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Abstract

While there have been many successful applica-
tions of machine learning methods to tasks in NLP,
learning algorithms are not typically designed to
optimize NLP performance metrics. This paper
evaluates an ensemble selection framework de-
signed to optimize arbitrary metrics and automate
the process of algorithm selection and parameter
tuning. We report the results of experiments that in-
stantiate the framework for three NLP tasks, using
six learning algorithms, a wide variety of parame-
terizations, and 15 performance metrics. Based on
our results, we make recommendations for subse-
quent machine-learning-based research for natural
language learning.

1 Introduction

Among the most successful natural language learn-
ing techniques for a wide variety of linguistic phe-
nomena are supervised inductive learning algo-
rithms for classification. Because of their capa-
bilities for accurate, robust, and efficient linguistic
knowledge acquisition, they have been employed in
many natural language processing (NLP) tasks.

Unfortunately, supervised classification algo-
rithms are typically designed to optimize accuracy
(e.g.decision trees) or mean squared error (e.g.neu-
ral networks). For many NLP tasks, however, these
standard performance measures are inappropriate.
For example, NLP data can be highly skewed in its
distribution of positive and negative examples. In
these situations, another metric (perhaps F-measure
or a task-specific measure) that focuses on the per-
formance of the minority cases is more appropriate.
Indeed, as the NLP field matures more consideration
will be given to evaluating the performance of NLP

components in context (e.g.Is the system easy to use
by end users? Does the component respect user pref-
erences? How well does the entire system solve the
specific problem?), leading to new and complicated
metrics. Optimizing machine learning algorithms to
arbitrary performance metrics, however, is not easily
done.

To exacerbate matters, the metric of interest might
change depending on how the natural language
learning (NLL) component is employed. Some ap-
plications might need components with high re-
call, for example; others, high precision or high F-
measure or low root mean squared error. To obtain
good results w.r.t. the new metric, however, a dif-
ferent parameterization or different algorithm alto-
gether might be called for, requiring re-training the
classifier(s) from scratch.

Caruanaet al. (2004) have recently proposeden-
semble selectionas a technique for building an en-
semble of classifiers that is optimized to an arbitrary
performance metric. The approach trains a large
number of classifiers using multiple algorithms and
parameter settings, with the idea that at least some
of the classifiers will perform well on any given per-
formance measure. The best set of classifiers, w.r.t.
the target metric, is then greedily selected. (Select-
ing a set of size 1 is equivalent to parameter and
algorithm tuning.) Like other ensemble learning
methods (e.g.bagging (Breiman, 1996) and boost-
ing (Freund and Schapire, 1996)), ensemble selec-
tion has been shown to exhibit reliably better perfor-
mance than any of the contributing classifiers for a
number of learning tasks.

In addition, ensemble selection provides an ancil-
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lary benefit: no human expertise is required in se-
lecting an appropriate machine learning algorithm or
in choosing suitable parameter settings to get good
performance. This is particularly attractive for the
NLP community where researchers often rely on the
same one or two algorithms and use default param-
eter settings for simplicity. Ensemble selection is a
tool usable by non-experts to find good classifiers
optimized to task-specific metrics.

This paper evaluates the utility of the ensemble se-
lection framework for NLL.We use three NLP tasks
for the empirical evaluation: noun phrase corefer-
ence resolution and two problems from sentiment
analysis — identifying private state frames and the
hierarchy among them. The evaluation employs six
learning algorithms, a wide selection of parameteri-
zations, 8 standard metrics, and 7 task-specific met-
rics. Because ensemble selection subsumes param-
eter and algorithm selection, we also measure the
impact of parameter and algorithm tuning.

Perhaps not surprisingly, we find first that no one
algorithm or parameter configuration performs the
best across all tasks or across all metrics. In ad-
dition, an algorithm’s “tuned” performance (i.e. the
performance after tuning parameter settings) almost
universally matches or exceeds the algorithm’s de-
fault performance (i.e. when using default parame-
ter settings). Out of 154 total cases, the tuned clas-
sifier outperforms the default classifier 114 times,
matches performance 28 times, and underperforms
12 times. Together, these results indicate the impor-
tance of algorithm and parameter selection for com-
parative empirical NLL studies. In particular, our
results show the danger of relying on the same one
or two algorithms for all tasks. These results cast
doubt on conclusions regarding differences in algo-
rithm performance for NLL experiments that give
inadequate attention to parameter selection.

The results of our experiments that use ensem-
ble selection to optimize the ensemble to arbitrary
metrics are mixed. We see reliable improvements
in performance across almost all of the metrics for
only two of the three tasks; for the other data set,
ensemble selection tends to hurt performance (al-
though losses are very small). Perhaps more impor-
tantly for our purposes, we find that ensemble se-
lection provides small, but consistent gains in per-
formance when considering only the more complex,

task-specific metrics — metrics that learning algo-
rithms would find difficult to optimize.

The rest of the paper is organized as follows. Sec-
tion 2 describes the general learning framework and
provides an overview of ensemble selection. We
present the particular instantiation of the framework
employed in our experiments in Section 3. Section 4
describes the three NLP tasks. Experimental results
are given in Section 5. Related work and conclu-
sions follow (sections 6 and 7).

2 Ensemble Selection Framework

2.1 Terminology

We use the termmodel to refer to a classifier pro-
duced by some learning algorithm using some par-
ticular set of parameters. A model’sconfiguration
is simply the algorithm and parameter settings used
to create the classifier. Amodel family is the set of
models made by varying the parameters for one ma-
chine learning algorithm. Finally, amodel library
is a collection of models trained for a given task.

2.2 Framework

Abstractly, the framework is the following:
1. Select a variety of learning algorithms.
2. For each algorithm, choose a wide range of set-

tings for the algorithm’s parameters.
3. Divide data into training, tuning, and test sets.
4. Build model library.
5. Select target metrics appropriate to problem.
6. Tune parameter settings and/or run ensemble

selection algorithm for target metrics.
Building the model library consists of (a) using

the training data to train models for all the learning
algorithms under all desired combinations of param-
eter settings, and (b) applying each model to the tun-
ing and test set instances and storing the predictions
for use in step (6). Note that models are placed in the
library regardless of performance, even though some
models have very bad performance. Intuitively, this
is because there is no way to knowa priori which
models will perform well on a given metric. Note
that producing the base models is fully automatic
and requires no expert tuning.

Parameter Tuning: The goal of parameter tun-
ing is to identify the best model for the task accord-
ing to each target metric. Parameter tuning is han-
dled in the standard way: for each metric, we select
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the model from the model library with the highest
performance on the tuning data and report its perfor-
mance on the test data.

Ensemble Selection Algorithm: The ensemble
selection algorithm (Caruanaet al., 2004) ignores
model-specific details byonly using the predictions
made by the models:the ensemble makes predic-
tions by averaging the predictions of its constituents.
Advantageously, this only requires that predictions
made by different models fall in the same range, and
that they can be averaged in a meaningful way. Oth-
erwise, models can take any form, including other
ensemble methods (e.g.bagging or boosting). Con-
ceptually, ensemble selection builds on top of the
models in the library and uses their performance as
a starting point from which to improve.

The basic ensemble selection algorithm is:
a. Start with an empty ensemble.
b. Add the model that results in the best perfor-

mance for the current ensemble with respect to
the tuning data and the target metric.

c. Repeat (b) for a large, fixed number of itera-
tions.

d. The final ensemble is the ensemble from the
best performing iteration on the tuning data for
the target metric.

To prevent the algorithm from overfitting the tun-
ing data we use two enhancements given by Caruana
et al.(2004). First, in step (b) the same model can be
selected multiple times (i.e. selection with replace-
ment). Second, the ensemble is initialized with the
topN models (again, with respect to the target met-
ric on the tuning data).N is picked automatically
such that removing or adding a model decreases per-
formance on the tuning data.1

The main advantage to this framework is its
reusability. After an instantiation of the framework
exists, it is straightforward to apply it to multiple
NLL tasks and to add additional metrics. Steps (1)
and (2) only need to be done once, regardless of the
number of tasks and metrics explored. Steps (3)-(5)
need only be done once per NLL task. Importantly,
the model library is created once for each task (i.e.
each model configuration is only trained once) re-
gardless of the number (or addition) of performance

1We also experimented with the bagging improvement de-
scribed by Caruanaet al.(2004). In our experiments using bag-
ging hurt the performance of ensemble selection.

metrics. Finally, finding a classifier or ensemble op-
timized to a new metric (step (6)) does not require
re-building the model library and is very fast com-
pared to training the classifiers—it only requires av-
eraging the stored predictions. For example, training
the model library for our smallest data set took mul-
tiple days; ensemble selection built optimized en-
sembles for each metric in a few minutes.

3 Framework Instantiation

In this section we describe our instantiation of the
ensemble selection framework.

Algorithms: We use bagged decision trees
(Breiman, 1996), boosted decision stumps (Fre-
und and Schapire, 1996),k-nearest neighbor, a rule
learner, and support vector machines (SVM’s). We
use the following implementations of these algo-
rithms, respectively: IND decision tree package
(Buntine, 1993);WEKAtoolkit (Witten and Frank,
2000); TiMBL (Daelemanset al., 2000); RIPPER
(Cohen, 1995); andSVMlight (Joachims, 1999). Ad-
ditionally, we use logistic regression (LR) for coref-
erence resolution because an implementation using
theMALLET(McCallum, 2002) toolkit was readily
available for the task. The predictions from all algo-
rithms are scaled to the range[0, 1] with values close
to 1 indicating positive predictions and values close
to 0 indicating negative predictions.2

Parameter Settings: Table 1 lists the parame-
ter settings we vary for each algorithm. Additional
domain-specific parameters are also varied for coref-
erence resolution models (see Section 4.1). The
model libraries contain models corresponding to the
cross product of the various parameter settings for a
given algorithm.

Standard Performance Metrics: We evaluate
the framework with 8 metrics: accuracy (ACC),
average precision (APR), break even point (BEP),
F-measure (F1), mean cross entropy (MXE), root
mean squared error (RMS), area under the ROC
curve (ROC), and SAR. Caruanaet al. (2004) de-
fine SAR asSAR = ACC+ROC+(1−RMS)

3 . We also
evaluate the effects of model selection with task-
specific metrics. These are described in Section 4.
Our F-measure places equal emphasis on precision

2We follow Caruanaet al. (2004) in using Platt (2000) scal-
ing to convert the SVM predictions from the range(−∞,∞) to
the required[0, 1] by fitting them to a sigmoid.

541



Algorithm Parameter Values
Bagged Trees† tree type bayes,c4, cart, cart0, id3, mml, smml

# bags 1, 5, 10,25
Boosted
Stumps

# iterations 2, 4, 8, . . . ,256, . . . 1024, 2048

LR ‡ gaussian gamma 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5,10, 50
K-NN k 1, 3, 5

search algorithm ib1, igtree
similarity metric overlap, modified value difference
feature weighting gain ratio, information gain, chi-squared, shared variance

Rule Learner class learning order unordered,pos first, neg first, heuristic determined order
loss ratio 0.5,1, 1.5, 2, 3, 4

SVM margin tradeoff* 10−7, 10−6, . . . ,10−2, 10−1, . . . ,102

kernel linear, rbf
rbf gamma parm 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2

Table 1: Summary of model configurations used in experiments.The default settings for each algorithm are in bold.
† Bagged trees are not used for identifying PSF’s since the IND package does not support features with more than 255 values.
Also, for coreference resolution the number of bags is not varied and is always 25.‡ LR is only used for coreference resolution.
* SVMlight determines the default margin tradeoff based on data properties. We calculate this value for each data set and use the
closest setting among our configurations.

and recall (i.e. β = 1). Note that precision and re-
call are calculatedwith respect to the positive class.

Ensemble Selection:For the sentiment analysis
tasks, ensemble selection iterates 150 times; for the
coreference task, the algorithm iterates 200 times.
This should be enough iterations, given that the
model libraries contain 202, 173, and 338 mod-
els. Because computing the MUC-F1 and BCUBED
metrics (see Section 4.1) is expensive, ensemble se-
lection only iterates 50 times for these metrics.

4 Tasks

Because of space issues, we necessarily provide
only brief descriptions of each NLL task. Readers
are referred to the cited papers to obtain detailed de-
scriptions.

4.1 Noun Phrase Coreference Resolution

The goal for a standard noun phrase coreference res-
olution system is to identify the noun phrases in a
document and determine which of them refer to the
same entity. Entities can be people, places, things,
etc. The resulting partitioning of noun phrases cre-
ates reference chains with one chain per entity.

We use the same problem formulation as Soonet
al. (2001) and Ng and Cardie (2002) — a combi-
nation of classification and clustering. Briefly, ev-
ery noun phrase is paired with all preceding noun
phrases, creating multiple pairs. For the training
data, the pairs are labeled as coreferent or not. A
binary classifier is trained to predict the pair labels.
During classification, the predicted labels are used

to form clusters. Two noun phrasesA andB share
a cluster if they are either predicted as coreferent by
the classifier or if they are transitively predicted as
coreferent through one or more other noun phrases.
Instance selection (Soonet al., 2001; Ng, 2004) is
used to increase the percentage of positive instances
in the training set.3

We use the learning features described by Ng
and Cardie (2002). All learning algorithms are
trained with the full set of features. Additionally,
the rule learner, SVM, and LR are also trained with
a hand-selected subset of the features that Ng and
Cardie (2002) find to outperform the full feature set.
Essentially this is an additional parameter to set for
the learning task.

Special Metrics: Rather than focusing on per-
formance at the pairwise coreference classification
level, performance for this task is typically reported
using either the MUC metric (Vilainet al., 1995)
or the BCUBED metric (Bagga and Baldwin, 1998).
Both of these metrics measure the degree that pre-
dicted coreference chains agree with an answer key.
In particular they measure the chain-level precision
and recall (and the corresponding F-measure). We
abbreviate these metrics MUC-F1, and B3F1.

Data Set: For our experiments we use the MUC-
6 corpus, which contains 60 documents annotated
with coreference information. The training, tuning,
and test sets consist of documents 1-20, 21-30, and

3Soon-1 instance selection is used for all algorithms; we
also usesoon-2 (Ng, 2004) instance selection for the rule
learner.
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31-60, respectively.

4.2 Identifying Private State Frames

NLP research has recently started looking at how
to detect and understand subjectivity in discourse.
A key step in this direction is automatically identi-
fying phrases that express subjectivity. In this set-
ting, subjectivity is defined to include implicit and
explicit opinions, internal thoughts and emotions,
and bias introduced through second-hand reporting.
Phrases expressing any of these are calledprivate
state frames, which we will abbreviate as PSF.

We build directly on experiments done by Wiebe
et al. (2003). The task is to learn to identify explicit
single-word PSF’s in context. One learning instance
is created for every word in the corpus. Classifica-
tion labels each instance as a PSF or not. We use the
same features as Wiebeet al.

Special Metrics: Because the data is highly
skewed (2% positive instances), performance mea-
sures that focus on how well the minority class is
learned are of primary interest. The F-measure de-
fined in Section 3 is a natural choice. We also eval-
uate performance using geometric accuracy, defined
asGACC =

√
posacc× negacc whereposacc and

negacc are the accuracy with respect to the positive
and negative instances (Kubat and Matwin, 1997).

Conceivably, an automatic PSF extractor with
high precision and mediocre recall could be used
to automate the annotation process. For this reason
we measure the performance with an unbalanced F-
measure that emphasizes precision. Specifically, we
try β = 0.5 (F0.5) andβ = 0.2 (F0.2).

Data Set: We use 400 documents from the
MPQA corpus (2002), a collection of news stories
manually annotated with PSF information. The 400
documents are randomly split to get 320 training, 40
tuning, and 40 testing documents.

4.3 Determining PSF Hierarchy

The third task is taken from Breck and Cardie
(2004). Explicit PSF’s each have asourcethat cor-
responds to the person or entity expressing the sub-
jectivity. In the presence of second-hand reporting,
sources are often nested. This has the effect of filter-
ing subjectivity through a chain of sources.

Given sentences annotated with PSF information
(i.e. which spans are PSF’s), the task is to discover

the hierarchy among the PSF’s that corresponds to
the nesting of their respective sources. From each
sentence, multiple instances are created by pair-
ing every PSF with every other PSF in the sen-
tence.4 Let (PSFparent, PSFtarget) denote one of
these instances. The classification task is to decide
if PSFparent is the parent ofPSFtarget in the hi-
erarchy and to associate a confidence with that pre-
diction. The complete hierarchy can easily be con-
structed from the predictions by choosing for each
PSF its most confidently predicted parent.

Special Metrics: Breck and Cardie (2004) mea-
sure task performance with three metrics. The first
is the accuracy of the predictions over the instances.
The second is a derivative of a measure used to score
dependency parses. Essentially, a sentence’s score is
the fraction of parent links correctly identified. The
score for a set of sentences is the average of the indi-
vidual sentence scores. We refer to this measure as
average sentence accuracy (SENTACC). The third
measure is the percentage of sentences whose hier-
archical structures are perfectly determined (PERF-
SENT).

Data Set: We use the same data set and fea-
tures as Breck and Cardie (2004). The annotated
sentences from 469 documents in the MPQA Cor-
pus (MPQA Corpus, 2002) are randomly split into
training (80%), tuning (10%), and test (10%) sets.

5 Experiments and Results

We evaluate the potential benefits of the ensemble
selection framework with two experiments. The first
experiment measures the performance improvement
yielded by parameter tuning and finds the best per-
forming algorithm. The second experiment mea-
sures the performance improvement from ensemble
selection.

Performance improvements are measured in
terms of performancegain. Let a andb be the mea-
sured performances for two modelsA and B on
some metric.A’s gain overB is simply a − b. A
performed worse thanB if the gain is negative.5

4Sentences containing fewer than two PSF’s are discarded
and not used.

5MXE and RMS have inverted scales where the best perfor-
mance is 0. Gain for these metrics equals(1− a)− (1− b) so
that positive gains are always good. Similarly, where raw MXE
and RMS scores are reported we show1− score.
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Metric BAG Parm∆ BST Parm∆ LR Parm∆ KNN Parm∆ RULE Parm∆ SVM Parm∆ Avg ∆

ACC 0.9861 -0.0000 0.9861 -0.0001 0.9849 0.0006 0.9724 0.0131 0.9840 0.0023 0.9859 -0.0001 0.0026
APR 0.5373 0.0000 0.5475 0.0000 0.3195 -0.0004 0.1917 0.2843 0.2491 0.1127 0.5046 0.0323 0.0715
BEP 0.6010 0.0000 0.5577 0.0193 0.3747 -0.0022 0.3243 0.2057 0.3771 0.1862 0.5965 0.0045 0.0689
F1 0.5231 0.0664 0.3881 0.0000 0.4600 0.0087 0.4105 0.1383 0.4453 0.1407 0.3527 0.0571 0.0685
MXE 0.9433 0.0082 0.9373 0.0000 0.5400 0.1828 0.4953 0.3734 0.9128 0.0222 0.9366 0.0077 0.0990
RMS 0.8925 0.0041 0.8882 0.0000 0.6288 0.1278 0.8334 0.0559 0.8756 0.0097 0.8859 0.0047 0.0337
ROC 0.9258 0.0158 0.9466 0.0000 0.4275 0.0022 0.7746 0.0954 0.6845 0.1990 0.8418 0.0551 0.0612

co
re

fe
re

nc
e

SAR 0.9255 0.0069 0.9309 0.0000 0.6736 -0.0037 0.8515 0.0538 0.8396 0.0695 0.8955 0.0165 0.0238
MUC-F1 0.6691 0.0000 0.6242 0.0046 0.6405 0.0344 0.5340 0.1185 0.6500 0.0291 0.5181 0.1216 0.0514
B3F1 0.4625 0.0000 0.4512 0.0000 0.4423 0.0425 0.0965 0.3357 0.4249 0.0675 0.3323 0.1430 0.0981

ACC — — 0.9854 0.0007 — — 0.9873 0.0011 0.9862 0.0003 0.9886 0.0000 0.0005
APR — — 0.6430 0.0316 — — 0.5588 0.1948 0.4335 0.0381 0.7697 0.0372 0.0754
BEP — — 0.5954 0.0165 — — 0.6727 0.0302 0.4436 0.0718 0.6961 0.0385 0.0393
F1 — — 0.5643 0.0276 — — 0.6837 0.0019 0.5770 0.0367 0.6741 0.0062 0.0181
MXE — — 0.9342 0.0029 — — 0.8089 0.1425 0.9265 0.0062 0.9572 0.0093 0.0402
RMS — — 0.8838 0.0028 — — 0.8896 0.0118 0.8839 0.0020 0.9000 0.0068 0.0058
ROC — — 0.9576 0.0121 — — 0.8566 0.1149 0.7181 0.1593 0.9659 0.0188 0.0763

P
S

F
id

en
tifi

ca
tio

n

SAR — — 0.9329 0.0052 — — 0.9021 0.0407 0.8541 0.0532 0.9420 0.0085 0.0269
GACC — — 0.6607 -0.0004 — — 0.7962 0.0223 0.6610 0.0506 0.7401 0.0209 0.0233
F0.5 — — 0.6829 0.0221 — — 0.7150 0.0503 0.7132 0.0000 0.7811 -0.0054 0.0167
F0.2 — — 0.7701 0.0157 — — 0.7331 0.0875 0.8171 0.0110 0.8542 0.0045 0.0297

ACC 0.8133 0.0000 0.7554 0.0009 — — 0.7940 0.0000 0.7446 0.0428 0.7761 0.0381 0.0164
APR 0.8166 0.0296 0.7455 0.0013 — — 0.8035 0.0000 0.5957 0.1996 0.6363 0.1520 0.0765
BEP 0.7385 -0.0066 0.6597 -0.0030 — — 0.7096 0.0000 0.6317 0.0567 0.6940 0.0432 0.0181
F1 0.7286 0.0033 0.6810 0.0226 — — 0.7000 0.0000 0.6774 0.0525 0.6933 0.0400 0.0237
MXE 0.6091 0.0166 0.4940 0.0076 — — 0.0379 0.4715 0.4022 0.1197 0.4681 0.1012 0.1433
RMS 0.6475 0.0054 0.5910 0.0033 — — 0.6057 0.0000 0.5556 0.0514 0.5836 0.0423 0.0205
ROC 0.8923 0.0096 0.8510 0.0000 — — 0.8519 0.0364 0.7514 0.1094 0.7968 0.0757 0.0462

P
S

F
hi

er
ar

ch
y

SAR 0.7765 0.0073 0.7251 0.0009 — — 0.7430 0.0000 0.6770 0.0672 0.7116 0.0482 0.0247
SENTACC 0.7571 0.0045 0.7307 -0.0011 — — 0.7399 -0.0007 0.6801 0.0141 0.6889 0.0726 0.0179
PERFSENT 0.4948 0.0069 0.4880 0.0000 — — 0.4880 -0.0034 0.4055 0.0206 0.4158 0.1031 0.0254

Table 2: Performance gains from parameter tuning.The left column for each algorithm family is the algorithm’s
performance with default parameter settings. The adjacent ‘Parm∆’ column gives the performance gain from tuning parameters.
For each metric, the best default and tuned performance across all algorithms areitalicizedandbold-faced, respectively.

5.1 Experiment 1: Parameter Tuning

Experiment 1 measures, for each of the 3 tasks, the
performance of every model on both the tuning and
test data for every metric of interest.Based on tun-
ing set performance,the best default model, the best
model overall, and the best model within each fam-
ily are selected. Thebest default model is the
highest-scoring model that emerges after comparing
algorithms without doing any parameter tuning. The
best overall modelcorresponds to “tuning” both the
algorithm and parameters. Thebest model in each
family corresponds to “tuning” the parameters for
that algorithm.Using the test set performances,the
best family models are compared to the correspond-
ing default models to find the gains from parameter
tuning.

Table 2 lists the gains achieved by parameter tun-
ing. Each algorithm column compares the algo-
rithm’s best model to its default model. On the
coreference task, for example, the best KNN model
with respect to BEP shows a 20% improvement (or
gain) over the default KNN model (for a final BEP
score of .5300). The “Avg∆” column shows the av-
erage gain from parameter tuning for each metric.

For each metric, the best default model is itali-

cized while the best overall model is bold-faced. Re-
ferring again to the coreference BEP row, the best
overall model is a SVM while the best default model
is a bagged decision tree. Recall that these distinc-
tions are based onabsolute performanceand not
gain. Thus, the best tuned SVM outperforms all
other models on this task and metric.6

Three conclusions can be drawn from Table 2.
First, no algorithm performs the best on all tasks
or on all metrics. For coreference, the best over-
all model is either a bagged tree, a rule learner, or
a SVM, depending on the target metric. Similarly,
for PSF identification the best model depends on the
metric, ranging from a KNN to a SVM. Interest-
ingly, bagged decision trees on the PSF hierarchy
data outperform the other algorithms on all metrics
and seem especially well-suited to the task.

Second, an algorithm’s best-tuned model reliably
yields non-trivial gains over the corresponding de-
fault model.This trend appears to hold regardless of
algorithm, metric, and data set. In 114 of the 154

6Another interesting example is the best overall model for
BEP on the PSF hierarchy task. The baseline (a bagged tree)
outperforms the “best” model (a different bagged tree) on the
test set even though the best model performed better on the tun-
ing set—otherwise it would not have been selected as the best.
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cases parameter tuning improves an algorithm’s per-
formance by more than 0.001 (0.1%). In the remain-
ing 40 cases, parameter tuning only hurts 12 times,
and never by more than 0.01.

Third, the best default algorithm is not necessar-
ily the best algorithm after tuning parameters.The
coreference task, in particular, illustrates the poten-
tial problem with using default parameter settings
when judging which algorithm is most suited for
a problem: 7 out of 10 times the best algorithm
changes after parameter tuning.

These results corroborate those found else-
where (Daelemans and Hoste, 2002; Hosteet al.,
2002; Hoste, 2005)—parameter settings greatly in-
fluence performance. Further, algorithmic perfor-
mance differences can change when parameters are
changed. Going beyond previous work, our results
also underline the need to consider multiple algo-
rithms for NLL. Ultimately, it is important for re-
searchers to thoroughly explore options forboth al-
gorithm and parameter tuning and to report these in
their results.

5.2 Experiment 2: Ensemble Selection

In experiment 2 an ensemble is built to optimize
each target metric. The ensemble’s performance is
compared to that of the best overall model for the
metric. Both the ensemble and the best model are
selected according to tuning set performance.

Table 3 lists the gains from ensemble selection
over the best parameter tuned model. For compar-
ison, the best default and overall performances from
Table 2 are reprinted. For example, the ensemble op-
timized for F1 on the coreference data outperforms
the best bagged tree model by about 1% (and the
best default model by almost 8%).

Disappointingly, ensemble selection does not
consistently improve performance. Indeed, for the
PSF hierarchy task ensemble selection reliably hurts
performance a small amount. For the other two tasks
ensemble selection reliably improves all metrics ex-
cept GACC (a small loss). In other experiments,
however, we optimized F-measure withβ = 1.5 for
the PSF identification task. Ensemble selection hurt
F1.5 by almost 2%, leading us to question the tech-
nique’s reliability for our second data set. Interest-
ingly, the aggregate metrics—metrics that measure
performance by combining multiple predictions—

Metric Best Default Best Tuned∆ Ens. Sel.∆

ACC 0.9861 0.0002 0.0001
APR 0.5373 0.0000 0.0736
BEP 0.6010 0.0000 0.0124
F1 0.5231 0.0664 0.0115
MXE 0.9373 0.0142 0.0035
RMS 0.8882 0.0023 0.0049
ROC 0.9466 -0.0051 0.0120

co
re

fe
re

nc
e

SAR 0.9309 0.0015 0.0032
MUC-F1 0.6691 0.0000 0.0073
B3F1 0.4625 0.0299 0.0077

ACC 0.9886 0.0000 0.0003
APR 0.7697 0.0372 0.0109
BEP 0.6961 0.0385 0.0136
F1 0.6741 0.0062 0.0222
MXE 0.9572 0.0093 0.0029
RMS 0.9000 0.0068 0.0025
ROC 0.9659 0.0188 0.0043

P
S

F
id

en
tifi

ca
tio

n

SAR 0.9420 0.0085 0.0021
GACC 0.7962 0.0223 -0.0012
F0.5 0.7811 -0.0054 0.0063
F0.2 0.8171 0.0110 0.0803

ACC 0.8133 0.0000 -0.0028
APR 0.8035 0.0427 -0.0064
BEP 0.7385 -0.0066 0.0056
F1 0.7286 0.0033 -0.0016
MXE 0.6091 0.0166 -0.0012
RMS 0.6475 0.0054 -0.0019
ROC 0.8923 0.0096 -0.0036

P
S

F
hi

er
ar

ch
y

SAR 0.7765 0.0073 -0.0015
SENTACC 0.7571 0.0045 0.0024
PERFSENT 0.4948 0.0069 0.0172

Table 3: Impact from tuning and ensemble selection.
Best defaultshows the performance of the best classifier with
no parameter tuning (i.e. algorithm tuning only).Best tuned∆
gives the performance gain from parameter and algorithm tun-
ing. Ens. Sel.∆ is the performance gain from ensemble selec-
tion over the best tuned model. The best performance for each
metric is marked in bold.

all benefit from ensemble selection, even for the hi-
erarchy task,albeit for small amounts. For our tasks
these comprise a subset of the task-specific perfor-
mance measures: B3F1, MUC-F1, SENTACC, and
PERFSENT.

While we are not surprised that the positive gains
are small,7 we are surprised at how often ensemble
selection hurts performance. As a result, we investi-
gated some of the metrics where ensemble selection
hurts performance and found that ensemble selec-
tion overfits the tuning data. At this time we are not
sure why this overfitting happens for these tasks and
not for the ones used by Caruanaet al. Preliminary
investigations suggest that having a smaller model
library is a contributing factor (Caruanaet al. use
libraries containing∼ 2000 models). This is con-
sistent with the fact that the task with the largest
model library, coreference, benefits the most from
ensemble selection. Perhaps the reason that ensem-
ble selection consistently improves performance for

7Caruanaet al. (2004) find the benefit from ensemble selec-
tion is only half as large as the benefit from carefully optimizing
and selecting the best models in the first place.
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the aggregate metrics is that these metrics are harder
to overfit.

Based on our results, ensemble selection seems
too unreliable for general use in NLL—at least un-
til the model library requirements are better under-
stood. However, ensemble selection is perhaps trust-
worthy enough to optimize metrics that are difficult
to overfit and could not be easily optimized other-
wise — in our case, the task-specific aggregate per-
formance measures.

6 Related Work

Hosteet al. (2002) and Hoste (2005) study the im-
pact of tuning parameters fork-NN and a rule-
learning algorithm on word sense disambiguation
and coreference resolution, respectively, and find
that parameter settings greatly change results. Simi-
lar work by Daelemans and Hoste (2002) shows the
fallacy of comparing algorithm performance without
first tuning parameters. They find that the best algo-
rithm for a task frequently changes after optimizing
parameters. In contrast to our work, these earlier
experiments investigate at most two algorithms and
only measure performance with one metric per task.

7 Conclusion

We evaluate an ensemble selection framework that
enables optimizing classifier performance to arbi-
trary performance metrics without re-training. An
important side benefit of the framework is the fully
automatic production of base-level models, remov-
ing the need for human expertise in choosing algo-
rithms and parameter settings.

Our experiments show that ensemble selection,
compared to simple algorithm and parameter tuning,
reliably improves performance for six of the seven
task-specific metrics and all four “aggregate” met-
rics, but only benefitsall of the metrics for one of
our three data sets. We also find that exploring mul-
tiple algorithms with a variety of settings is impor-
tant for getting the best performance. Tuning pa-
rameter settings results in 0.05% to 14% average
improvements, with most improvements falling be-
tween 2% and 10%. To this end, the ensemble selec-
tion frameworkcan be used as an environment for
automatically choosing the best algorithm and pa-
rameter settings for a given NLP classification task.

More work is needed to understand when ensemble
selection can be safely used for NLL.
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Véronique Hoste. 2005.Optimization Issues in Machine Learning of Coreference
Resolution. Ph.D. thesis, University of Antwerp.

Thorsten Joachims. 1999. Making large-scale SVM learning practical. In Bern-
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