean of the other four. (This table was adapted from Peshkin and
Pfeffer (2003).)

we use 10-fold cross validation with a 50/50 training/test
split. We use a spherical Gaussian prior on parameters
with variance σ2 = 0.5.

We evaluate whether joint decoding with cascaded
training performs better than cascaded training and de-
coding. Table 2 compares cascaded and joint decoding
for CRFs with other previous results from the literature.1

The features we use are listed in Table 1. Although previ-
ous work has used very different feature sets, we include
a no-transfer CRF baseline to assess the impact of transfer
from the CoNLL data set. All the CRF runs used exactly
the same features.

On the most challenging fields, location and speaker,
cascaded transfer is more accurate than no transfer at all,
and joint decoding is more accurate than cascaded decod-
ing. In particular, for speaker, we see an error reduction
of 8% by using joint decoding over cascaded. The differ-
ence in F1 between cascaded and joint decoding is statis-
tically significant for speaker (paired t-test; p = 0.017)
but only marginally significant for location (p = 0.067).
Our results are competitive with previous work; for ex-
ample, on location, the CRF is more accurate than any of
the existing systems.

Examining the trained models, we can observe both
errors made by the general-purpose named entity tagger,
and how they can be corrected by considering the sem-
inars labels. In newswire text, long runs of capitalized
words are rare, often indicating the name of an entity. In
email announcements, runs of capitalized words are com-
mon in formatted text blocks like:

Location: Baker Hall
Host: Michael Erdmann

In this type of situation, the named entity tagger often
mistakes Host: for the name of an entity, especially be-
cause the word preceding Host is also capitalized. On one
of the cross-validated testing sets, of 80 occurrences of

1We omit one relevant paper (Peshkin & Pfeffer, 2003) be-
cause its evaluation method differs from all the other previous
work.

wt = w
wt matches [A-Z][a-z]+
wt matches [A-Z][A-Z]+
wt matches [A-Z]
wt matches [A-Z]+
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]
wt is punctuation
wt appears in list of first names, last names, honorifics, etc.
qk(x, t + δ) for all k and δ ∈ [−2, 2]
Conjunction qk(x, t) and qk′(x, t) for all features k, k′

Conjunction qk(x, t) and qk′(x, t + 1) for all features k, k′

Table 3: Input features qk(x, t) for the ACE named-entity
data. In the above wt is the word at position t, and w
ranges over all words in the training data.

the word Host:, the named-entity tagger labels 52 as some
kind of entity. When joint decoding is used, however,
only 20 occurrences are labeled as entities. Recall that
the joint model uses exactly the same weights as the cas-
caded model; the only difference is that the joint model
takes into account information about the seminar labels
when choosing named-entity labels. This is an example
of how domain-specific information from the main task
can improve performance on a more standard, general-
purpose subtask.

Figure 2 shows the difference in performance between
joint and cascaded decoding as a function of training set
size. Cascaded decoding with the full training set of 242
emails performs equivalently to joint decoding on only
181 training instances, a 25% reduction in the training
set.

In summary, even with a simple cascaded training
method on a well-studied data set, joint decoding per-
forms better for transfer than cascaded decoding.

6.2 Entity Recognition
In this section we give results on joint decoding for trans-
fer between two newswire data sets with similar but over-
lapping label sets. The Automatic Content Extraction
(ACE) data set is another standard entity recognition data
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Transfer Type

none cascaded joint

Person name 81.0 86.9 87.3

Person nominal 34.9 36.1 42.4

Organization name 53.9 62.6 61.1

Organization nominal 33.7 35.3 40.8

GPE name 78.5 84.0 84.0

GPE nominal 51.2 54.1 59.2

Table 4: Comparison of F1 performance between joint
and cascaded training on the ACE entity recognition task.
GPE means geopolitical entities, such as countries. Joint
decoding helps most on the harder nominal (common
noun) references. These results were obtained using a
small subset of the training set.

set, containing 422 stories from newspaper, newswire,
and broadcast news. Unlike the CoNLL entity recog-
nition data set, in which only proper names of entities
are annotated, the ACE data includes annotation both for
named entities like United States, and also nominal men-
tions of entities like the nation. Thus, although the input
text has similar distribution in the CoNLL NER and ACE
data set, the label distributions are very different.

Current state-of-the-art systems for the ACE task (Flo-
rian et al., 2004) use the predictions of other named-entity
recognizers as features, that is, they use cascaded trans-
fer. In this experiment, we test whether the transfer be-
tween these datasets can be further improved using joint
decoding. We train a CRF entity recognizer on the ACE
dataset, with the output of a named-entity entity recog-
nizer trained on the CoNLL 2003 English data set. The
CoNLL recognizer is the same CRF as was used in the
previous experiment. In these results, we use a subset of
10% of the ACE training data. Table 3 lists the features
we use. Table 4 compares the results on some represen-
tative entity types. Again, cascaded decoding for transfer
is better than no transfer at al, and joint decoding is better
than cascaded decoding. Interestingly, joint decoding has
most impact on the harder nominal references, showing
marked improvement over the cascaded approach.

7 Related Work

Researchers have begun to accumulate experimental ev-
idence that joint training and decoding yields better per-
formance than the cascaded approach. As mentioned ear-
lier, the original work on dynamic CRFs (Sutton et al.,
2004) demonstrated improvement due to joint training in
the domains of part-of-speech tagging and noun-phrase

chunking. Also, Carreras and Marquez (Carreras &
Màrquez, 2004) have obtained increased performance in
clause finding by training a cascade of perceptrons to
minimize a single global error function. Finally, Miller et
al. (Miller et al., 2000) have combined entity recognition,
parsing, and relation extraction into a jointly-trained sin-
gle statistical parsing model that achieves improved per-
formance on all the subtasks.

Part of the contribution of the current work is to sug-
gest that joint decoding can be effective even when joint
training is not possible because jointly-labeled data is un-
available. For example, Miller et al. report that they orig-
inally attempted to annotate newswire articles for all of
parsing, relations, and named entities, but they stopped
because the annotation was simply too expensive. In-
stead they hand-labeled relations only, assigning parse
trees to the training set using a standard statistical parser,
which is potentially less flexible than the cascaded train-
ing, because the model for main task is trained explicitly
to match the noisy subtask predictions, rather than being
free to correct them.

In the speech community, it is common to com-
pose separately trained weighted finite-state transducers
(Mohri et al., 2002) for joint decoding. Our method ex-
tends this work to conditional models. Ordinarily, higher-
level transducers depend only on the output of the previ-
ous transducer: a transducer for the lexicon, for exam-
ple, consumes only phonemes, not the original speech
signal. In text, however, such an approach is not sensi-
ble, because there is simply not enough information in
the named-entity labels, for example, to do extraction if
the original words are discarded. In a conditional model,
weights in higher-level transducers are free to depend on
arbitrary features of the original input without any addi-
tional complexity in the finite-state structure.

Finally, stacked sequential learning (Cohen & Car-
valho, 2005) is another potential method for combining
the results of the subtask transducers. In this general
meta-learning method for sequential classification, first
a base classifier predicts the label at each time step, and
then a higher-level classifier makes the final prediction,
including as features a window of predictions from the
base classifier. For transfer learning, this would corre-
spond to having an independent base model for each sub-
task (e.g., independent CRFs for named-entity and sem-
inars), and then having a higher-level CRF that includes
as a feature the predictions from the base models.

8 Conclusion
In this paper we have shown that joint decoding improves
transfer between interdependent NLP tasks, even when
the old task is named-entity recognition, for which highly
accurate systems exist. The rich features afforded by a
conditional model allow the new task to influence the pre-
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dictions of the old task, an effect that is only possible with
joint decoding.

It is now common for researchers to publicly release
trained models for standard tasks such as part-of-speech
tagging, named-entity recognition, and parsing. This pa-
per has implications for how such standard tools are pack-
aged. Our results suggest that off-the-shelf NLP tools
will need not only to provide a single-best prediction, but
also to be engineered so that they can easily communicate
distributions over predictions to models for higher-level
tasks.
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Carreras, X., & Màrquez, L. (2004). Online learning via global
feedback for phrase recognition. In S. Thrun, L. Saul and
B. Schölkopf (Eds.), Advances in neural information pro-
cessing systems 16. Cambridge, MA: MIT Press.

Caruana, R. (1997). Multitask learning. Machine Learning, 28,
41–75.

Ciravegna, F. (2001). Adaptive information extraction from text
by rule induction and generalisation. Proceedings of 17th In-
ternational Joint Conference on Artificial Intelligence (IJCAI
2001).

Cohen, W. W., & Carvalho, V. R. (2005). Stacked sequential
learning. International Joint Conference on Artificial Intelli-
gence (pp. 671–676).

Dean, T., & Kanazawa, K. (1989). A model for reasoning about
persistence and causation. Computational Intelligence, 5(3),
142–150.

Florian, R., Hassan, H., Ittycheriah, A., Jing, H., Kambhatla,
N., Luo, X., Nicolov, N., Roukos, S., & Zhang, T. (2004). A
statistical model for multilingual entity detection and track-
ing. In HLT/NAACL 2004.

Freitag, D. (1998). Machine learning for information extraction
in informal domains. Doctoral dissertation, Carnegie Mellon
University.

Frietag, D., & McCallum, A. (1999). Information extraction
with HMMs and shrinkage. AAAI Workshop on Machine
Learning for Information Extraction.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional
random fields: Probabilistic models for segmenting and la-
beling sequence data. Proc. 18th International Conf. on Ma-
chine Learning.

Miller, S., Fox, H., Ramshaw, L. A., & Weischedel, R. M.
(2000). A novel use of statistical parsing to extract infor-
mation from text. ANLP 2000 (pp. 226–233).

Mohri, M., Pereira, F., & Riley, M. (2002). Weighted finite-
state transducers in speech recognition. Computer Speech
and Language, 16, 69–88.

Pal, C., Sutton, C., & McCallum, A. (2005). Fast inference
and learning with sparse belief propagation (Technical Re-
port IR-433). Center for Intelligent Information Retrieval,
University of Massachusetts.

Peshkin, L., & Pfeffer, A. (2003). Bayesian information extrac-
tion network. Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI).

Roth, D., & Wen-tau Yih (2001). Relational learning via propo-
sitional algorithms: An information extraction case study. In-
ternational Joint Conference on Artificial Intelligence (pp.
1257–1263).

Sha, F., & Pereira, F. (2003). Shallow parsing with conditional
random fields. Proceedings of HLT-NAACL 2003.

Soderland, S. (1999). Learning information extraction rules for
semi-structured and free text. Machine Learning, 233–272.

Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dy-
namic conditional random fields: Factorized probabilistic
models for labeling and segmenting sequence data. Proceed-
ings of the Twenty-First International Conference on Ma-
chine Learning (ICML).

Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduc-
tion to the CoNLL-2003 shared task: Language-independent
named entity recognition. Proceedings of CoNLL-2003 (pp.
142–147). Edmonton, Canada.

754


