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Abstract

We should not have to look at the en-
tire corpus (e.g., the Web) to know if two
words are associated or notA powerful
sampling technique calle@ketchesvas
originally introduced to remove duplicate
Web pages. We generalize sketches to
estimate contingency tables and associa-
tions, using a maximum likelihood esti-
mator to find the most likely contingency
table given the sample, the margins (doc-
ument frequencies) and the size of the
collection. Not unsurprisingly, computa-
tional work and statistical accuracy (vari-
ance or errors) depend on sampling rate,
as will be shown both theoretically and
empirically. Sampling methods become
more and more important with larger and
larger collections. At Web scale, sampling
rates as low a$0~* may suffice.
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Approximations are often good enough. We
should not have to look at every document to de-
termine that two words are strongly associated. A
number of sampling-based randomized algorithms
have been implemented at Web scale (Broder, 1997;
Charikar, 2002; Ravichandran et al., 2065).

A conventional random sample is constructed by
selecting D, documents from a corpus dp doc-
uments. The (corpus) sampling rate % Of
course, word distributions have long tails. There
are a few high frequency words and many low fre-
quency words. It would be convenient if the sam-
pling rate could vary from word to word, unlike con-
ventional sampling where the sampling rate is fixed
across the vocabulary. In particular, in our experi-
ments, we will impose a floor to make sure that the
sample contains at lea2@ documents for each term.
(When working at Web scale, one might raise the
floor somewnhat to perhag®?.)

Sampling is obviously helpful at the top of the
frequency range, but not necessarily at the bottom
(especially if frequencies fall below the floor). The
guestion is: how about “ordinary” words? To answer
this question, we randomly picked 15 pages from

Word associations (co-occurrences) have a wickLearners’ dictionary (Hornby, 1989), and selected
range of applications including: Speech Recognihe first entry on each page. According to Google,
tion, Optical Character Recognition and Informatiorihere arel0 million pages/word (median value, ag-
Retrieval (IR) (Church and Hanks, 1991; Dunninggregated over the 15 words), no where near the floor.
1993; Manning and Schutze, 1999). It is easy to Sampling can make it possible to work in mem-
compute association scores for a small corpus, b@fy, avoiding disk. At Web scale/{ ~ 10 billion
more challenging to compute lots of scores for lotfages), inverted indexes are large (1500 GBs/billion
of data (e.g. the Web), with billions of web pagegP@ges), probably too large for memory. But a sam-
(D) and millions of word types¥). For a small
corpus, one could compute pair-wise associations B+ sample of the entire web could fit in memory
multiplying the (0/1) term-by-document matrix with 0N @ single PC (1.5 GB).

its transpose (Deerwester et al., 1999). But this IS 2nyp./1abs.google.com/setsroduces fascinating sets, al-
probably infeasible at Web scale.

ple is more manageable; the inverted index for a

though we don’t know how it works. Given the seeds, “Amer-
ica” and “China,” http://labs.google.com/setgeturns: “Amer-

1This work was conducted at Microsoft while the first authorica, China, Japan, India, Italy, Spain, Brazil, Persia,oper
was an intern. The authors thank Chris Meek, David HeckerAustralia, France, Asia, Canada.”
man, Robert Moore, Jonathan Goldstein, Trevor Hastie, davi
Siegmund, Art Own, Robert Tibshirani and Andrew Ng.

3This estimate is extrapolated from Brin and Page (1998),
who report an inverted index of 37.2 GBs for 24 million pages.
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Table 1: The number of intermediate results after they ;l by fca+b X ;S gs Ny= act b
first join can be reduced from 504,000 to 120,000, J ¢l g fra+c X co| dg|VEG

by starting with “Schwarzenegger & Austria” rather D = atb+c+d Ds= agths+ cqd
than the baseline (“Schwarzenegger & Terminator”).

The standard practice of starting with the two least @ (0)

frequent terms is a good rule of thumb, but one caﬁ'gtge lC (I?):'Atr(]:ontlngsncyftgble for v;/oﬁ atnd
do better, given (estimates of) joint frequencies. Vo' Y- “€lla1Sthe humber of documents that con-
tain bothx andy, b is the number that contain but

Query Hits (Google) noty, ¢ is the number that contain but notz, and
Austria 88,200,000 . . .

Governor 37,300,000 d is the number that contain neithernor y. The
Schwarzenegger 4,030,000 margins,f, = a + b andf, = a + c are known as
Terminator 3,480,000 ing i ;

Governor & Schwarzensgger 1930.000 document freq'uenC|es in IED is the_‘ total number
Governor & Austria 708,000 of documents in the collection. (b): A sample con-
Schwarzenegger & Terminator 504,000 tingency table, with §” indicating thesample space
Terminator & Austria 171,000

Governor & Terminator 132,000

Schwarzenegger & Austria 120,000

1.2 Sampling and Estimation

Two-way associations are often represented as two-
way contingency tables (Figure 1(a)). Our task is to
Google returns the tog hits, plus an estimate of construct a sample contingency table (Figure 1(b)),
how many hits there are. Table 1 shows the numband estimate 1(a) from 1(b). We will use a max-
of hits for four words and their pair-wise combina-imum likelihood estimator (MLE) to find the most
tions. Accurate estimates of associations would haviely contingency table, given the sample and vari-
applications in Database query planning (Garciasus other constraints. We will propose a sampling
Molina et al., 2002). Query optimizers construct grocedure that bridges two popular choices: (A)
plan to minimize a cost function (e.g., intermediatessampling over documents and (B) sampling over
writes). The optimizer could do better if it could postings. The estimation task is straightforward and
estimate a table like Table 1. But efficiency is im-well-understood for (A). As we consider more flexi-
portant. We certainly don’t want to spend more timéle sampling procedures such as (B), the estimation
optimizing the plan than executing it. task becomes more challenging.

Suppose the optimizer wanted to construct a plan Flexible sampling procedures are desirable. Many
for the query: “Governor Schwarzenegger Termistudies focus on rare words (Dunning, 1993; Moore,
nator Austria.” The standard solution starts witl2004); butterflies are more interesting than moths.
the two least frequent terms: “Schwarzenegger” anthe sampling rate can be adjusted on a word-by-
“Terminator.” That plan generates 504,000 intermeword basis with (B), but not with (A). The sampling
diate writes after the first join. An improvementrate determines the trade-off between computational
starts with “Schwarzenegger” with “Austria,” reduc-work and statistical accuracy.
ing the 504,000 down to 120,000. We assume a standard inverted index. For each

In addition to counting hits, Table 1 could alsoword z, there are a set of posting%,. X contains a
help find the topk pages. When joining the first pair set of document IDs, one for each document contain-
of terms, we'd like to know how far down the rank-ing z. The size of postingsf, = |X|, corresponds
ing we should go. Accurate estimates of associatiorie the margins of the contingency tables in Figure
would help the optimizer make such decisions. 1(a), also known as document frequencies in IR.

It is desirable that estimates be consistent, as well The postings lists are approximated &ietches
as accurate. Google, for example, reports 6 millionk X, first introduced by Broder (1997) for remov-
hits for “America, China, Britain,” and 23 million for ing duplicate web pages. Assuming that document
“America, China, Britain, Japan.” Joint frequenciedDs are random (e.g., achieved by a random permu-
decrease monotonically:c S = hits(s) > hits(S).  tation), we can computek X, a random sample of

1.1 An Application: The Governator
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X, by simply selecting the first few elements_st

In Section 3, we will propose using sketches
to construct sample contingency tables. With this
novel construction, the contingency table (and sum-
mary statistics based on the table) can be estimated
using conventional statistical methods such as MLE.

Sketch
0.5

.
.

Percentage of inersections

_.--~ Random sampling

2 Broder's Sketch Algorithm 802 04 06 08 1
Sampling rates

One could randomly sample two postings and intefsigure 2: Sketches (solid curves) dominate random
sect the samples to estimate associations. The skef@mpling (dashed curvey=0.22, 0.38, 0.65, 0.80,
technique introduced by Broder (1997) is a signifi0-85f, f=0.2D, D=10°. There is only one dashed
cant improvement, as demonstrated in Figure 2. curve across all values of There are different but
Assume that each document in the corpus of sizBdistinguishable solid curves dependingan
D is assigned a unique random ID betwéeand D.
The postings for word is a sorted list off, doc IDS.  Recall that the doc IDs span the integers from
The sketchsk X, is the first (smallesty,, doc IDsin 5 p with no gaps. When we compare two sketches,
X. Brode_r used MIN(Z) to denote thes smallest ;. x andskY, we have effectively looked @b, =
elements in the set/. Thus,skX = MIN,_ (X). min{skX(s,), skY(s,)} documents, wheret X ;) is
Similarly, Y denotes the postings for word and e jth smallest element iskX. The following
skY denotes its sketch, MIN(Y'). Broder assumed ¢onsiruction generates the sample contingency ta-
Sg = Sy = S ble, as, bs, cs, ds (as in Figure 1(b)). The example

Sel?nrglg%g]%ﬁ?%j breezsemblanch and sample re- g yn ijn Figure 3 may help explain the procedure.

_ a _ IMIN(skX U skY) N skX NskY]|

= , R, = Ds = min{skX(,,),skY(, }, as = [skX NskY],
a+b+c IMIN 5 (skX U skY)|

ne = sz — |{j : skX(;) > Ds}l,
Broder (1997) proved thaR, is an unbiased esti- " = sy — [{j : skY(;) > Ds}l;
mator of R. One could useR, to estimaten but he ~ bs =7« —as, ¢ =ny —as, ds =Ds —as —bs —cs.
didn’t do that, and it is not recommendéd. ) .
. . Given the sample contingency table, we are now
Sketches were designed to improve the coverage

of a, as illustrated by Monte Carlo simulation in Fig- gady o es_tlmate the contingency table. Itis suffi
: . cient to estimate, since the rest of the table can be
ure 2. The figure plots, E% ), percentage of inter- : : )

. . a . . determined fromy,, f, andD. For practical appli-
sections, as a function of (postings) sampling rate,_.. .
8 . ~ Lo Cations, we recommend the convenient closed-form
%, wheref, = f, = f, s, = s, =s. The solid lines D . .

S approximation (8) in Section 5.1.

(sketches), E%) ~ % are above the dashed curve
. 2 . . H H

(random sampling), E%) = 5. The difference is 4 Margin-Free (MF) Baseline

particularly important at low sampling rates.

Before considering the proposed MLE method, we
introduce a baseline estimator that will not work as
well because it does not take advantage of the mar-
Sketches were first proposed for estimating resengins. The baseline is thaultivariate hypergeomet-
blance R). This section generalizes the method tgic model, usually simplified asraultinomialby as-

construct sample contingency tables, from which weuming “sample-with-replacement.”
can estimate association®; LLR, cosine, etc. The sample expectations are (Siegrist, 1997),

3 Generalizing Sketches:R — Tables

“There are at least three problems with estimatinigom E(as) = &% E(bs) = Ds b,
R.. First, the estimate is biased. Secondly, this estimate use D D
just s of the 2 x s samples; larger samples smaller errors. E(cs) = Dsc E(dy) = D d 1)
Thirdly, we would rather not impose the restriction; = s,. ° D" ° D
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to randomly sampling)s documents from the cor-
X34 791015 18 19 24 25 pus. Based on this key observation and Figure 3,
vzaseslied 222 1 (4[] €)r Js| conditional on Dy, P(as,bs,cs,ds|Ds;a) is the PMF

f=11 fy=11a=5 Dy=18(9)(0 1 12 18 [ )5 16 of 5 two-way sample contingency table.

Zi; bl gsyf: 17! 20 ... - We factor the full likelihood into:
- S S

Plas,bs,cs,ds;a) = P(as,bs,cs,ds|Ds;a) X P(Ds;a).

(@ (b)
Figure 3: (a): The two sketcheskX and skY e .
(larger shaded box), are used to construct a samP(Ds’a) s difficult. However, since we do not ex-

ple contingency tableus, bs, cs,ds. skX consists pect a strong dependency &, on a, we maxi-
of the firsts, — 7 doc IDs in X, the postings for mize the partial likelihood instead, and assume that

word z. Similarly, skY" consists of the firss, — 7 is good enough. An example of partial likelihood is

doc IDs inY, the postings for worg. There are 11 thc_e Cox proportional hazards model in_survival anal-
doc IDs in bothX andY . anda — 5 doc IDs in VSIS (Venables and Ripley, 2002, Section 13.3) .
' - Our patrtial likelihood is

the intersection{4, 15, 19, 24, 28. (a) shows that

Dy = min(18,21) = 18. Doc IDs 19 and 21 are (&) Py (fu=a) (P—Fetfuta)

excluded because we cannot determine if they are i (@s;bs, ¢s,ds|Ds3a) = ——— ("D) *

the intersection or not, without looking outside the | — . Jf

box. As it turns out, 19 is in the intersection and o« [] (a—i) x [ (fo —a—1i) x H —a—1i)

21 is not. (b) enumerates the, = 18 documents, i=0 i=

showing which documents contain(small circles) et .

and which containy (small squares). Both proce- 11 D= fo = fyta=i), )
dures, (a) and (b), produce the same sample contin-

gency tablen, = 2, by = 5, ¢ = 3 andd, = 8. where(") = Wlm), . “o<” is “proportional to.”

_ _ _ _ We now derive an MLE for (4), a result that was
The margin-free estimator and its variance are  not previously known, to the best of our knowledge.

inir = Loy Varaup) = 2L D=D: 5 Let Gy p maximizeSlog P (as, bs, ¢s, ds| Ds; a):
aAMF = D. amMF D 1 Dl,a D1
. e _— -
For the multinomial simplification, we have Z log(a i) + Z log (fs —a — )
D 1

as, Var(de,r) = — (3) cs—1 ds—1

D, % L . .
= ¥ D + > log(fy—a—i)+ Y log(D—fo—fy+a—i),
=0 i=0

where " indicates “sample-with-replacement.”
The term &5:8: ~ 2-P: s often called the

N D
aAMF,r = D_
S

810gp(as,b57057ds ‘Dm )

. N whose first derivative; is
“finite- sample correctlon factor” (Siegrist, 1997). 9a '
5 The Proposed MLE Method E e I = T =
] ) ) iz_;a—i Zzzfz—a—i z;fy—a—z
The task is to estimate the contingency table from
the samples, the margins aindl We would like to +3 ! N (5)
use a maximum likelihood estimator for the most = Do futazi

probablea, which maximizes the (full) likelihood

(probability mass function, PMFP(a,, bs, c.,ds;a).  Since the second derivativé e (“sg’;f“ds'D si0),
Unfortunately, we do not know the exact expresis negative, the log likelihood function is concave,
sion for P(as, bs, cs, ds; a), but we do know the con- hence has a unique maximum. One could numeri-
ditional probability P(a., b, c., ds|Ds;a).  Since the cally solve (5) foralogP(“S’ng’dsms;“) = 0. How-
doc IDs are uniformly random, sampling the firstever, we derive the exact solution using the follow-
D, contiguous documents is statistically equivalening updating formula from (4):
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Under “sample-with-replacement,” we have

P (as,bs,cs,ds|Ds;a) = P (as,bs,cs,ds|Ds;a — 1) X . aye <fz—a>b5
fo—a+1-b fy—a+l—c, D—f.—f,+a P(an b endsiDsianr)  (5) 7 x (5
x + 1 - + 1 D — Jxr — + - ds — Cs —_ — ds
foa fo=a fo—Jyta x <—fy a) y (—D I fy+“) : (10)
a—a :P(a57bsacs7d5|DS;a’_1)Xg(a)' (6) D D
o o _ Therefore, the Fisher Inf ion(al), i
Since our MLE is unique, it suffices to findfrom erefore, the Fisher Informatiort), is
g(a) = 1, which is a cubic function in. Bla.) | _E() | _Ele) | Bd:)
a? (fo—a)” (fy—a)” (D-fa—fy+a)
5.1 A Convenient Practical Approximation (11)

Rather than solving the cubic equation for the ex-We plug (1) from the margin-free model into (11)
act MLE, the following approximation may be more2s &N approximation, to obtain
convenient. Assume we sampig = a; + b, from Var (ane) ~ & -1
X and obtainz; co-occurrences without knowledge

of the samples fronY". Further assuming “sample-
with-replacement,i, is then binomially distributed,
as ~ Binom(ng, ). Similarly, assumex
Binom(n,, fiy). Under these assumptions, the PM
of a, is a product of two binomial PMFs:

1 1 1 1 ) (12)
Tttt o

which is @ multiplied by 272, the “finite-
sample correction factor,” to consider “sample-
I._Without-replacement.”

We can see that V&6, g) is less than
Var (apr) in (2). In addition,ay, g is asymptoti-

. . . .. cally unbiased whilé ;r is no longer unbiased un-
<f“”> <i) ! (f’” _“> ) (fy> <i> ! <fy _a> " der margin constraints. Therefore, we expegt, &
ne) \Je fx ) Ny Ty has smaller MSE thai; . In other words, the pro-
oca®™ (fr = )" (fy —a)*. (") posed MLE method is more accurate than the MF
Setting the first derivative of the logarithm of (7) tobaseline, in terms of variance, bias and mean square
be zero, we obtaiﬁg—s _ ﬁ _ f;ia — 0, whichis error. If we know the margins, we ought to use them.
quadratic in: and has a solution: 5.3 Unconditional Bias and Variance
. _ fa(2as +¢5) + fy (2as + bs) Gk is also unconditionally unbiased:
AMLE,a =
2 (2as +bs +¢s) E(amre —a) = E(E(amre — a|Ds)) =~ E(0) = 0. (13)

2
R I Afelubecs o) The unconditional variance is useful because often

2(20s +bs +cs) we would like to estimate the errors before knowing

Section 6 shows thaty/1.r . is very close ta@iy .r. D, (€.9., for choosing sample sizes).
To compute the unconditional variancedf .z,

5.2 Theoretical Evaluation: Bias and Variance \ye should replacel% with E(D%,) in (12). We

How good are the estimates? A popular MetriGasort to an approximation de(D%)_ Note that

. R )

IS mean square efror (MSEMSE() = E(a —a)® = skX(.,, is the order statistics of a discrete random

Var (a) +Bias’ (a). If  is unbiasedMSE(a) =Var(a) = variable (Siegrist, 1997) with expectation

SE? (a), where SE is the standard error. Here all ex- D+ 1)

pectations are conditional ai,. E (skX(s,)) = % ~ ;iD. (14)
Large sample theory (Lehmann and CasellaB ] . lit ’ K t; ‘

1998, Chapter 6) says that, under “sample-with- y Jensens inequality, we know tha

replacement,a . is asymptotically unbiased and E <DS> < min [ E (skX(s,)) E(skY(s,))
converges to Normal with meanand varianc%, - D ' D
where [a), the Fisher Information, is — min <s_z s_y) (15)
fo' fy
9? D 1 fo Sy
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Table 2: Gold standard joint frequencies, Docu- 30 10°

ment frequencies are shown in parentheses. The: 2 K700
words are frequent, suitable for evaluating our algo rn 20 g
rithms at very low sampling rates. § =
THIS HAVE HELP PROGRAM &) 10 g
THIS (27633) — 13517 7221 3682
T AL Bocz g ot o w0 w0 w0 0 07

PROGRAM (5327) 3682 3029 1949 —

(@) (b)
Replacing the inequalities with equalities undered-igure 4: How large should the sampling rate be?

timates the variance, but only slightly. (@): We can sample up to the “elbow poin2Z%),
_ but after that there are diminishing returns. (b): An
5.4 Smoothing analysis based on cv = 0.5 suggests that we can

Although not a major emphasis here, our evalugget away with much lower sampling rates. The three

tions will show thatay; ;£ s, @ smoothed version curves plot the critical value for the sampling rate,

of the proposed MLE method, is effective, espe-%", as a function of corpus sizé). At Web scale,

cially at low sampling rates.ay;r g uses “add- D = 1010, sampling rates above)—3 to 10~° sat-

one” smoothing. Given that such a simple methotfy cv < 0.5, at least for these settings ¢f, f,

is as effective as it is, it would be worth consideringanda. The settings were chosen to simulate “ordi-

more sophisticated methods such as Good-Turing.nary” words. The three curves correspond to three
choices of f,: D/100, D/1000, and D/10,000.

5.5 How Many Samples Are Sufficient? = f+/10,a = f,/20. SE is based on (12).

The answer depends on the trade-off between com-

putation and estimation errors. One simple rule i¢/ere randomly permutet0® times. For each per-

to sample 2%.” (12) implies that the standard er- mutation we constructed sketches from the inverted

ror is proportional to,/D/D, — 1. Figure 4(a) plots index at a series of sampling rates. The figure shows

V/D/D. —1 as a function of sampling rate, /D, in-  that the proposed method. ., is considerably

dicating a “elbow” abou2%. However,2% is too better (by20% — 40%) than the margin-free base-

large for high frequency words. line, apr . Smoothing is effective at low sampling

A more reasonable metric is the “coefficient ofrates. The recommended approximatiof.. z,q, is

variation,” cv = @ At Web scale (10 billion remarkably close to the exact solution.

pages), we expect that a very small sampling rate Figure 6 shows agreement between the theoreti-

such asl0—% or 10~? will suffice to achieve a rea- cal and empirical unconditional variances. Smooth-

sonable cv (e.g., 0.5). See Figure 4(b). ing reduces variances, at low sampling rates. We
used the empmcat( ) to compute the theoreti-

6 Evaluation cal variances. The approximatiomax (Sz, f’) is

Two sets of experiments were run on a collection of. (.95 ) at sampling rates- 0.01.
D = 2% web pages, provided by MSN. The first ex- Flgure 7 verifies that the proposed MLE is unbi-
periment considered 4 English words shown in Tagsed, unlike the margin-free baselines.
ble 2, and the second experiment considers 968 En- _
glish words with meanif = 2135 and mediadf = 6-2 Large Dataset Experiment
1135. They form 468,028 word pairs, with mean coThe large experiment considers 968 English words
occurrences = 188 and median = 74. (468,028 pairs) over a range of sampling rates. A
floor of 20 was imposed on sample sizes.

As reported in Figure 8, the large experiment con-
Figure 5 evaluates the various estimate methods iyms once again that proposed methaéd,; g, is
MSE over a wide range of sampling rates. Doc IDgonsiderably better than the margin-free baseline (by

6.1 Small Dataset Monte Carlo Experiment
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0.4

T S é HAVEprOGRAM 04 Theore-
0 IND [} HELP - PROGRAM
c 04 ---ME ko] MLE
w - _ < 0.2 0.3
g THIS - HAVE 7mt§ a . THIS - HELP % . _mtés .
2 _ g -
Q 0.2 ] 0.2t MLE+S
-% 02 ——MLE+S § 01 Theore.
€ AN T 0.1
5 £
Z Seol <]
\;_-_;__ e Z 0 %
00 0] 0.001 0.01 0.1 1 0.001 0.01 0.1 1
0.001 0.01 0.1 1 0.001 0.01 0.1 1 Sampling rates Sampling rates
o 0.4 Figure 6. The theoretical and empirical variances
o _
u THIS ~PROGRAM | 0.4 HAVEZHELP 1 show remarkable agreement, in terms %'?L
=
3 ' Smoothing reduces variances at low sampllng rates.
£02 0.2
g
(=] [%)]
= o T g 0.05 0.06 ‘.‘MF
odo1 o001 o1 1 0001 001 0.1 1 g HAVE -~ PROGRAM HELP - PROGRAM
o
© RS VL 2 0.04f
g 055 IND 3
4 0.4 “MF \ HELP - PROGRAM g 0.02 "
Qo. \ HAVE - PROGRAM | 0.4 \ 3 02l Er\
> LEaY, S
.GE) LE . § Sos MLE
TEG 0.2 . 0.2 8001 oo1 01 1 8001 001 0.1 1
5 MLE+S Sampling rates Sampling rates
zZ ST SRy ~
. . . o . (@)—a| 4 . )
obor oo1 o1 1 0%or  oo1 o1 1 Elgure 7 Blases in t_erms é?—a - aympE IS prac
Sampling rates Sampling rates tically unbiased, unlikéi ;. Smoothing increases

Figure 5: The proposed methath,;r outperforms
the margin-free baseliné,;r, in terms of%E05
The recommended approximatiaiw .z «, is close
to arrp. Smoothinganreys, is effective at low
sampling rates. All methods are better than assuriiVe proposed a novel sketch-based procedure for
ing independence (IND). constructing sample contingency tables. The
method bridges two popular choices: (A) sam-
pling over documents and (B) sampling over post-
ings. Well-understood maximum likelihood estima-
tion (MLE) technigues can be applied to sketches
(or to traditional samples) to estimate word associa-
tions. We derived an exact cubic solutién, g, as

6.3 Rank Retrieval: Top k Associated Pairs well as a quadratic approximatio&lMLE@_ The ap-
roximation is recommended because it is close to

bias slightly.

7 Conclusion

15% — 30%). The recommended approximation,:
aMLE,q, 1S close toayrp. Smoothing,anrre+s
helps at low sampling rates.

We computed a gold standard similarity cosine ran he exact solution, and easy to compute.
|ng of the 468,028 pairs using a 100% samples = y P

The proposed MLE methods were compared em-
\/fzfy + We then compared the gold standard to rankplrlcally and theoretically to a margin-free (MF)

ings based on smaller samples. Figure 9(a) congseline, finding large improvements. When we

pares the two lists in terms of agreement in thefop know the margins, we ought to use them.

For3 < k < 200, with asampling rate of 0005, the Samp|e_based methods (MLE & MF) are often

agreement is consistently 70% or higher. Increasingetter than sample-free methods. Associations are

sampling rate, increases agreement. often estimated without samples. It is popular to
The same comparisons are evaluated in terms agsume independence: (Garcia-Molina et al., 2002,

precision and recall in Figure 9(b), by fixing the topChapter 16.4), i.eg =~ f’”—[ﬁ’. Independence led to

1% of the gold standard list but varying the top perdarge errors in our experiments.

centages of the sample list. Again, increasing sam- Not unsurprisingly, there is a trade-off between

pling rate, increases agreement. computational work (space and time) and statistical

714



= <100 1
506 IND s —
5 MLE *+ é 80 0.8
g MLE2 8 60 oo 506
T 0.4 ® 2
o MLE+S g 40 g% 0.4
% g 20 0.2
o @ Top 1%
2 0.2 2o 0
I 3 10 100 200 0 0.2 0.4 0.6 0.8 1
© Top Recall
o
obo1 0.01 0.1 1 . (a) k)
Sampling rates Figure 9: (a): Percentage of agreements in the gold

Figure 8: We report the (normalized) mean absolutetandard and reconstructed (from samples) top 3 to

errors (divided by the mean co-occurrences, 188300 list. (b):Precision-recall curves in retrieving the

All curves are averaged over three permutationsop 1% gold standard pairs, at different sampling

The proposed MLE and the recommended approxiates. For examplei0% recall and70% precision

mation are very close and both are significantly beis achieved at sampling rate = 0.02.

ter than the margin-free (MF) baseline. Smoothing,

arrpss, helps at low sampling rates. All estima- sis. Journal of the American Society for Information
L Science41(6):391-407.

tors do better than assuming independence.

T. Dunning. 1993. Accurate methods for the statistics of
accuracy (variance or errors); reducing the sampling surprise and coincidenc&€omputational Linguistics
rate saves work, but costs accuracy. We derived 19(1):61-74.
formulas for variance, showing precisely how accuH. Garcia-Molina, J. D. Uliman, and J. D. Widom. 2002.
racy depends on sampling rate. Sampling methods Database Systems: the Complete Bdeientice Hall,
become more and more important with larger and NeW York, NY.
larger collections. At Web scale, sampling rates a&. S. Hornby, editor. 19890xford Advanced Learner’s
low as10~* may suffice for “ordinary” words. Dictionary. Oxford University Press, Oxford, UK.

We have recently generalized the sampling algq= | | ehmann and G. Casella. 1998heory of Point
rithm and estimation method to multi-way associa- Estimation Springer, New York, NY, second edition.

tions; see (Li and Church, 2005). P. Li and K. W. Church. 2005. Using sketches to esti-

mate two-way and multi-way associations. Technical

report, Microsoft Research, Redmond, WA.
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