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Abstract

While there have been many successful applica-
tions of machine learning methods to tasks in NLP,
learning algorithms are not typically designed to
optimize NLP performance metrics. This paper
evaluates an ensemble selection framework de-
signed to optimize arbitrary metrics and automate
the process of algorithm selection and parameter
tuning. We report the results of experiments that in-
stantiate the framework for three NLP tasks, using
six learning algorithms, a wide variety of parame-
terizations, and 15 performance metrics. Based on
our results, we make recommendations for subse-
quent machine-learning-based research for natural
language learning.

t@cs.cornell.edu

components in contexé(g.Is the system easy to use
by end users? Does the component respect user pref-
erences? How well does the entire system solve the
specific problem?), leading to new and complicated
metrics. Optimizing machine learning algorithms to
arbitrary performance metrics, however, is not easily
done.

To exacerbate matters, the metric of interest might
change depending on how the natural language
learning (NLL) component is employed. Some ap-
plications might need components with high re-
call, for example; others, high precision or high F-

measure or low root mean squared error. To obtain
good results w.r.t. the new metric, however, a dif-
ferent parameterization or different algorithm alto-

Among the most successful natural language lear@€ther might be called for, requiring re-training the
ing techniques for a wide variety of linguistic phe-classifier(s) from scratch.
nomena are supervised inductive learning algo- Caruanzet al. (2004) have recently proposed-
rithms for classification. Because of their capasemble selectioras a technique for building an en-
bilities for accurate, robust, and efficient linguisticsemble of classifiers that is optimized to an arbitrary
knowledge acquisition, they have been employed igerformance metric. The approach trains a large
many natural language processing (NLP) tasks. number of classifiers using multiple algorithms and
Unfortunately, supervised classification algoparameter settings, with the idea that at least some
rithms are typically designed to optimize accuracgf the classifiers will perform well on any given per-
(e.g.decision trees) or mean squared ereg(neu- formance measure. The best set of classifiers, w.r.t.
ral networks). For many NLP tasks, however, thes#e target metric, is then greedily selected. (Select-
standard performance measures are inappropriated a set of size 1 is equivalent to parameter and
For example, NLP data can be highly skewed in itg/gorithm tuning.) Like other ensemble learning
distribution of positive and negative examples. Irmethods €.g.bagging (Breiman, 1996) and boost-
these situations, another metric (perhaps F-measufg (Freund and Schapire, 1996)), ensemble selec-
or a task-specific measure) that focuses on the pdion has been shown to exhibit reliably better perfor-
formance of the minority cases is more appropriaténance than any of the contributing classifiers for a
Indeed, as the NLP field matures more consideratigiimber of learning tasks.
will be given to evaluating the performance of NLP In addition, ensemble selection provides an ancil-

1 Introduction
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lary benefit: no human expertise is required in seask-specific metrics — metrics that learning algo-

lecting an appropriate machine learning algorithm arithms would find difficult to optimize.

in choosing suitable parameter settings to get good The rest of the paper is organized as follows. Sec-

performance. This is particularly attractive for thetion 2 describes the general learning framework and

NLP community where researchers often rely on thprovides an overview of ensemble selection. We

same one or two algorithms and use default pararpresent the particular instantiation of the framework

eter settings for simplicity. Ensemble selection is @mployed in our experiments in Section 3. Section 4

tool usable by non-experts to find good classifierdescribes the three NLP tasks. Experimental results

optimized to task-specific metrics. are given in Section 5. Related work and conclu-
This paper evaluates the utility of the ensemble ssions follow (sections 6 and 7).

lection framework for NLLWe use three NLP tasks .

for the empirical evaluation: noun phrase coreferd ENnsemble Selection Framework

ence resolution and two problems from sentimerg 1 Terminology

analysis — identifying private state frames and th.%Ve use the ternmodel to refer to a classifier pro-

hierarchy among them. The evaluation employs siy . . :
. . . . duced by some learning algorithm using some par-
learning algorithms, a wide selection of parameteri:

. . " ticular set of parameters. A modetgnfiguration
zations, 8 standard metrics, and 7 task-specific m { P g

: . is simply the algorithm and parameter settings used
rics. Because ensemble selection subsumes paratrg
eter and algorithm selection, we also measure the

create the classifier. model family is the set of
impact of parameter and algorithm tuning. models made by varying the parameters for one ma-
Perhaps not surprisingly, we find first that no one

chine learning algorithm. Finally, emodel library
. . . is a collection of models trained for a given task.
algorithm or parameter configuration performs the
best across all tasks or across all metrics. In a2 Framework

dition, an algorithm’s ‘_‘tuned” performanpée(. the Abstractly, the framework is the following:
performance after tuning parameter settlngs) almostl_ Select a variety of learning algorithms.
universally match(_es or exceec_is the algorithm’s de-5 Eor each algorithm, choose a wide range of set-
fault performancei(e. when using default parame- tings for the algorithm’s parameters.
ter settings). Out of 154 total cases, the tuned clas-3, pivide data into training, tuning, and test sets.
sifier outperforms the default classifier 114 times, 4. Build model library.
matches performance 28 times, and underperformss. Select target metrics appropriate to problem.
12 times. Together, these results indicate the impor-6. Tune parameter settings and/or run ensemble
tance of algorithm and parameter selection for com-  selection algorithm for target metrics.
parative empirical NLL studies. In particular, our Building the model library consists of (a) using
results show the danger of relying on the same orthe training data to train models for all the learning
or two algorithms for all tasks. These results casdlgorithms under all desired combinations of param-
doubt on conclusions regarding differences in algceter settings, and (b) applying each model to the tun-
rithm performance for NLL experiments that giveing and test set instances and storing the predictions
inadequate attention to parameter selection. for use in step (6). Note that models are placed in the
The results of our experiments that use ensenfibrary regardless of performance, even though some
ble selection to optimize the ensemble to arbitrarynodels have very bad performance. Intuitively, this
metrics are mixed. We see reliable improvementis because there is no way to kn@apriori which
in performance across almost all of the metrics fomodels will perform well on a given metric. Note
only two of the three tasks; for the other data sethat producing the base models is fully automatic
ensemble selection tends to hurt performance (and requires no expert tuning.
though losses are very small). Perhaps more impor- Parameter Tuning: The goal of parameter tun-
tantly for our purposes, we find that ensemble seang is to identify the best model for the task accord-
lection provides small, but consistent gains in perng to each target metric. Parameter tuning is han-
formance when considering only the more complexdled in the standard way: for each metric, we select
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the model from the model library with the highestmetrics. Finally, finding a classifier or ensemble op-
performance on the tuning data and report its perfotimized to a hew metric (step (6)) does not require
mance on the test data. re-building the model library and is very fast com-
Ensemble Selection Algorithm: The ensemble pared to training the classifiers—it only requires av-
selection algorithm (Caruanet al, 2004) ignores eraging the stored predictions. For example, training
model-specific details bgnly using the predictions the model library for our smallest data set took mul-
made by the modelsthe ensemble makes predic-tiple days; ensemble selection built optimized en-
tions by averaging the predictions of its constituentsembles for each metric in a few minutes.
Advantageously, this only requires that predictions L
made by different models fall in the same range, and Framework Instantiation
that they can be averaged in a meaningful way. Othn this section we describe our instantiation of the
erwise, models can take any form, including othegnsemble selection framework.
ensemble methode.@.bagging or boosting). Con-  Algorithms:  We use bagged decision trees
ceptually, ensemble selection builds on top of thggrejman, 1996), boosted decision stumps (Fre-
models in the library and uses their performance agd and Schapire, 1996);nearest neighbor, a rule

a starting point from which to improve. learner, and support vector machines (SVM’s). We
The basic ensemble selection algorithm is: use the following implementations of these algo-
a. Start with an empty ensemble. rithms, respectively: IND decision tree package

b. Add the model that results in the best perfor(Bumine, 1993);WEKAtoolkit (Witten and Frank,
mance for the current ensemble with respect tp000); TiIMBL (Daelemanst al., 2000); RIPPER

the tuning data and the ta_lrget metric. _ (Cohen, 1995); an8VM¥"* (Joachims, 1999). Ad-
c. Repeat (b) for a large, fixed number of iteraditionally, we use logistic regression (LR) for coref-
tions. erence resolution because an implementation using

d. The final ensemble is the ensemble from thghe MALLET(McCallum, 2002) toolkit was readily
best performing iteration on the tuning data forvailable for the task. The predictions from all algo-
the target metric. rithms are scaled to the ranffie 1] with values close

To prevent the algorithm from overfitting the tun-to 1 indicating positive predictions and values close
ing data we use two enhancements given by Caruat®0 indicating negative predictiors.
etal.(2004). First, in step (b) the same model can be Parameter Settings: Table 1 lists the parame-
selected multiple timed.€. selection with replace- ter settings we vary for each algorithm. Additional
ment). Second, the ensemble is initialized with theomain-specific parameters are also varied for coref-
top N models (again, with respect to the target meterence resolution models (see Section 4.1). The
ric on the tuning data).V is picked automatically model libraries contain models corresponding to the
such that removing or adding a model decreases peross product of the various parameter settings for a
formance on the tuning data. given algorithm.

The main advantage to this framework is its Standard Performance Metrics: We evaluate
reusability. After an instantiation of the frameworkthe framework with 8 metrics: accuracy (ACC),
exists, it is straightforward to apply it to multiple average precision (APR), break even point (BEP),
NLL tasks and to add additional metrics. Steps (1fF-measure (F1), mean cross entropy (MXE), root
and (2) only need to be done once, regardless of tiheean squared error (RMS), area under the ROC
number of tasks and metrics explored. Steps (3)-(Surve (ROC), and SAR. Caruar al. 82004) de-
need only be done once per NLL task. Importantlytine SAR asS AR = ACCHROCHURMS) e also
the model library is created once for each tasi ( evaluate the effects of model selection with task-
each model configuration is only trained once) respecific metrics. These are described in Section 4.
gardless of the number (or addition) of performanc®©ur F-measure places equal emphasis on precision

We also experimented with the bagging improvement de- 2We follow Caruanat al.(2004) in using Platt (2000) scal-
scribed by Caruanet al. (2004). In our experiments using bag- ing to convert the SVM predictions from the rangeso, co) to
ging hurt the performance of ensemble selection. the required0, 1] by fitting them to a sigmoid.

541



Algorithm Parameter Values

Bagged Tree$ tree type bayex4, cart, cart0, id3, mml, smmi
# bags 1,5,1®@5
Boosted # iterations 2,4,8,...256 ...1024, 2048
Stumps
LRt gaussian gamma 0.001, 0.005, 0.01, 0.05, 0.1, 0.5,10, %0
K-NN k 1,35
search algorithm ibl, igtree
similarity metric overlap, modified value difference

feature weighting  gain ratio, information gain, chi-squared, shared variance
Rule Learner class learning order  unorderak first, neg first, heuristic determined order

loss ratio 0.51,15,2,3,4
SVM margin tradeoff* 1077,107%, ...,1072,107%, ..., 107
kernel linear, rbf

rbf gamma parm 0.001, 0.005, 0.01,0.05,0.1,0.5,1,2

Table 1: Summary of model configurations used in experimantsdefault settings for each algorithm are in bold.
t Bagged trees are not used for identifying PSF’s since the IND package does not support features with more than 255 values.
Also, for coreference resolution the number of bags is not varied and is alwaysLBis only used for coreference resolution.
* SVM9"t determines the default margin tradeoff based on data properties. We calculate this value for each data set and use the
closest setting among our configurations.
and recall {e. 6 = 1). Note that precision and re- to form clusters. Two noun phrasésand B share
call are calculatedvith respect to the positive class a cluster if they are either predicted as coreferent by

Ensemble Selection:For the sentiment analysis the classifier or if they are transitively predicted as
tasks, ensemble selection iterates 150 times; for tlereferent through one or more other noun phrases.
coreference task, the algorithm iterates 200 timefnstance selection (Soaat al., 2001; Ng, 2004) is
This should be enough iterations, given that thesed to increase the percentage of positive instances
model libraries contain 202, 173, and 338 modin the training set.
els. Because computing the MUC-F1 and BCUBED We use the learning features described by Ng
metrics (see Section 4.1) is expensive, ensemble sgxd Cardie (2002). All learning algorithms are
lection only iterates 50 times for these metrics.  trained with the full set of features. Additionally,

the rule learner, SVM, and LR are also trained with

4 Tasks a hand-selected subset of the features that Ng and

Because of space issues, we necessarily provig@rdie (2002) find to outperform the full feature set.
only brief descriptions of each NLL task. Reader&ssentially this is an additional parameter to set for
are referred to the cited papers to obtain detailed di1€ leaming task.

scriptions. Special Metrics: Rather than focusing on per-
_ formance at the pairwise coreference classification
4.1 Noun Phrase Coreference Resolution level, performance for this task is typically reported

The goal for a standard noun phrase coreference rasing either the MUC metric (Vilairet al, 1995)
olution system is to identify the noun phrases in & the BCUBED metric (Bagga and Baldwin, 1998).
document and determine which of them refer to thBoth of these metrics measure the degree that pre-
same entity. Entities can be people, places, thingdicted coreference chains agree with an answer key.
etc The resulting partitioning of noun phrases creln particular they measure the chain-level precision
ates reference chains with one chain per entity. ~ and recall (and the corresponding F-measure). We
We use the same problem formulation as Sebn abbreviate these metrics MUC-F1, and B3F1.
al. (2001) and Ng and Cardie (2002) — a combi- Data Set: For our experiments we use the MUC-
nation of classification and clustering. Briefly, ev-6 corpus, which contains 60 documents annotated
ery noun phrase is paired with all preceding noumith coreference information. The training, tuning,
phrases, creating multiple pairs. For the trainingnd test sets consist of documents 1-20, 21-30, and
data, the pairs are labeled as coreferent or not. A — ection i or all aldorithms:
binary classifier is trained to predict the pair labels,,..oor+ instance selection is used for all algorithms; we

! S } also usesoon-2 (Ng, 2004) instance selection for the rule
During classification, the predicted labels are usedarner.
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31-60, respectively. the hierarchy among the PSF’s that corresponds to
the nesting of their respective sources. From each
sentence, multiple instances are created by pair-
NLP research has recently started looking at hoimg every PSF with every other PSF in the sen-
to detect and understand subjectivity in discours¢ence? Let (PSFparent, PSFiarget) denote one of
A key step in this direction is automatically identi-these instances. The classification task is to decide
fying phrases that express subjectivity. In this seif PSF,, e, is the parent ofPSFi,4e in the hi-
ting, subjectivity is defined to include implicit and erarchy and to associate a confidence with that pre-
explicit opinions, internal thoughts and emotionsdiction. The complete hierarchy can easily be con-
and bias introduced through second-hand reportingtructed from the predictions by choosing for each
Phrases expressing any of these are cglleehte  PSF its most confidently predicted parent.
state frames which we will abbreviate as PSF. Special Metrics: Breck and Cardie (2004) mea-
We build directly on experiments done by Wiebesure task performance with three metrics. The first
et al.(2003). The task is to learn to identify explicitis the accuracy of the predictions over the instances.
single-word PSF’s in context. One learning instanc&he second is a derivative of a measure used to score
is created for every word in the corpus. Classificadependency parses. Essentially, a sentence’s score is
tion labels each instance as a PSF or not. We use tthe fraction of parent links correctly identified. The
same features as Wiebeal. score for a set of sentences is the average of the indi-
Special Metrics: Because the data is highly vidual sentence scores. We refer to this measure as
skewed (2% positive instances), performance meaverage sentence accuracy (SENTACC). The third
sures that focus on how well the minority class isneasure is the percentage of sentences whose hier-
learned are of primary interest. The F-measure derchical structures are perfectly determined (PERF-
fined in Section 3 is a natural choice. We also evalSENT).
uate performance using geometric accuracy, definedData Set; We use the same data set and fea-
asGACC = y/posacc x negacc Whereposaccand tures as Breck and Cardie (2004). The annotated
negacc are the accuracy with respect to the positivgentences from 469 documents in the MPQA Cor-
and negative instances (Kubat and Matwin, 1997). pus (MPQA Corpus, 2002) are randomly split into
Conceivably, an automatic PSF extractor withraining (80%), tuning (10%), and test (10%) sets.
high precision and mediocre recall could be used
to automate the annotation process. For this reasbn Experiments and Results
we measure the performance with an unbalanced F-

measure that emphasizes precision. Specifically, e evaluate the potential benefits of the ensemble
try 8 = 0.5 (F0.5) and3 = 0.2 (F0.2) selection framework with two experiments. The first

Data Sett We use 400 documents from theexperiment measures the performance improvement

MPQA corpus (2002), a collection of news storieé’ield_eOI by parameter tuning and finds t_he best per-
manually annotated with PSF information. The 4060rm|ng algorithm. Th? second expferlment mez;
documents are randomly split to get 320 training, 4§4'€S the performance improvement from ensemble

tuning, and 40 testing documents. selection. _ |
Performance improvements are measured in

4.3 Determining PSF Hierarchy terms of performancgain. Let o andb be the mea-

The third task is taken from Breck and Cardie>U"ed perfprmz'mces_s for two models and B on
(2004). Explicit PSF’s each havesaurcethat cor- SOMe Metric. A’s gain overs is simply a — g A
responds to the person or entity expressing the suBerformed worse thal if the gain is negative.
jectivity. In the presence of S_’econd'hand report_ing, “Sentences containing fewer than two PSF'’s are discarded
sources are often nested. This has the effect of filte#nd not used.

ing subjectivity through a chain of sources. ®MXE and RMS have inverted scales where the best perfor-

. . . ._mance is 0. Gain for these metrics equdls- a) — (1 — b) so
Given sentences annotated with PSF 'nformat'ofﬂat positive gains are always good. Similarly, where raw MXE

(i.e. which spans are PSF’s), the task is to discoveind RMS scores are reported we show score.

4.2 ldentifying Private State Frames
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[ [ Metric [ BAG ParmA | BST ParmA [ LR ParmA [ KNN  ParmA [ RULE  ParmA [ SVM  ParmA [[ Ag A |

ACC 0.9861 -0.0000| 0.9861 -0.0001 | 0.9849  0.0006| 0.9724  0.0131| 0.9840 0.0023 | 0.9859 -0.0001{| 0.0026
APR 0.5373 0.0000 | 0.5475 0.0000| 0.3195 -0.0004| 0.1917 0.2843| 0.2491  0.1127| 0.5046  0.0323|| 0.0715
BEP 0.6010 0.0000 | 0.5577  0.0193| 0.3747 -0.0022| 0.3243  0.2057| 0.3771  0.1862| 0.5965 0.0045 || 0.0689
8| F1 0.5231 0.0664 | 0.3881 0.0000| 0.4600 0.0087| 0.4105 0.1383| 0.4453  0.1407| 0.3527  0.0571|| 0.0685
S | MXE 0.9433 0.0082 | 0.9373 0.0000 | 0.5400 0.1828| 0.4953  0.3734| 0.9128 0.0222| 0.9366  0.0077|| 0.0990
o | RMS 0.8925 0.0041| 0.8882 0.0000 | 0.6288  0.1278| 0.8334 0.0559| 0.8756  0.0097 | 0.8859 0.0047 || 0.0337
2 | ROC 0.9258 0.0158 | 0.9466 0.0000 | 0.4275 0.0022| 0.7746  0.0954| 0.6845 0.1990| 0.8418 0.0551|| 0.0612
8 | sAR 0.9255 0.0069 | 0.9309 0.0000 | 0.6736 -0.0037| 0.8515 0.0538| 0.8396 0.0695| 0.8955 0.0165]|| 0.0238
MUC-F1 0.6691 0.0000 | 0.6242 0.0046| 0.6405 0.0344] 0.5340 0.1185] 0.6500 0.0291] 0.5181 0.1216]| 0.0514
B3F1 0.4625 0.0000 | 0.4512 0.0000| 0.4423 0.0425| 0.0965 0.3357| 0.4249 0.0675 | 0.3323  0.1430|| 0.0981
ACC 0.9854  0.0007 0.9873  0.0011| 0.9862 0.0003| 0.9886 0.0000 || 0.0005

APR
BEP

0.6430  0.0316
0.5954  0.0165
0.5643  0.0276
0.9342  0.0029
0.8838  0.0028
0.9576  0.0121
0.9329  0.0052

0.5588  0.1948| 0.4335 0.0381| 0.7697 0.0372 || 0.0754
0.6727  0.0302| 0.4436  0.0718| 0.6961 0.0385 || 0.0393
0.6837 0.0019| 0.5770  0.0367| 0.6741 0.0062 || 0.0181
0.8089  0.1425| 0.9265 0.0062| 0.9572 0.0093 || 0.0402
0.8896  0.0118| 0.8839  0.0020| 0.9000 0.0068 || 0.0058
0.8566  0.1149| 0.7181  0.1593| 0.9659 0.0188 || 0.0763
0.9021  0.0407| 0.8541  0.0532| 0.9420 0.0085 || 0.0269

PSF identification

<

=

m
[ I I B O A
[ 1 T I B O A
T T B B O
T 1 T B O

SENTACC 0.7571 0.0045 | 0.7307 -0.0011
PERFSENT|| 0.4948 0.0069 | 0.4880  0.0000

0.7399 -0.0007| 0.6801 0.0141| 0.6889  0.0726| 0.0179
0.4880 -0.0034| 0.4055 0.0206| 0.4158  0.1031|| 0.0254

GACC 0.6607  -0.0004 0.7962 0.0223 | 0.6610 0.0506| 0.7401  0.0209 || 0.0233
F0.5 0.6829  0.0221 0.7150 0.0503| 0.7132  0.0000| 0.7811 -0.0054 || 0.0167
F0.2 — — 0.7701  0.0157 0.7331 0.0875| 0.8171 0.0110 | 0.8542  0.0045|| 0.0297
ACC 0.8133 0.0000 | 0.7554  0.0009 — — 0.7940  0.0000| 0.7446  0.0428| 0.7761  0.0381|| 0.0164
APR 0.8166 0.0296 | 0.7455  0.0013 —_ — 0.8035 0.0000 | 0.5957 0.1996 | 0.6363  0.1520|| 0.0765
2 | BEP 0.7385 -0.0066 | 0.6597 -0.0030| — — 0.7096  0.0000| 0.6317 0.0567| 0.6940  0.0432|| 0.0181
© | F1 0.7286 0.0033 | 0.6810 0.0226 — — 0.7000 0.0000| 0.6774  0.0525| 0.6933  0.0400|| 0.0237
g MXE 0.6091 0.0166 | 0.4940 0.0076 — — 0.0379  0.4715| 0.4022 0.1197| 0.4681  0.1012|| 0.1433
= | RMS 0.6475 0.0054 | 0.5910 0.0033 — e 0.6057  0.0000| 0.5556  0.0514| 0.5836  0.0423|| 0.0205
&% | ROC 0.8923 0.0096 | 0.8510  0.0000 —_ — 0.8519 0.0364| 0.7514  0.1094 | 0.7968  0.0757 || 0.0462
o | SAR 0.7765 0.0073 | 0.7251  0.0009 — — 0.7430 0.0000| 0.6770 0.0672| 0.7116  0.0482|| 0.0247

Table 2. Performance gains from parameter tunimge left column for each algorithm family is the algorithm’s
performance with default parameter settings. The adjacent ‘Raomlumn gives the performance gain from tuning parameters.
For each metric, the best default and tuned performance across all algorithitaéic@zred andbold-faced respectively.

5.1 Experiment 1: Parameter Tuning cized while the best overall model is bold-faced. Re-

Experiment 1 measures, for each of the 3 tasks, tﬁ%mng again to the coreference BEP row, the best

performance of every model on both the tuning angverall model is a SVM while the best default model
test data for every metric of interesased on tun- IS a bagged decision tree. Recall that these distinc-

ing set performancedhe best default model, the besttIonS are based ombsolute performancand not

model overall, and the best model within each famgf;:n' Thdus], thetr?es;t tllj(nedd SV'\tg. outperforms all
ily are selected. Thdest default modelis the ° Tehr mo eSTn. 1S 1as atr: r(;]e |c.f Table 2
highest-scoring model that emerges after comparin tree c?nc _l:rsllons cfan ethra\t/)vn trom IIat ek '
algorithms without doing any parameter tuning. Th rst, n(l)l algori meer ormfs N esh OE all tasxs
best overall modelcorresponds to “tuning” both the oron a r_netr_|cs. or coreference, the best over-
algorithm and parameters. Thest model in each all model is either a bagged tree, a rule learner, or
family corresponds to “tuning” the parameters fo SVM, ,depe_”_d'”g on the target metric. Similarly,
that algorithm.Using the test set performancelse for PSF identification the best model depends on the
best family models are compared to the corresponH]emC’ ranging from a KNN to a SVM. Interest-

ing default models to find the gains from paramete'rngly’ bagged decision trees on the PSF hierar_chy
tuning data outperform the other algorithms on all metrics

Table 2 lists the gains achieved by parameter tur%’l-nOI seem espemally We1||—SUI'[ed to the task. .
Second, an algorithm’s best-tuned model reliably

ing. Each algorithm column compares the algo-. . . .
g g P g ields non-trivial gains over the corresponding de-

rithm’s best model to its default model. On the) .
coreference task, for example, the best KNN modé‘f‘u” modeI.Th|§ trend appears to hold regardless of
with respect to BEP shows a 20% improvement (O?Igorlthm, metric, and data set. In 114 of the 154
gain) over the default KNN model (for a final BEP  another interesting example is the best overall model for
score of .5300). The “Avg\” column shows the av- BEP on the PSF hierarchy task. The baseline (a bagged tree)

; ; .. outperforms the “best” model (a different bagged tree) on the
erage gain from parameter tuning for each metric. test set even though the best model performed better on the tun-

For each metric, the best default model is italiing set—otherwise it would not have been selected as the best.
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cases parameter tuning improves an algorithm’s per-_—LVetic [ BestDefaut _ BestTunedy Ens. SelA ]
ACC 0.9861 0.0002 0.0001

formance by more than 0.001 (0.1%). In the remain- APR 05373 0.0000 0.0736

ing 40 cases, parameter tuning only hurts 12 times,| g | /1 90080 go000 o
S MXE 0.9373 0.0142 0.0035

and r_lever by more than 0.01. i i EB_J RMS 0.8882 0.0023 0.0049
Third, the best default algorithm is not necessar- | £ | Roc 0.9466 -0.0051 0.0120

. . . o SAR 0.9309 0.0015 0.0032
ily the best algorithm after tuning parametershe MUCFT 0.6601 0.0000 0.0073
coreference task, in particular, illustrates the poten- B3FL 04625 0.0299 0.0077
ACC 0.9886 0.0000 0.0003

tial problem with using default parameter settings APR 0.7697 0.0372 0.0109

when judging which algorithm is most suited for BEP 0.6901 0.0385 0.0136

S

7
. . % F1 0.6741 0.0062 0.0222
a problem: 7 out of 10 times the best algorithm | 5 | MXE 0.9572 0.0093 0.0029
. kel RMS 0.9000 0.0068 0.0025
changes after parameter tuning. & | ROC 0.9659 0.0188 0.0043
SAR 0.9420 0.0085 0.0021
These results corroborate those found else-| © aacc 07962 00223 00012
- FO0.5 0.7811 -0.0054 0.0063
where (Daelemans and Hoste, 2002, Hosteal, . Foo e 0010 00805
2002; Hoste, 2005)—parameter settings greatly in- ACC 08133 0.0000 ~0.0028
H H APR 0.8035 0.0427 -0.0064
fluence performance. Further, algorithmic perfor- > | Bep 0.7385 10,0066 0.0056
mance differences can change when parameters argg zlx c 8;33613 88222 88812
changed. Going beyond previous work, our results| € | rus 0.6475 0.0054 -0.0019

. . . L -

also underline the need to consider multiple algo- | $ | £o° 98923 9.0008 0030

rithms for NLL. Ultimately, it is important for re- SENTACC 0.7571 0.0045 0.0024

3 PERFSENT |  0.4948 0.0069 0.0172
searchers to thoroughly explore options oth al- able 3: Impact from tuning and ensemble selection
gorithm and parameter tuning and to report these @est deféuhshows the performance of the best classifier with'

their results. no parameter tuning.é. algorithm tuning only).Best tunech
gives the performance gain from parameter and algorithm tun-
5.2 Experiment 2: Ensemble Selection ing. Ens. SelA is the performance gain from ensemble selec-

) ] ) __ tion over the best tuned model. The best performance for each
In experiment 2 an ensemble is built to optimizenetric is marked in bold.

each target metric. The ensemble’s performance | benefit from ensemble selection, even for the hi-
compared to that of the best overall model for th@rarchy taskalbeitfor small amounts. For our tasks
metric. Both the ensemble and the best model atRese comprise a subset of the task-specific perfor-
selected according to tuning set performance. mance measures: B3F1, MUC-F1, SENTACC, and
Table 3 lists the gains from ensemble selectiopPERESENT.
over the best parameter tuned model. For compar- while we are not surprised that the positive gains
ison, the best default and overall performances fro@re Sma||7, we are Surprised at how often ensemble
Table 2 are reprinted. For example, the ensemble ogelection hurts performance. As a result, we investi-
timized for F1 on the coreference data outperformgated some of the metrics where ensemble selection
the best bagged tree model by about 1% (and thfurts performance and found that ensemble selec-
best default model by almost 8%). tion overfits the tuning data. At this time we are not
Disappointingly, ensemble selection does nodure why this overfitting happens for these tasks and
consistently improve performance. Indeed, for th@ot for the ones used by Caruasigal. Preliminary
PSF hierarchy task ensemble selection reliably hurtﬁvestigations suggest that having a smaller model
performance a small amount. For the other two taskirary is a contributing factor (Caruaret al. use
ensemble selection reliably improves all metrics eXibraries containing~ 2000 models). This is con-
cept GACC (a small loss). In other experimentssistent with the fact that the task with the largest
however, we optimized F-measure wjth= 1.5 for  model library, coreference, benefits the most from
the PSF identification task. Ensemble selection hughsemble selection. Perhaps the reason that ensem-

F1.5 by almost 2%, leading us to question the techyle selection consistently improves performance for

nique’s reliability for our second data set. Interest———— _ _
inalv. the agaregate metrics—metrics that measu Caruanaet al. (2004) find the benefit from ensemble selec-
Ingly, ggreg _ onis only half as large as the benefit from carefully optimizing

performance by combining multiple predictions—and selecting the best models in the first place.
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the aggregate metrics is that these metrics are harddore work is needed to understand when ensemble
to overfit. selection can be safely used for NLL.
Based on our results, ensemble selection seems
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