
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 708–715, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Using Sketches to Estimate Associations

Ping Li
Department of Statistics

Stanford University
Stanford, California 94305

pingli@stat.stanford.edu

Kenneth W. Church
Microsoft Research
One Microsoft Way

Redmond, Washington 98052
church@microsoft.com

Abstract

We should not have to look at the en-
tire corpus (e.g., the Web) to know if two
words are associated or not.1 A powerful
sampling technique calledSketcheswas
originally introduced to remove duplicate
Web pages. We generalize sketches to
estimate contingency tables and associa-
tions, using a maximum likelihood esti-
mator to find the most likely contingency
table given the sample, the margins (doc-
ument frequencies) and the size of the
collection. Not unsurprisingly, computa-
tional work and statistical accuracy (vari-
ance or errors) depend on sampling rate,
as will be shown both theoretically and
empirically. Sampling methods become
more and more important with larger and
larger collections. At Web scale, sampling
rates as low as10−4 may suffice.

1 Introduction

Word associations (co-occurrences) have a wide
range of applications including: Speech Recogni-
tion, Optical Character Recognition and Information
Retrieval (IR) (Church and Hanks, 1991; Dunning,
1993; Manning and Schutze, 1999). It is easy to
compute association scores for a small corpus, but
more challenging to compute lots of scores for lots
of data (e.g. the Web), with billions of web pages
(D) and millions of word types (V ). For a small
corpus, one could compute pair-wise associations by
multiplying the (0/1) term-by-document matrix with
its transpose (Deerwester et al., 1999). But this is
probably infeasible at Web scale.

1This work was conducted at Microsoft while the first author
was an intern. The authors thank Chris Meek, David Hecker-
man, Robert Moore, Jonathan Goldstein, Trevor Hastie, David
Siegmund, Art Own, Robert Tibshirani and Andrew Ng.

Approximations are often good enough. We
should not have to look at every document to de-
termine that two words are strongly associated. A
number of sampling-based randomized algorithms
have been implemented at Web scale (Broder, 1997;
Charikar, 2002; Ravichandran et al., 2005).2

A conventional random sample is constructed by
selectingDs documents from a corpus ofD doc-
uments. The (corpus) sampling rate isDs

D
. Of

course, word distributions have long tails. There
are a few high frequency words and many low fre-
quency words. It would be convenient if the sam-
pling rate could vary from word to word, unlike con-
ventional sampling where the sampling rate is fixed
across the vocabulary. In particular, in our experi-
ments, we will impose a floor to make sure that the
sample contains at least20 documents for each term.
(When working at Web scale, one might raise the
floor somewhat to perhaps104.)

Sampling is obviously helpful at the top of the
frequency range, but not necessarily at the bottom
(especially if frequencies fall below the floor). The
question is: how about “ordinary” words? To answer
this question, we randomly picked 15 pages from
a Learners’ dictionary (Hornby, 1989), and selected
the first entry on each page. According to Google,
there are10 million pages/word (median value, ag-
gregated over the 15 words), no where near the floor.

Sampling can make it possible to work in mem-
ory, avoiding disk. At Web scale (D ≈ 10 billion
pages), inverted indexes are large (1500 GBs/billion
pages)3, probably too large for memory. But a sam-
ple is more manageable; the inverted index for a
10−4 sample of the entire web could fit in memory
on a single PC (1.5 GB).

2http://labs.google.com/setsproduces fascinating sets, al-
though we don’t know how it works. Given the seeds, “Amer-
ica” and “China,”http://labs.google.com/setsreturns: “Amer-
ica, China, Japan, India, Italy, Spain, Brazil, Persia, Europe,
Australia, France, Asia, Canada.”

3This estimate is extrapolated from Brin and Page (1998),
who report an inverted index of 37.2 GBs for 24 million pages.
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Table 1: The number of intermediate results after the
first join can be reduced from 504,000 to 120,000,
by starting with “Schwarzenegger & Austria” rather
than the baseline (“Schwarzenegger & Terminator”).
The standard practice of starting with the two least
frequent terms is a good rule of thumb, but one can
do better, given (estimates of) joint frequencies.

Query Hits (Google)
Austria 88,200,000
Governor 37,300,000
Schwarzenegger 4,030,000
Terminator 3,480,000
Governor & Schwarzenegger 1,220,000
Governor & Austria 708,000
Schwarzenegger & Terminator 504,000
Terminator & Austria 171,000
Governor & Terminator 132,000
Schwarzenegger & Austria 120,000

1.1 An Application: The Governator

Google returns the topk hits, plus an estimate of
how many hits there are. Table 1 shows the number
of hits for four words and their pair-wise combina-
tions. Accurate estimates of associations would have
applications in Database query planning (Garcia-
Molina et al., 2002). Query optimizers construct a
plan to minimize a cost function (e.g., intermediate
writes). The optimizer could do better if it could
estimate a table like Table 1. But efficiency is im-
portant. We certainly don’t want to spend more time
optimizing the plan than executing it.

Suppose the optimizer wanted to construct a plan
for the query: “Governor Schwarzenegger Termi-
nator Austria.” The standard solution starts with
the two least frequent terms: “Schwarzenegger” and
“Terminator.” That plan generates 504,000 interme-
diate writes after the first join. An improvement
starts with “Schwarzenegger” with “Austria,” reduc-
ing the 504,000 down to 120,000.

In addition to counting hits, Table 1 could also
help find the topk pages. When joining the first pair
of terms, we’d like to know how far down the rank-
ing we should go. Accurate estimates of associations
would help the optimizer make such decisions.

It is desirable that estimates be consistent, as well
as accurate. Google, for example, reports 6 million
hits for “America, China, Britain,” and 23 million for
“America, China, Britain, Japan.” Joint frequencies
decrease monotonically:s ⊂ S =⇒ hits(s) ≥ hits(S).
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Figure 1: (a): A contingency table for wordx and
wordy. Cell a is the number of documents that con-
tain bothx andy, b is the number that containx but
not y, c is the number that containy but notx, and
d is the number that contain neitherx nor y. The
margins,fx = a + b andfy = a + c are known as
document frequencies in IR.D is the total number
of documents in the collection. (b): A sample con-
tingency table, with “s” indicating thesample space.

1.2 Sampling and Estimation

Two-way associations are often represented as two-
way contingency tables (Figure 1(a)). Our task is to
construct a sample contingency table (Figure 1(b)),
and estimate 1(a) from 1(b). We will use a max-
imum likelihood estimator (MLE) to find the most
likely contingency table, given the sample and vari-
ous other constraints. We will propose a sampling
procedure that bridges two popular choices: (A)
sampling over documents and (B) sampling over
postings. The estimation task is straightforward and
well-understood for (A). As we consider more flexi-
ble sampling procedures such as (B), the estimation
task becomes more challenging.

Flexible sampling procedures are desirable. Many
studies focus on rare words (Dunning, 1993; Moore,
2004); butterflies are more interesting than moths.
The sampling rate can be adjusted on a word-by-
word basis with (B), but not with (A). The sampling
rate determines the trade-off between computational
work and statistical accuracy.

We assume a standard inverted index. For each
wordx, there are a set of postings,X. X contains a
set of document IDs, one for each document contain-
ing x. The size of postings,fx = |X|, corresponds
to the margins of the contingency tables in Figure
1(a), also known as document frequencies in IR.

The postings lists are approximated bysketches,
skX, first introduced by Broder (1997) for remov-
ing duplicate web pages. Assuming that document
IDs are random (e.g., achieved by a random permu-
tation), we can computeskX, a random sample of
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X, by simply selecting the first few elements ofX.
In Section 3, we will propose using sketches

to construct sample contingency tables. With this
novel construction, the contingency table (and sum-
mary statistics based on the table) can be estimated
using conventional statistical methods such as MLE.

2 Broder’s Sketch Algorithm

One could randomly sample two postings and inter-
sect the samples to estimate associations. The sketch
technique introduced by Broder (1997) is a signifi-
cant improvement, as demonstrated in Figure 2.

Assume that each document in the corpus of size
D is assigned a unique random ID between1 andD.
The postings for wordx is a sorted list offx doc IDs.
The sketch,skX, is the first (smallest)sx doc IDs in
X. Broder used MINs(Z) to denote thes smallest
elements in the set,Z. Thus,skX = MINsx(X).
Similarly, Y denotes the postings for wordy, and
skY denotes its sketch, MINsy(Y ). Broder assumed
sx = sy = s.

Broder defined resemblance (R) and sample re-
semblance (Rs) to be:

R =
a

a + b + c
, Rs =

|MIN s(skX ∪ skY ) ∩ skX ∩ skY |

|MIN s(skX ∪ skY )|
.

Broder (1997) proved thatRs is an unbiased esti-
mator ofR. One could useRs to estimatea but he
didn’t do that, and it is not recommended.4

Sketches were designed to improve the coverage
of a, as illustrated by Monte Carlo simulation in Fig-
ure 2. The figure plots, E

(

as

a

)

, percentage of inter-
sections, as a function of (postings) sampling rate,
s
f

, wherefx = fy = f , sx = sy = s. The solid lines

(sketches), E
(

as

a

)

≈ s
f

, are above the dashed curve

(random sampling), E
(

as

a

)

= s2

f2 . The difference is
particularly important at low sampling rates.

3 Generalizing Sketches:R → Tables

Sketches were first proposed for estimating resem-
blance (R). This section generalizes the method to
construct sample contingency tables, from which we
can estimate associations:R, LLR, cosine, etc.

4There are at least three problems with estimatinga from
Rs. First, the estimate is biased. Secondly, this estimate uses
just s of the 2 × s samples; larger samples→ smaller errors.
Thirdly, we would rather not impose the restriction:sx = sy.
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Figure 2: Sketches (solid curves) dominate random
sampling (dashed curve).a=0.22, 0.38, 0.65, 0.80,
0.85f , f=0.2D, D=105. There is only one dashed
curve across all values ofa. There are different but
indistinguishable solid curves depending ona.

Recall that the doc IDs span the integers from1
to D with no gaps. When we compare two sketches,
skX andskY , we have effectively looked atDs =
min{skX(sx), skY(sy)} documents, whereskX(j) is
the jth smallest element inskX. The following
construction generates the sample contingency ta-
ble, as, bs, cs, ds (as in Figure 1(b)). The example
shown in Figure 3 may help explain the procedure.

Ds = min{skX(sx), skY(sy)}, as = |skX ∩ skY |,

nx = sx − |{j : skX(j) > Ds}|,

ny = sy − |{j : skY(j) > Ds}|,

bs = nx − as, cs = ny − as, ds = Ds − as − bs − cs.

Given the sample contingency table, we are now
ready to estimate the contingency table. It is suffi-
cient to estimatea, since the rest of the table can be
determined fromfx, fy andD. For practical appli-
cations, we recommend the convenient closed-form
approximation (8) in Section 5.1.

4 Margin-Free (MF) Baseline

Before considering the proposed MLE method, we
introduce a baseline estimator that will not work as
well because it does not take advantage of the mar-
gins. The baseline is themultivariate hypergeomet-
ric model, usually simplified as amultinomialby as-
suming “sample-with-replacement.”

The sample expectations are (Siegrist, 1997),

E(as) =
Ds

D
a, E(bs) =

Ds

D
b,

E(cs) =
Ds

D
c, E(ds) =

Ds

D
d. (1)
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Y:  2   4   5   8   15    19   21     24   27   28   31 
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= 11 = 5 = 18f a Dx y = 11 s
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9     10     11    12    13    14    15   16  

1      2      3      4      5      6      7      8   

17   18     19    20    . . . . . .             D = 36 

(b)
Figure 3: (a): The two sketches,skX and skY
(larger shaded box), are used to construct a sam-
ple contingency table:as, bs, cs, ds. skX consists
of the firstsx = 7 doc IDs inX, the postings for
word x. Similarly, skY consists of the firstsy = 7
doc IDs inY , the postings for wordy. There are 11
doc IDs in bothX and Y , anda = 5 doc IDs in
the intersection:{4, 15, 19, 24, 28}. (a) shows that
Ds = min(18, 21) = 18. Doc IDs 19 and 21 are
excluded because we cannot determine if they are in
the intersection or not, without looking outside the
box. As it turns out, 19 is in the intersection and
21 is not. (b) enumerates theDs = 18 documents,
showing which documents containx (small circles)
and which containy (small squares). Both proce-
dures, (a) and (b), produce the same sample contin-
gency table:as = 2, bs = 5, cs = 3 andds = 8.

The margin-free estimator and its variance are

âMF =
D

Ds

as, Var(âMF ) =
D

Ds

1
1
a

+ 1
D−a

D − Ds

D − 1
. (2)

For the multinomial simplification, we have

âMF,r =
D

Ds

as, Var(âMF,r) =
D

Ds

1
1
a

+ 1
D−a

. (3)

where “r” indicates “sample-with-replacement.”
The term D−Ds

D−1 ≈ D−Ds

D
is often called the

“finite-sample correction factor” (Siegrist, 1997).

5 The Proposed MLE Method

The task is to estimate the contingency table from
the samples, the margins andD. We would like to
use a maximum likelihood estimator for the most
probablea, which maximizes the (full) likelihood
(probability mass function, PMF)P (as, bs, cs, ds; a).
Unfortunately, we do not know the exact expres-
sion for P (as, bs, cs, ds; a), but we do know the con-
ditional probability P (as, bs, cs, ds|Ds; a). Since the
doc IDs are uniformly random, sampling the first
Ds contiguous documents is statistically equivalent

to randomly samplingDs documents from the cor-
pus. Based on this key observation and Figure 3,
conditional on Ds, P (as, bs, cs, ds|Ds; a) is the PMF
of a two-way sample contingency table.

We factor the full likelihood into:

P (as, bs, cs, ds; a) = P (as, bs, cs, ds|Ds; a) × P (Ds; a).

P (Ds; a) is difficult. However, since we do not ex-
pect a strong dependency ofDs on a, we maxi-
mize the partial likelihood instead, and assume that
is good enough. An example of partial likelihood is
the Cox proportional hazards model in survival anal-
ysis (Venables and Ripley, 2002, Section 13.3) .

Our partial likelihood is

P (as, bs, cs, ds|Ds; a) =

`

a

as

´`

fx−a

bs

´`

fy−a

cs

´`

D−fx−fy+a

ds

´

`

D

Ds

´

∝

as−1
Y

i=0

(a − i) ×

bs−1
Y

i=0

(fx − a − i) ×

cs−1
Y

i=0

(fy − a − i)

×

ds−1
Y

i=0

(D − fx − fy + a − i), (4)

where
(

n
m

)

= n!
m!(n−m)! . “∝” is “proportional to.”

We now derive an MLE for (4), a result that was
not previously known, to the best of our knowledge.
Let âMLE maximizeslog P (as, bs, cs, ds|Ds; a):

as−1
X

i=0

log(a − i) +

bs−1
X

i=0

log (fx − a − i)

+

cs−1
X

i=0

log (fy − a − i) +

ds−1
X

i=0

log (D − fx − fy + a − i) ,

whose first derivative,∂ log P (as,bs,cs,ds|Ds;a)
∂a

, is

as−1
X

i=0

1

a − i
−

bs−1
X

i=0

1

fx − a − i
−

cs−1
X

i=0

1

fy − a − i

+

ds−1
X

i=0

1

D − fx − fy + a − i
. (5)

Since the second derivative,∂2 log P (as,bs,cs,ds|Ds;a)
∂a2 ,

is negative, the log likelihood function is concave,
hence has a unique maximum. One could numeri-
cally solve (5) for∂ log P (as,bs,cs,ds|Ds;a)

∂a
= 0. How-

ever, we derive the exact solution using the follow-
ing updating formula from (4):
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P (as, bs, cs, ds|Ds; a) = P (as, bs, cs, ds|Ds; a − 1)×

fx − a + 1 − bs

fx − a + 1

fy − a + 1 − cs

fy − a + 1

D − fx − fy + a

D − fx − fy + a − ds

a

a − as

= P (as, bs, cs, ds|Ds; a − 1) × g(a). (6)

Since our MLE is unique, it suffices to finda from
g(a) = 1, which is a cubic function ina.

5.1 A Convenient Practical Approximation

Rather than solving the cubic equation for the ex-
act MLE, the following approximation may be more
convenient. Assume we samplenx = as + bs from
X and obtainas co-occurrences without knowledge
of the samples fromY . Further assuming “sample-
with-replacement,”as is then binomially distributed,
as ∼ Binom(nx, a

fx
). Similarly, assumeas ∼

Binom(ny,
a
fy

). Under these assumptions, the PMF
of as is a product of two binomial PMFs:

 

fx

nx

!

„

a

fx

«as
„

fx − a

fx

«bs

 

fy

ny

!

„

a

fy

«as
„

fy − a

fy

«cs

∝ a2as (fx − a)bs (fy − a)cs . (7)

Setting the first derivative of the logarithm of (7) to
be zero, we obtain2as

a
− bs

fx−a
− cs

fy−a
= 0, which is

quadratic ina and has a solution:

âMLE,a =
fx (2as + cs) + fy (2as + bs)

2 (2as + bs + cs)

−

q

(fx (2as + cs) − fy (2as + bs))
2 + 4fxfybscs

2 (2as + bs + cs)
. (8)

Section 6 shows that̂aMLE,a is very close tôaMLE.

5.2 Theoretical Evaluation: Bias and Variance

How good are the estimates? A popular metric
is mean square error (MSE):MSE(â) = E(â − a)2 =

Var(â) +Bias2 (â). If â is unbiased,MSE(â) =Var(â) =

SE2 (â), where SE is the standard error. Here all ex-
pectations are conditional onDs.

Large sample theory (Lehmann and Casella,
1998, Chapter 6) says that, under “sample-with-
replacement,”̂aMLE is asymptotically unbiased and
converges to Normal with meana and variance 1

I(a) ,
where I(a), the Fisher Information, is

I(a) = −E

„

∂2

∂a2
log P (as, bs, cs, ds|Ds; a, r)

«

. (9)

Under “sample-with-replacement,” we have

P (as, bs, cs, ds|Ds; a, r) ∝
“ a

D

”as

×

„

fx − a

D

«bs

×

„

fy − a

D

«cs

×

„

D − fx − fy + a

D

«ds

, (10)

Therefore, the Fisher Information, I(a), is

E(as)

a2
+

E(bs)

(fx − a)2
+

E(cs)

(fy − a)2
+

E(ds)

(D − fx − fy + a)2
.

(11)

We plug (1) from the margin-free model into (11)
as an approximation, to obtain

Var(âMLE) ≈

D
Ds

− 1
1
a

+ 1
fx−a

+ 1
fy−a

+ 1
D−fx−fy+a

, (12)

which is 1
I(a) multiplied by D−Ds

D
, the “finite-

sample correction factor,” to consider “sample-
without-replacement.”

We can see that Var(âMLE) is less than
Var(âMF ) in (2). In addition,âMLE is asymptoti-
cally unbiased whilêaMF is no longer unbiased un-
der margin constraints. Therefore, we expectâMLE

has smaller MSE than̂aMF . In other words, the pro-
posed MLE method is more accurate than the MF
baseline, in terms of variance, bias and mean square
error. If we know the margins, we ought to use them.

5.3 Unconditional Bias and Variance
âMLE is also unconditionally unbiased:

E(âMLE − a) = E(E (âMLE − a|Ds)) ≈ E(0) = 0. (13)

The unconditional variance is useful because often
we would like to estimate the errors before knowing
Ds (e.g., for choosing sample sizes).

To compute the unconditional variance ofâMLE,

we should replaceD
Ds

with E
(

D
Ds

)

in (12). We

resort to an approximation forE
“

D
Ds

”

. Note that
skX(sx) is the order statistics of a discrete random
variable (Siegrist, 1997) with expectation

E
`

skX(sx)

´

=
sx(D + 1)

fx + 1
≈

sx

fx

D. (14)

By Jensen’s inequality, we know that

E

„

Ds

D

«

≤ min

 

E
`

skX(sx)

´

D
,

E
`

skY(sy)

´

D

!

= min

„

sx

fx

,
sy

fy

«

(15)

E

„

D

Ds

«

≥
1

E
`

Ds

D

´ ≥ max

„

fx

sx

,
fy

sy

«

. (16)
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Table 2: Gold standard joint frequencies,a. Docu-
ment frequencies are shown in parentheses. These
words are frequent, suitable for evaluating our algo-
rithms at very low sampling rates.

THIS HAVE HELP PROGRAM
THIS (27633) — 13517 7221 3682
HAVE (17396) 13517 — 5781 3029
HELP (10791) 7221 5781 — 1949
PROGRAM (5327) 3682 3029 1949 —

Replacing the inequalities with equalities underes-
timates the variance, but only slightly.

5.4 Smoothing

Although not a major emphasis here, our evalua-
tions will show thatâMLE+S, a smoothed version
of the proposed MLE method, is effective, espe-
cially at low sampling rates.̂aMLE+S uses “add-
one” smoothing. Given that such a simple method
is as effective as it is, it would be worth considering
more sophisticated methods such as Good-Turing.

5.5 How Many Samples Are Sufficient?

The answer depends on the trade-off between com-
putation and estimation errors. One simple rule is
to sample “2%.” (12) implies that the standard er-
ror is proportional to

p

D/Ds − 1. Figure 4(a) plots
p

D/Ds − 1 as a function of sampling rate,Ds/D, in-
dicating a “elbow” about2%. However,2% is too
large for high frequency words.

A more reasonable metric is the “coefficient of
variation,” cv = SE(â)

a
. At Web scale (10 billion

pages), we expect that a very small sampling rate
such as10−4 or 10−5 will suffice to achieve a rea-
sonable cv (e.g., 0.5). See Figure 4(b).

6 Evaluation

Two sets of experiments were run on a collection of
D = 216 web pages, provided by MSN. The first ex-
periment considered 4 English words shown in Ta-
ble 2, and the second experiment considers 968 En-
glish words with meandf = 2135 and mediandf =
1135. They form 468,028 word pairs, with mean co-
occurrences = 188 and median = 74.

6.1 Small Dataset Monte Carlo Experiment

Figure 5 evaluates the various estimate methods by
MSE over a wide range of sampling rates. Doc IDs
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Figure 4: How large should the sampling rate be?
(a): We can sample up to the “elbow point” (2%),
but after that there are diminishing returns. (b): An
analysis based on cv =SE

a
= 0.5 suggests that we can

get away with much lower sampling rates. The three
curves plot the critical value for the sampling rate,
Ds

D
, as a function of corpus size,D. At Web scale,

D ≈ 1010, sampling rates above10−3 to 10−5 sat-
isfy cv < 0.5, at least for these settings offx, fy

anda. The settings were chosen to simulate “ordi-
nary” words. The three curves correspond to three
choices offx: D/100, D/1000, and D/10, 000.
fy = fx/10, a = fy/20. SE is based on (12).

were randomly permuted105 times. For each per-
mutation we constructed sketches from the inverted
index at a series of sampling rates. The figure shows
that the proposed method,̂aMLE, is considerably
better (by20% − 40%) than the margin-free base-
line, âMF . Smoothing is effective at low sampling
rates. The recommended approximation,âMLE,a, is
remarkably close to the exact solution.

Figure 6 shows agreement between the theoreti-
cal and empirical unconditional variances. Smooth-
ing reduces variances, at low sampling rates. We
used the empiricalE

“

D
DS

”

to compute the theoreti-

cal variances. The approximation,max
(

fx

sx
,

fy

sy

)

, is

> 0.95E
“

D
DS

”

at sampling rates> 0.01.
Figure 7 verifies that the proposed MLE is unbi-

ased, unlike the margin-free baselines.

6.2 Large Dataset Experiment

The large experiment considers 968 English words
(468,028 pairs) over a range of sampling rates. A
floor of 20 was imposed on sample sizes.

As reported in Figure 8, the large experiment con-
firms once again that proposed method,âMLE , is
considerably better than the margin-free baseline (by
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Figure 5: The proposed method,âMLE outperforms
the margin-free baseline,̂aMF , in terms of MSE0.5

a
.

The recommended approximation,âMLE,a, is close
to âMLE. Smoothing,̂aMLE+S, is effective at low
sampling rates. All methods are better than assum-
ing independence (IND).

15% − 30%). The recommended approximation,
âMLE,a, is close toâMLE. Smoothing,âMLE+S

helps at low sampling rates.

6.3 Rank Retrieval: Top k Associated Pairs

We computed a gold standard similarity cosine rank-
ing of the 468,028 pairs using a 100% sample:cos =

a√
fxfy

. We then compared the gold standard to rank-

ings based on smaller samples. Figure 9(a) com-
pares the two lists in terms of agreement in the topk.
For3 ≤ k ≤ 200, with a sampling rate of 0.005, the
agreement is consistently 70% or higher. Increasing
sampling rate, increases agreement.

The same comparisons are evaluated in terms of
precision and recall in Figure 9(b), by fixing the top
1% of the gold standard list but varying the top per-
centages of the sample list. Again, increasing sam-
pling rate, increases agreement.
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Figure 6: The theoretical and empirical variances
show remarkable agreement, in terms ofSE(â)

a
.

Smoothing reduces variances at low sampling rates.
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bias slightly.

7 Conclusion

We proposed a novel sketch-based procedure for
constructing sample contingency tables. The
method bridges two popular choices: (A) sam-
pling over documents and (B) sampling over post-
ings. Well-understood maximum likelihood estima-
tion (MLE) techniques can be applied to sketches
(or to traditional samples) to estimate word associa-
tions. We derived an exact cubic solution,âMLE, as
well as a quadratic approximation,âMLE,a. The ap-
proximation is recommended because it is close to
the exact solution, and easy to compute.

The proposed MLE methods were compared em-
pirically and theoretically to a margin-free (MF)
baseline, finding large improvements. When we
know the margins, we ought to use them.

Sample-based methods (MLE & MF) are often
better than sample-free methods. Associations are
often estimated without samples. It is popular to
assume independence: (Garcia-Molina et al., 2002,
Chapter 16.4), i.e.,̂a ≈ fxfy

D
. Independence led to

large errors in our experiments.
Not unsurprisingly, there is a trade-off between

computational work (space and time) and statistical
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Figure 8: We report the (normalized) mean absolute
errors (divided by the mean co-occurrences, 188).
All curves are averaged over three permutations.
The proposed MLE and the recommended approxi-
mation are very close and both are significantly bet-
ter than the margin-free (MF) baseline. Smoothing,
âMLE+S, helps at low sampling rates. All estima-
tors do better than assuming independence.

accuracy (variance or errors); reducing the sampling
rate saves work, but costs accuracy. We derived
formulas for variance, showing precisely how accu-
racy depends on sampling rate. Sampling methods
become more and more important with larger and
larger collections. At Web scale, sampling rates as
low as10−4 may suffice for “ordinary” words.

We have recently generalized the sampling algo-
rithm and estimation method to multi-way associa-
tions; see (Li and Church, 2005).
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