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Abstract

We addresshe problemof multi-way re-
lation classificationappliedto identifica-
tion of the interactionsbetweenproteins
in biosciencetext. A major impediment
to suchwork is the acquisitionof appro-
priately labeledtraining data; for our ex-
perimentswe have identified a database
that senes as a proxy for training data.
We usetwo graphicalmodelsanda neu-
ral net for the classificationof the inter-
actions, achieving an accurag of 64%
for a 10-way distinction betweenrelation
types. We also provide evidencethatthe
exploitation of the sentencesurrounding
acitationto apapercanyield higheraccu-
ragy thanothersentences.

1 Intr oduction

Identifying the interactionshetweenproteinsis one
of the most important challengesin modern ge-
nomics, with applicationsthroughoutcell biology,
including expressionanalysis,signaling,and ratio-
nal drug design. Most biomedical researchand
new discoveriesareavailableelectronicallybut only
in free text format, so automaticmechanismsare
neededo corvert text into more structuredforms.
The goal of this paperis to addressthis difficult
andimportanttask,the extractionof theinteractions
betweenproteinsfrom free text. We usegraphical
modelsanda neuralnetthatwerefoundto achieve
highaccurag in therelatedtaskof extractingthere-
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lation typesmight hold betweerthe entities“treat-
ment” and“disease”(RosaricandHearst,2004).

Labelingtrainingandtestdatais time-consuming
andsubjectve. Herewe reporton resultsusingan
existing curateddatabaseheHIV-1 HumanProtein
InteractionDatabask to train andtesttheclassifica-
tion system.The accuracie®btainedby the classi-
ficationmodelsproposedarequite high, confirming
the validity of the approach. We alsofind support
for the hypothesighatthe sentencesurroundingci-
tationsare usefulfor extractionof key information
from technicalarticles(Nakov etal., 2004).

In the remainderof this paperwe discussrelated
work, describethe datasetand shav the resultsof
thealgorithmon documentandsentences.

2 Relatedwork

Therehasbeenlittle work in generalNLP ontrying
toidentify differentrelationsbetweerentities.Many
papersthat claim to be doing relationshiprecogni-
tion in actualityaddresghe taskof role extraction:
(usuallytwo) entitiesareidentifiedandtherelation-
shipis implied by the co-occurrencef theseenti-
tiesor by somelinguistic expressionAgichteinand
Gravano,2000;Zelenlo etal., 2002).

The ACE competitiorf hasa relationrecognition
subtask,but assumesa particulartype of relation
holdsbetweerparticularentity types(e.g.,if thetwo
entitiesin questionare an EMP andan ORG, then
anemploymentrelationholdsbetweerthem;which
type of emplgymentrelationdepend®n the type of
entity, e.g.,staf persorvs partner).

hwww.ncbi.nlm.nih.ge/RefSeqg/HIVInteractions/indehtml
2http:/iwwwitl.nist.gov/iaui/894.01/tests/ace/
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In the BioNLP literature there have recently
beena numberof attemptsto automaticallyextract
protein-proteirinteractiondrom PubMedabstracts.
Someapproachesimply reportthatarelationexists
betweentwo proteinsbut do not determinewhich
relationholds(Bunescuetal., 2005;Marcotteet al.,
2001; Ramaniet al., 2005),while mostothersstart
with alist of interactionverbsandlabel only those
sentencethatcontaintheseriggerwords(Blaschle
and Valencia, 2002; Blaschle et al., 1999; Rind-
fleschetal., 1999; Thomasetal., 2000; Sekimizuet
al., 1998; Ahmedet al., 2005; Phuonget al., 2003;
Pustejosky etal., 2002). However, as Marcotteet
al. (2001) note,"... searchedor abstractontain-
ing relevantkeywords,suchasinteract*,poorly dis-
criminatetrue hits from abstractsusing the words
in alternatesensesndmissabstractsisingdifferent
languagedo describeheinteractions.

Most of theexisting methodsalsosuffer from low
recall becausehey usehand-luilt specializedem-
platesor patterns(Ono et al., 2001; Corng et al.,
2004).Somesystemsuselink grammarsn conjunc-
tion with triggerverbsinsteadof template§Ahmed
etal., 2005;Phuongetal., 2003). Every papereval-
uatesonadifferenttestset,andsoit is quitedifficult
to comparesystems.

In this paper we use state-of-the-artmachine
learningmethodsto determinethe interactiontypes
andto extractthe proteinsinvolved. We do not use
triggerwords,templatesor dictionaries.

3 Data

We use the information from a domain-specific
databas¢o gatherlabeleddatafor thetaskof classi-
fying the interactionshetweenproteinsin text. The
manually-curatedHlVV-1 HumanProteininteraction
Databaserovidesa summaryof documentednter-
actionsbetweenHIV-1 proteinsand hostcell pro-
teins,otherHIV-1 proteins,or proteinsfrom disease
organismsassociatedith HIV or AIDS. We usethis
databasalsobecauset containsinformationabout
thetypeof interactionsasopposedo otherprotein
interactiondatabase&IND, MINT, DIP, for exam-
ple) that list the protein pairsinteracting,without
3DIP lists only the protein pairs, BIND hasonly somein-
formation aboutthe methodusedto provide evidencefor the

interaction,andMIND doeshave interactiontype information
but the vastmajority of the entries(99.9%of the 47,000pairs)
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Interaction #Triples || Interaction #Triples
Interactswith 1115 || Complexeswith 45
Activates 778 || Modulates 43
Stimulates 659 || Enhances 41
Binds 647 || Stabilizes 34
Upregulates 316 || Myristoylatedby 34
Importedby 276 || Recruits 32
Inhibits 194 || Ubiquitinatedby 29
Downregulates 124 || Synegizeswith 28
Reyulates 86 || Co-localizeswith 27
Phosphorylates 81 || Suppesses 24
Degrades 73 || Competesvith 23
Induces 52 || Requies 22
Inactivates 51

Table 1: Numberof triples for the mostcommon
interactionsof the HIV-1 databaseafter removing
the distinctionin directionalityandthe triples with
morethanoneinteraction.

specifyingthetypeof interactions.

In this databasethedefinitionsof theinteractions
dependon the proteinsinvolved andthe articlesde-
scribingthe interactionsthusthereare several def-
initions for eachinteractiontype. For the interac-
tion bind and the proteinsANT and Vpr, we find
(amongothers)the definition “Inter action of HIV-
1 Vpr with humanadeninenucleotidetranslocator
(ANT) is presumedbasedon a specificbinding in-
teractionbetweerVpr andrat ANT’

Thedatabaseontain®5typesof interactionsand
809 proteinsfor which thereis interactioninforma-
tion, for atotal of 2224 pairsof interactingproteins.
For eachdocumentegbrotein-proteirinteractionthe
databaséncludesinformationabout:

e A pairof proteins(PP),

e Theinteractiontype(s)betweerthem(l), and

e PubMedidentificationnumbersof the journal
article(s)describingtheinteraction(s)A).

A proteinpair PP canhave multiple interactions
(for example AIP1 bindsto HIV-1 p6 andalsois in-
corporatedinto it) for anaverageof 1.9interactions
per PP anda maximumof 23 interactionsfor the
pair CDK9 andtat p14.

We referto the combinationof a proteinpair PP
and an article A asa “triple.” Our goalis to au-
tomatically associateto eachtriple an interaction

have beenassignedhe sametype of interaction(aggregation).
Thesedatabaseareall manuallycurated.



type. For the exampleabove, the triple “AlP1 HIV-

1-p6 14519844 is assignedthe interactionbinds
(14519844beingthe PubMednumberof the paper
providing evidencefor this interactiony.

Journalarticles can contain evidencefor multi-
ple interactionsthereare984journalarticlesin the
databaseind on averageeacharticle is reportedto
containevidencefor 5.9 triples (with a maximum
numberof 90 triples).

In somecaseshe databaseeportsmultiple dif-
ferent interactionsfor a given triple. There are
5369uniquetriplesin the databasendof these414
(7.7%)have multiple interactions We excludethese
triplesfrom ouranalysishowever, we doincludear
ticles and P Ps with multiple interactions.In other
words, we tackle casessuchasthe exampleabore
of the pair AIP1, HIV-1-p6 (that canboth bind and
incorporate) aslong astheevidencefor thedifferent
interactionds givenby two differentarticles.

Someof the interactionsdiffer only in the direc-
tionality (e.g., regulatesand regulated by, inhibits
andinhibited by, etc.); we collapsedthesepairs of
relatedinteractionsinto one. Table 1 shaws the
list of the 25 interactionsof the HIV-1 databasédor
whichtherearemorethan10Otriples.

For theseinteractionsandfor a randomsubsef
the proteinpairs PP (around45% of thetotal pairs
in the database e downloadedthe corresponding
full-text papers. From these,we extractedall and
only thosesentencethatcontainboth proteinsfrom
theindicatedproteinpair. We assigneaachof these
sentenceshe correspondingnteraction from the
databas€‘papers”).

Nakov et al. (2004) arguethat the sentencesur
roundingcitationsto relatedwork, or citancesarea
usefulresourcefor bioNLP. Building on thatwork,
we use citancesas an additionalform of evidence
to determineprotein-proteinnteractiontypes.For a
given databaseentry containingPubMedarticle A,

“To be precise,thereare for this PP (asthereare often)
multiple articles(threein this case)describingthe interaction
binds thus we have the following threetriples to which we
associatdinds “AlP1 HIV-1-p6 14519844, “AlIP1 HIV-1-p6
14505570"and“AlP1 HIV-1-p614505569.

SWe collapsedthesepairs becausehe directionality of the
interactionswas not alwaysreliablein the database This im-
pliesthatfor someinteractionswe arenotableto infer the dif-
ferent roles of the two proteins; we consideredonly the pair
“protl prot2” or “prot2 protl; not both. However, our algo-
rithm candetectwhich proteinsareinvolvedin theinteractions.
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proteinpair PP, andinteractiontype I, we down-

loadeda subsebf thepaperghatcite A. Fromthese
citing papers,we extractedall and only thosesen-
tenceghatmention A explicitly; we furtherfiltered
theseto includeall andonly the sentenceghatcon-
tain PP. We labeledeachof thesesentencesvith

interactiontype I (“citances”).

Thereareoftenmary differenthamedor thesame
protein. We use LocusLink® protein identification
numbersand synorym namedsfor eachprotein,and
extractthe sentencethatcontainanexactmatchfor
(somesynorym of) eachprotein. By beingconser
vative with proteinnamematchingandby notdoing
co-referencanalysiswe missmary candidatesen-
tenceshowever this methodis very precise.

On average,for “papers;, we extracted0.5 sen-
tencesper triple (maximum of 79) and 50.6 sen-
tencesper interaction(maximumof 119); for “ci-
tances’we extracted0.4 sentencepertriple (with a
maximumof 105)and49.2sentenceperinteraction
(162 maximum). We requireda minimum number
(40) of sentence$or eachinteractiontype for both
“papers’and“citances”;the 10interactionof Table
2 metthis requirementWe usedthesesentence$o
train andtestthe modelsdescribedelon’.

Sinceall the sentencesxtractedfrom onetriple
are assignedhe sameinteraction,we ensuredthat
sentencefom thesameriple did notappeain both
thetestingandthetrainingsets.Roughly75%of the
datawereusedfor trainingandtherestfor testing.

As mentionedabove the goalis to automatically
associatéo eachtriple aninteractiontype. Thetask
tackledhereis actuallyslightly moredifficult: given
somesentencesxtractedfrom article A, assignto
A aninteractiontype I andextractthe proteinsP P
involved. In otherwords, for the purposeof clas-
sification, we actasif we do not have information
aboutthe proteinsthatinteract. However, giventhe
way the sentenceextraction was done, all the sen-
tencesextractedfrom A containthe PP.

SLocusLink was recently integrated into En-
trez Gene, a unified query ervironment for genes
(http://www.ncbi.nlm.nih.ge/entrez/querycgi?db=gene).

"We alsolooked at larger chunksof text, in particular we
extractedthe sentencecontainingthe PP alongwith the pre-
vious and the following sentencesand the three consecutie
sentenceshat containedthe PP (the proteinscould appearin
ary of the sentences)However, the resultsobtainedby using
thesdargerchunkswereconsistentlyworse.



[ Interaction | Papers | Citances |
Degrades 60 63
Synergizes with 86 101
Stimulates 103 64
Binds 98 324
I nactivates 68 92
I nteracts with 62 100
Requires 96 297
Upregulates 119 98
Inhibits 78 84
Suppresses 51 99
Total 821 1322

Table2: Numberof interactionsentencesxtracted.

Figure 1. Dynamicgraphicalmodel (DM) for pro-
teininteractionclassification(androle extraction).

A hand-assessmemtf the individual sentences
shavs thatnot every sentencehat mentionsthe tar-
getproteinsP P actuallydescribegheinteraction!
(seeSection5.4). Thusthe evaluationon thetestset
is done at the documentlevel (to determineif the
algorithm can predictthe interactionthat a curator
would assignto a documentas a whole given the
proteinpair).

Notethatwe assumdnerethatthe paperghatpro-
vide the evidencefor the interactionsaregiven—an
assumptiomot usuallytruein practice.

4 Models

For assigninginteractions,we usedtwo generatre
graphicalmodelsanda discriminative model. Fig-
ure 1 shaws the generatre dynamic model, based
on previous work on role and relation extraction
(RosarioandHearst2004)wherethetaskwasto ex-
tractthe entitiesTREATMENT and DISEASE and
the relationshipsbetweenthem. The nodeslabeled
“Role” representheentities(in this casehechoices
are PROTEIN andNULL); the childrenof therole
nodesare the words (which act as features),thus
thereareasmary role statesastherearewordsin the
sentencethis modelconsistof a Markov sequence
of statesvhereeachstategenerate®neor multiple
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obsenations. This modelmakesthe additionalas-
sumptionthat thereis an interactionpresentin the
sentencérepresentetly thenode“Inter.”) thatgen-
eratesthe role sequencendthe obsenrations. (We
assumdnerethatthereis asingleinteractionfor each
sentence.) The “Role” nodescan be obsenred or
hidden. Theresultsreportedherewereobtainedus-
ing only the wordsasfeatures(i.e., in the dynamic
model of Figure 1 thereis only one featurenode
perrole) andwith the“Role” nodeshidden(i.e.,we
had no information regarding which proteinswere
involved). Inferenceis performedwith the junction
treealgorithn?.

We useda secondype of graphicalmodel,a sim-
ple Naive Bayes,in which thenoderepresentinghe
interactiongeneratethe obsenablefeatureqall the
wordsin the sentence) We did notincluderole in-
formationin this model.

We defined joint probability distributions over
thesemodels,estimatedusingmaximumlik elihood
on the training setwith a simpleabsolutediscount-
ing smoothingmethod.We performedl0-fold cross
validation on the training set and we chosethe
smoothingparameterdor which we obtainedthe
bestclassificatiomaccuraciegaveragedover theten
runs)on the training data;the resultsreportedhere
were obtainedusing theseparameter®n the held-
outtestsets.

In addition to thesetwo generatie models,we
alsouseda discriminative model,a neuralnetwork.
We usedthe Matlab packagédo train afeed-forward
network with conjugate gradientdescent.The net-
work hasonehiddenlayer, with ahyperbolictangent
function, and an outputlayer representinghe rela-
tionships.A logistic sigmoidfunctionis usedin the
outputlayer The network was trainedfor several
choicesof numbersof hiddenunits; we chosethe
best-performingnetworks basedon training seter-
ror. We thentestedthesenetworks on held-outtest-
ing data.Thefeaturesverewords,the sameasthose
usedfor thegraphicalmodels.

8UsingKevin Murphy’s BNT package:
http://www.cs.ubc.ca/ murptk/Software/BNT/bnt.html.

®We did nothave enougtdatato requirethatthesentencei
thetraining andtestsetsof the crossvalidation procedue orig-
inatefrom disjointtriples(they do originatefrom disjointtriple
in thefinal heldoutdata).This mayresultin alessthanoptimal
choiceof the parametergor the aggrgjate measureslescribed
below.



All Papers Citances
Mj Cf Mj Cf Mj Cf
DM 60.5| 59.7| 57.8| 55.6 || 53.4| 54.5
NB 58.1| 61.3| 57.8| 55.6 || 55.7 | 54.5
NN 63.7| - 44.4| - 55.8| -
Key 20.1| - 244 - 204 | -
KeyB || 25.8| - 40.0| - 26.1| -
Base. 21.8 11.1 26.1
Table 3: Accuraciesfor classificationof the 10

protein-proteininteractionsof Table 2. DM: dy-
namic model, NB: Naive Bayes, NN: neural net-
work. Baselines: Key: trigger word approach,
KeyB: trigger word with bacloff, Base: the accu-
ragy of choosingthe mostfrequentinteraction.

Thetaskis the following: given atriple consist-
ing of a PP and an article, extract the sentences
from the article that containboth proteins. Then,
predictfor the entire documentone of the interac-
tions of Table 2 given the sentence®xtractedfor
thattriple. Thisis a 10-way classificationproblem,
which is significantly more complex than much of
therelatedwork in which thetaskis to make the bi-
nary prediction(seeSection2).

5 Results

The evaluation was done on a document-by-
documenbasis.Duringtesting,we choosdheinter-

actionusingthe following aggreate measureshat
usetheconstrainthatall sentencesomingfrom the

sametriple areassignedhe sameinteraction.

e Mj: For eachtriple, for eachsentenceof the
triple, find the interactionthat maximizesthe
posterior probability of the interaction given
the features; then assignto all sentenceof
this triple the mostfrequentinteractionamong
thosepredictedfor theindividual sentences.

e Cf: Retainall the conditionalprobabilities(do
not choosean interactionper sentence)then,
for eachtriple, chooseaheinteractionthatmax-
imizesthesumover all thetriple’'s sentences.

Table 3 reportsthe resultsin terms of classifi-
cation accuraciesaveragedacrossall interactions,
for the cases“all” (sentencedrom “papers” and
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“citances” together),only “papers” and only “ci-
tances”. The accuraciesare quite high; the dy-
namic model achieves around60% for “all,” 58%
for “papers” and 54% for “citances. The neural
net achieves the bestresultsfor “all” with around
64% accurag. Fromtheseresultswe canmalke the
following obsenations: all modelsgreatly outper
form thebaselinestheperformancesf thedynamic
modelDM, theNaive BayesNB andtheNN arevery
similar; for “papers”the bestresultswere obtained
with the graphicalmodels;for “all” and“citances”
the neuralnet did best. The useof “citances” al-
lowedthegatheringof additionaldata(andtherefore
a larger training set) that lead to higheraccuracies
(see“papers”versus‘all”).

In the confusionmatrix in Table5 we canseethe
accuraciegor theindividual interactiondor the dy-
namicmodel DM, using“all” and“Mj.” For three
interactionghis modelachiesesperfectaccurag.

5.1 Hiding the protein names

In orderto ensurethat the algorithmwas not over
fitting on the proteinnameswe ran an experiment
in which we replacedthe proteinnamesin all sen-
tencewith thetoken“PROT _NAME.” For example,
thesentence?SelectiveCXCR4antagonismby Tat”
became:“Selective PROT_NAME2 antagonismby
PROT_NAME1!

Table 5.1 shaws the resultsof runningthe mod-
els on this data. For “papers”and “citances”there
is always a decreasen the classificationaccurayg
whenwe remove the protein names,shoving that
the protein namesdo help the classification. The
differencesn accurag in the two casesusing “ci-
tances”aremuchsmallerthanthe differencesusing
“papers”atleastfor thegraphicalmodels.This sug-
geststhatcitation sentencemay be morerobustfor
somelanguageprocessindgasksandthatthe models
thatuse“citances”learnbetterthelinguistic context
of theinteractionsNotehow in this casethegraph-
ical modelsalwaysoutperformthe neuralnetwork.

5.2 Usinga “trigger word” approach

As mentionedaborve, much of the relatedwork in

this field makesuseof “trigger words” or “interac-
tion words” (seeSection2). In orderto (roughly)
compareourwork andto build amorerealisticbase-
line, we createda list of 70 keywordsthatarerepre-



Prediction Acc.
Truth DISYW [ S]] B[Ina|[IW][RJ]Up]JInhTSu (%)
Degrades (D) 5 ol 0] O 0 o|oO0 0 0 0 || 100.0
Synergizeswith (SyW) | 0 1| 0 0 0 1|10 3 3 0 12.5
Stimulates (St) 0 o| 4| O 0 0| 6 0 1 0 36.4
Binds (B) 0 0| 0] 18 0 411 1 3 0 66.7
Inactivates (I1na) 0 0| 0] O 9 0|0 0 0 0 || 100.0
I nteracts with (1W) 0 0| 4] 3 0 5|1 0 1 2 31.2
Requires (R) 0 o| 0| O 0 3|3 0 1 1 375
Upregulates (Up) 0 0| 0| 2 1 0| 0] 12 2 0 70.6
Inhibits (Inh) 0 o| 0| 3 0 0|1 1| 12| 0 70.6
Suppresses (Su) 0 0| 0| O 0 0| O 0 0 6 || 100.0

Table4: Confusionmatrix for the dynamicmodelDM for “all,” “Mj.” Theoverall accuray is 60.5%. The
numbersndicatethe numberof articles A (eachpaperhasseveralrelevantsentences).

All Papers Citances
M;j Cf Diff M;j Cf Diff M;j Cf Diff
DM || 60.5| 60.5| 0.7% 4441 40.0| -25.6% || 52.3 | 53.4 | -2.0%
NB 59.7 | 59.7 | 0.1% 46.7 | 51.1 | -11.7% || 53.4 | 53.4 | -3.1%
NN || 51.6 -18.9% || 44.4 0% 50.0 -10.4%

Table5: Accuraciedor the classificationof the 10 protein-proteininteractionsof Table2 with the protein
namesemoed Columnsmarked Diff shav thedifferencein accurag (in percentagesyith respecto the
original caseof Table3, averagecbver all evaluationmethods.

sentatve of the 10 interactions. For example, for

the interactiondegrade someof the keywords are
“degradatiori, “degradé; for inhibit we have “inhib-

ited; “inhibitor,” “inhibitory” andothers. We then
checled whethera sentencecontainedsuch key-

words. If it did, we assignedo the sentencehe
correspondingnteraction.If it containednorethan
onekeyword correspondingo multiple interactions
consistingof the genericinteract with plus a more
specificone,we assignedhe morespecificinterac-
tion; if thetwo predictednteractionslid notinclude
interact with but two morespecificinteractionswe

did not assignan interaction, since we wouldn't

knowv how to choosebetweenthem. Similarly, we

assignedo interactionif thereweremorethantwo

predictednteractionsor no keywordspresenin the
sentenceTheresultsareshavn in the rows labeled
“Key” and“KeyB” in Table3. Case'KeyB” is the
“Key” methodwith back-of: whenno interaction
waspredictedwe assignedo the sentenceéhe most
frequentinteractionin the training data. As before,
we calculatedthe accurag when we force all the
sentence$rom onetriple to be assignto the most
frequentinteractionamongthosepredictedfor the
individual sentences.

KeyB is more accuratethan Key and although
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the KeyB accuraciesrehigherthanthe otherbase-
lines, they are significantly lower than those ob-
tainedwith the trainedmodels. The low accuracies
of thetriggerword basednethodsshav thatthere-
lation classificationtask is nontrivial, in the sense
that not all the sentencesontainthe mostobvious
word for theinteractionsandsuggestshatthetrig-
gerword approachis insufficient.

5.3 Protein extraction

The dynamicmodel of Figure 1 hasthe appealing
property of simultaneouslyperforming interaction
recognitionand protein nametagging (also known
asrole extraction): the task consistsof identifying
all the proteinspresentin the sentencegiven a se-
guenceof words. We assessed slightly different
task: theidentificationof all (andonly) the proteins
presenin thesentence¢hatare involvedin theinter-
action

The F-measur® achiered by this modelfor this
taskis 0.79for “all,” 0.67for “papers”and0.79for
“citances”; again, the model parametersvere cho-
senwith crossvalidationonthetrainingset,and“ci-

9The F-measurés a weightedcombinationof precisionand
recall. Here,precisionandrecallaregivenequalweight, thatis,
F-measure (2« PRE « REC)/(PRE + REC).



tances’hadsuperiomperformanceNotethatwe did
not usea dictionary: the systemlearnedto recog-
nize the proteinnamesusingonly the training data.
Moreover, our role evaluationis quite strict: every
tokenis assessedndwe do not assignpartial credit
for constituentdor which only someof the words
are correctly labeled. We also did not usethe in-
formationthat all the sentencesxtractedfrom one
triple containthe sameproteins.

Given thesestrongresults(both F-measureand
classificationaccuracies)we believe that the dy-
namic model of Figure 1 is a good modelfor per
forming both nametaggingandinteractionclassifi-
cationsimultaneouslyor eitherof thesetaskalone.

5.4 Sentence-lgel evaluation

In additionto assigningnteractiongo proteinpairs,
we are interestedin sentence-kel semanticsthat
is, in determiningthe interactionsthat are actually
expressedn the sentenceTo testwhethertheinfor-
mationassignedo the entiredocumenby the HIV-
1 databaseecordcanbe usedto infer information
at the sentencdevel, an annotatorwith biological
expertisehand-annotatethe sentencefrom the ex-
periments. The annotatorwas instructedto assign
to eachsentenceneof the interactionsof Table2,
“not interacting; or “other” (if the interactionbe-
tweenthetwo proteinswasnot oneof Table?2).

Of the 2114 sentenceghat were hand-labeled,
68.3%o0f themdisagreedavith theHIV-1 databaséa-
bel, 28.4%agreedwith thedatabaséabel,and3.3%
werefoundto containmultiple interactionsetween
the proteins. Among the 68.3% of the sentences
for which the labelsdid not agree,17.4% had the
vagueinteract with relation, 7.4% did not contain
ary interactionand43.5%hadaninteractiondiffer-
ent from that specifiedby the triple'l. In Table 6
we reportthe mismatchbetweenthe two setsof la-
bels. Thetotal accurag of 38.9942 providesa use-
ful baselinefor usinga databasdor the labelingat
the sentencdevel. It may be the casethat certain
interactiongendto be biologically relatedandthus

For 28%of thetriples,noneof thesentenceextractedfrom
the tamget paperwerefound by the annotatorto containthein-
teractiongiven by the database We readfour of thesepapers
andfound sentencesontainingthatinteraction but our system
hadfailedto extractthem.

2Theaccuray without the vagueinteractwith is 49.4%.
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All | Papers | Citan.
DM | 489 | 28.9 47.9
NB | 47.1| 333 53.4
NN | 529 | 36.7 63.2
Key | 30.5| 18.9 38.3
KeyB | 46.2 | 36.3 52.6
Base | 36.3| 344 37.6

Table7: Classificationaccuraciesvhenthe models
aretrainedandtestedon thehandlabeledsentences.

tendto co-occur(upregulateandstimulateor inacti-
vateandinhibit, for example).

We investicateda few of the casesn which the
labelswere “suspiciously” different, for examplea
casen which thedatabasénteractionwasstimulate
but the annotatorfound the sameproteinsto be re-
latedby inhibit aswell. It turnedoutthattheauthors
of thearticleassignedtimulatefoundlittle evidence
for this interaction(in favor of inhibit), suggesting
anerrorin thedatabaseln anothercasehedatabase
interactionwasrequire but theauthorsof thearticle,
while supportingthis, foundthatundercertaincon-
ditions (whena proteinis too abundant)theinterac-
tion changedo one of inhibit. Thuswe were able
to find controversialfactsaboutproteininteractions
just by looking atthe confusionmatrix of Table6.

We trainedthe modelsusing thesehand-labeled
sentencedn orderto determinethe interactionex-
pressedor eat sentencgas opposedto for each
document). This is a difficult task; for somesen-
tencesit took the annotatorseveral minutesto un-
derstandhemanddecidewhichinteractionapplied.
Table 7 shows the results on running the classi-
fication modelson the six interactionsfor which
therewere more than 40 examplesin the training
sets. Again, the sentence$rom “papers” are espe-
cially difficult to classify;thebestresultfor “papers”
is 36.7% accurag versus63.2% accurag for “ci-
tances. In this casethe differencein performance
of “papers”and“citances”is largerthanfor the pre-
vioustaskof document-lgel relationclassification.

6 Conclusions

We tackledanimportantanddifficult task,the clas-
sificationof differentinteractiontypesbetweemro-
teinsin text. A solution to this problem would
have animpacton a variety of importantchallenges
in modernbiology. We useda protein-interaction



Annotator

Database D | SYW St B | Ina R Up | Inh Su IW | Ot | No
Degrades (D) 44 0 2 5 6 5 2 0 23 9111 6
Synergizes with (Syw) 0 78 3 14 0 13 8 0 0 26 | 31| 11
Stimulates (St) 0 5 23 12 0 8 7 5 1 26 | 60 | 18
Binds (B) 0 6 9| 118 0 25 8 10 1| 129| 77| 22
I nactivates (I na) 0 0 4 25 0 2 4 33 6 14| 27| 11
Requires (R) 0 5 29 20 0 63 8 54 0 85| 80| 33
Upregulates (Up) 0 4 24 0 0 0| 124 2 0 21| 32 4
Inhibits (Inh) 0 8 4 8 2 2 2 43 9 24 | 37 | 19
Suppresses (Su) 3 0 0 1 5 0 0 42 34 33| 24 4
I nteracts with (1W) 0 1 5 28 1 12 6 1 1 49 | 27 | 28
Accuracy 936 | 729|223 51.1 0| 485 73.4| 22.7]| 453 11.8

Table 6. Confusionmatrix comparingthe hand-assignethteractionsandthoseextractedfrom the HIV-1
databaseOt: sentence$or which the annotatorfound aninteractiondifferentfrom thosein Table2. No:
sentence$or which the annotatorfound no interaction. The bottomrow shows the accurag of usingthe

databaséo labeltheindividual sentences.

databas#o automaticallygatherlabeleddatafor this
task, and implementedgraphical modelsthat can
simultaneouslyperform protein nametagging and
relation identification, achiezing high accurag on
both problems. We also found evidence support-
ing the hypothesighatcitation sentencearea good
sourceof trainingdata,mostlik ely becaus¢hey pro-
vide aconciseandpreciseway of summarizingacts
in the biosciencditerature.

Acknowledgments.We thankJaniceHamerfor her
help in labeling examplesand other biological in-
sights. This researclwassupportedy a grantfrom
NSFDBI-0317510anda gift from Genentech.

References

E. AgichteinandL. Gravano.2000. Snovball: Extractingrela-
tionsfrom large plain-text collections.Proc. of DL '00.

S.Ahmed,D. ChidambaramiH. Davulcu, andC. Baral. 2005.
Intex: A syntacticrole driven protein-proteininteractionex-
tractorfor bio-medicaltext. In ProceedingdSMB/ACL Bi-
olink 2005

C. Blaschle andA. Valencia. 2002. The frame-basedanodule
of the suisekiinformation extractionsystem. IEEE Intelli-
gentSystemgsl7(2).

C. Blaschle, M.A. Andrade,C. Ouzounis,and A. Valencia.
1999. Automaticextractionof biological informationfrom
scientifictext: Protein-proteinnteractions.Proc. of ISMB.

R. BunescuR. Ge,R. Kate, E. Marcotte,R. J. Mooney, A. K.
Ramani,andY. W. Wong. 2005. Comparatie experiments
on learninginformationextractorsfor protiensandtheir in-
teractions Artificial Intelligencein Medicing 33(2).

739

D. Corney, B. Buxton, W. Langdon,andD. Jones.2004. Bio-
rat: extracting biological information from full-length pa-
pers.Bioinformatics 20(17).

E. Marcotte,l. Xenarios,andD. Eisenbeg. 2001. Mining liter-
aturefor protein-proteirinteractions.Bioinformatics 17(4).

P. Nakov, A. Schwartz,andM. Hearst. 2004. Citances:Cita-
tion sentencefor semanticanalysisof biosciencetext. In
Proceedingof the SIGIR’04workshopon Seach and Dis-
coveryin Bioinformatics

T. Ono,H. Hishigaki, A. Tanigami,andT. Takagi.2001. Auto-
matedextraction of information on protein-proteininterac-
tionsfrom the biologicalliterature.Bioinformatics 17(1).

T. PhuongD. Lee,andK-H. Lee. 2003. Learningrulesto ex-
tractproteininteractionsrom biomedicaltext. In PAKDD.

J. Pustejesky, J. CastanoandJ. Zhang. 2002. Rolustrela-
tional parsingover biomedicalliterature: Extractinginhibit
relations.Proc. of Pac SympBiocomputing

C. Ramani,E. Marcotte,R. Bunescu,andR. Mooney. 2005.
Using biomedicalliteraturemining to consolidatethe setof
known humanprotein-proteininteractions. In Proceedings
ISMB/ACL Biolink 2005

T. RindfleschL. Hunter andL. Aronson.1999. Mining molec-
ularbindingterminologyfrom biomedicaltext. Proceedings
of the AMIA Symposium

BarbaraRosarioand Marti A. Hearst. 2004. Classifyingse-
manticrelationsin bioscienceexts. In Proc. of ACL 2004

T. Sekimizu,H.S. Park, and J. Tsujii. 1998. Identifying the
interactionbetweengenesand geneproductsbasedon fre-
quentlyseerverbsin medlineabstractsGen.Informat, 9.

J. Thomas,D. Milward, C. Ouzounis,and S. Pulman. 2000.
Automaticextraction of proteininteractionsfrom scientific
abstractsProceeding®f the Pac SympBiocomput

D. Zelenlo, C. Aone,andA. Richardella.2002. Kernelmeth-
odsfor relationextraction. Proceeding®f EMNLP 2002



