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Abstract

We describe a new method for the repre-
sentation of NLP structures within rerank-
ing approaches. We make use of a condi-
tional log—linear model, with hidden vari-
ables representing the assignment of lexi-
cal items to word clusters or word senses.
The model learns to automatically make
these assignments based on a discrimina-
tive training criterion. Training and de-
coding with the model requires summing
over an exponential number of hidden—
variable assignments: the required sum-
mations can be computed efficiently and
exactly using dynamic programming. As
a case study, we apply the model to
parse reranking. The model gives Ar
measure improvement of 1.25% be-
yond the base parser, and an 0.25%
improvement beyond the Collins (2000)
reranker. Although our experiments are
focused on parsing, the techniques de-
scribed generalize naturally to NLP struc-
tures other than parse trees.

Michael Collins
MIT CSAIL

mcollins@csail.mit.edu

reranking model. Typically, each candidate struc-
ture (e.g., each parse tree in the case of parsing) is
mapped to a feature—vector representation. Previous
work has generally relied on two approaches to rep-
resentation: explicitly hand—crafted features (e.g., in
Charniak and Johnson (2005)) or features defined
through kernels (e.g., see Collins and Duffy (2002)).

This paper describes a new method for the rep-
resentation of NLP structures within reranking ap-
proaches. We build on the intuition that lexical items
in natural language often fall into word clusters (for
example,presidentand chairmanmight belong to
the same cluster) or fall into distinct word senses
(e.g., bank might have two distinct senses). Our
method involves a hidden—variable model, where
the hidden variables correspond to an assignment
of words to either clusters or word—senses. Lexical
items are automatically assigned their hidden values
using unsupervised learning within a discriminative
reranking approach.

We make use of a conditional log—linear model
for our task. Formally, hidden variables within
the log-linear model consist global assignments,
where a global assignment entails an assignment of

every word in the sentence to some hidden cluster
or sense value. The number of such global assign-
A number of recent approaches in statistical NLPnents grows exponentially fast with the length of
have focused omeranking algorithms. In rerank- the sentence being processed. Training and decod-
ing methods, a baseline model is used to generaténg with the model requires summing over the ex-
set of candidate output structures for each input iponential number of possible global assignments, a
training or test data. A second model, which typimajor technical challenge in our model. We show
cally makes use of more complex features than tH@at the required summations can be computed ef-
baseline model, is then used to rerank the candidatééiently and exactly using dynamic—programming
proposed by the baseline. Reranking approach&ethods (i.e., the belief propagation algorithm for
have given improvements in accuracy on a numbévarkov random fields (Yedidia et al., 2003)) under
of NLP problems including parsing (Collins, 2000;certain restrictions on features in the model.
Charniak and Johnson, 2005), machine translation Previous work on reranking has made heavy use
(Och and Ney, 2002; Shen et al., 2004), informaef lexical statistics, but has treated lexical items as
tion extraction (Collins, 2002), and natural languagatoms. The motivation for our method comes from
generation (Walker et al., 2001). the observation that statistics based on lexical items
The success of reranking approaches dependee critical, but that these statistics suffer consid-
critically on the choice ofepresentatiorused by the erably from problems of data sparsity and word—
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sense polysemy. Our model has the ability to allevitreebank annotations by treating each tree as a full
ate data sparsity issues by learning to assign wortl&G analysis with an observedstructure and hid-
to word clusters, and can mitigate problems witlden f-structure. Clark and Curran (2004) present an
word—sense polysemy by learning to assign lexicallternative CCG parsing approach that divides each
items to underlying word senses based upon co&CG parse into a dependency structure (observed)
textual information. A critical difference betweenand a derivation (hidden). More recently, Matsuzaki
our method and previous work on unsupervised at al. (2005) introduce a probabilistic CFG aug-
proaches to word—clustering or word—sense discovaented with hidden information at each nontermi-
ery is that our model is trained using a discriminativenal, which gives their model the ability to tailor it-
criterion, where the assignment of words to clusterself to the task at hand. The form of our model is
or senses is driven by the reranking task in questioolosely related to that of Quattoni et al. (2005), who

As a case study, in this paper we focus on syrdescribe a hidden—variable model for object recog-
tactic parse reranking. We describe three modéition in computer vision.
types that can be captured by our approach. The The approaches of Riezler et al., Clark and Cur-
first method emulates a clustering operation, wheman, and Matsuzaki et al. are similar to our own
the aim is to place similar words (e.gresidentand work in that the hidden variables are exponential
chairmar) into the same cluster. The second methoth number and must be handled with dynamic—
emulates aefinemenbperation, where the aim is to programming techniques. However, they differ from
recover distinct senses underlying a single word (favur approach in the definition of the hidden variables
example, distinct senses underlying the nbank. (the Matsuzaki et al. model is the most similar). In
The third definition makes use of an existing ontoladdition, these three approaches don't use rerank-
ogy (i.e., WordNet (Miller et al., 1993)). In this caseing, so their features must be restricted to local scope
the set of possible hidden values for each word coin order to allow dynamic—programming approaches
responds to possible WordNet senses for the wordto training. Finally, these approaches use Viterbi

In experimental results on the Penn Wall Streetr other approximations during decoding, something
Journal treebank parsing domain, the hiddeneur model can avoid (see section 6.2).
variable model gives aRi—measure improvement of  In some instantiations, our model effectively clus-
~ 1.25% beyond a baseline model (the parser deers words into categories. Our approach differs
scribed in Collins (1999)), and gives an 0.25% from standard word clustering in that the cluster-
improvement beyond the reranking approach deng criteria is directly linked to the reranking objec-
scribed in Collins (2000). Although the experimentgive, whereas previous word—clustering approaches
in this paper are focused on parsing, the techniqués.g. Brown et al. (1992) or Pereira et al. (1993))
we describe generalize naturally to other NLP strudiave typically leveraged distributional similarity. In
tures such as strings or labeled sequences. We digher instantiations, our model establishes word—
cuss this point further in Section 6.1. sense distinctions. Bikel (2000) has done previous
2 Related Work work on ipcorporqting the WordNet hiergrchy into

a generative parsing model; however, this approach

Various machine—learning methods have been useeuires data with word—sense annotations whereas
within reranking tasks, including conditional log—our model deals with word—sense ambiguity through
linear models (Ratnaparkhi et al., 1994; Johnson ehsupervised discriminative training.
al., 1999), boosting methods (Collins, 2000), vari- . .
ants of the perceptron algorithm (Collins, 2002;3 The Hidden—Variable Model
Shen et al., 2004), and generalizations of supporta this section we describe a hidden—variable model
vector machines (Shen and Joshi, 2003). There halsased on conditional log—linear models. Each sen-
been several previous approaches to parsing usitences; for i = 1...n in our training data has a
log—linear models and hidden variables. Riezleset ofn; candidate parse treeés, ..., t; ,,, which
et al. (2002) describe a discriminative LFG parsare the output of arV—best baseline parser. Each
ing model that is trained on standard (syntax onlyyandidate parse has an associdfetheasure score,
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S(saw)

indicating its similarity to the gold—standard parse. saw

. . . VP(saw) .
Without loss of generality, we defing; to be the PR ma{ \boy W"“;l\eswpe
parse with the highest—measure for sentence NP(man) NP(boy) /mscope> mw i !

Given a candidate parse trég;, the hidden— e sav teboy win atelescope
variable model assigns a domain of hidden val- Figure 1:A sample parse tree and its dependency tree.
ues to each word in the tree. For example, th
hidden—value domain for the worthnk could be §_1 Local Feature Vectors
{bank, bank, bank} or {NNi,NN;,NN3}. De- Note that the number of possible global assignments
tailed descriptions of the domains we used are givelhe-, [H(#: ;)[) grows exponentially fast with respect
in Section 4.1. Formally, if; ; spansm words then 0 the number of words spanned fy;. This poses
the hidden-value domains for each word are the sedsProblem when training the model, or when calcu-
Hi(ti;),..., Hn(ti ). A global hidden-value as- lating the probability of a parse tree through Eq. 2.
signment, which attaches a hidden value to ever}his section describes how to address this difficulty

word int; ;, is writtenh = (hy, ..., hy,) € H(t; ), by restricting features to sufficiently local scope. In
whereH(t; ;) = Hy(t; ;) x ... x Hy(t; ;) is the set Section 3.2 we show that this restriction allows effi-
of all possible global assignments ﬁgg cient training and decoding of the model.

We define a feature—based representadicsuch The restriction to local feature—vectors makes use

that ®(; ;,h) € R? is a vector of feature occur- of the dependency structure underlying the parse
rence counts that describes candidate parswith ~ treet; ;. Formally, for tree; ;, we define the cor-
global assignmenh € H(t; ;). We write &, for responding dependency tré(t; ;) to be a set of

k = 1...d to denote th&™ component of the vec- edges between words #;, where(u, v) € D(t; ;)

tor ®. Each component of the feature vector is thé and only if there is a head-modifier dependency
count of some substructure within; ;, h). For ex- between words, andv. See Figure 1 for an exam-

ample,®;, and®,(; could be defined as follows: ple dependency tree. We restrict the definition of

Number of times the worthe ® in the following way. If w, v andv are word

Broft; ;) = O%UrS with hidden valughe; indices, we introduce single-variable local feature
B ?t“_q F;Srt of speech tagr in vectorse(t; j, w, h,) € R? and pairwise local fea-
N"”’b ' ( fimesCEG: D ture vectorsy(t; j, u, v, hy, hy) € RE. The global
umber of times ap- C i i
1oy (t;;,h) = pears as the subject ofns feature vector®(t; ;, h) is then decomposed into a
’ in (ti,;,h) sum over the local feature vectors:
We use a parameter vectér € R to define a O(tijh) = Y Gt w, he) +
log—linear distribution over candidate trees together 1<w<m (4)
with global hidden—value assignments: > Oty w0, hy, hy)
(u,v)GD(tLj)
e®(ti,;,h)-© . o
p(tij hls;,©) = Notice that the second sum, over pairwise local

®(ti 5706 feature vectors, respects the dependency structure

By marginalizing out the global assignments, we obD(%i;). Section 3.2 describes how this decompo-

tain a distribution over the candidate parses alone:S1tion of & _Ieads to an efficient aqd exa_ct_dynam|c—

programming approach that, during training, allows

p(tijlsi,©)= > p(tij;hlsi0) (o) usto calculate the gradied& and, during testing,

heH(ts) allows us to find the most probable candidate parse.

Later in this paper we will describe how to train | our implementation, each dimension of the lo-

the parameters of the model by minimizing the fol¢| feature vectors is an indicator function signaling
lowing loss function—which is the negative log—the presence of a feature, so that a sum over local
likelihood of the training data—with respect®@  feature vectors in a tree gives the occurrence count

3/ heH(t, ;) €

L(®) = - > log p(ti1 | si, ©) !Note that the restriction on local feature vectors only con-
_ ZZ: log 3 (t;i1,h|si,©) (3)  cems the inclusion of hidden values; features may still observe
- ; & 2 heH(t;,) P\ti,1 v arbitrary structure within the underlying parse ttee.
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of features in that tree. For instance, define when the graptD(¢; ;) is a tree, which is the case
[ hw = the and tree; ; assigns wor in our parse reranking model. Having calculated
D12 (tig, 0, hu) = [[w to part-of-speecht (ﬂ the gradient in this way, we minimize the loss using
(hw, hy) = (CEQ;, owns)ﬂ stochastic gradient descéifteCun et al., 1998).

0101 (ti s sV, gy hy) = [[and tree; ; places(u, v) in

a subject_verb relationshi 4 Features for Parse Reranking

where the notatiorfjP] signifies a0/1 indicator of The previous section described hidden—variable
predicateP. When summed over the tree, these defimodels for discriminative reranking. We now de-

nitions of @12 ande¢¢; yield global feature®,5 and  scribe features for the parse reranking problem. We
®10; as given in the previous example (see Eq. 1). focus on the definition of hidden—value domains and

. local feature vectors in the reranking model.
3.2 Training the Model g

We now describe how the loss function in Eq. 3 caft-1  Hidden—Value Domains and Local Features
be optimized using gradient descent. The gradie®ach word in a parse tree is given a domain of pos-

of the loss function is given by: sible hidden values by the hidden—variable model.
% =~ F(t;1,0) + S p(ti ;| 6, 0)F(ti,0) Models w'ith widely varying behavi_or can be greated
i i.J by changing the way these domains are defined. In
- _ pltijhs6,0) & 1y particular, in this section we will see how different
where F(t;, 0) = heHZ(ti]-) i 1so0r PUia 1) gefinitions of the domains give rise to the three main

is the expected value of the feature vector producgtiodel types: clustering, refinement, and mapping
by parse tree; ;. As we remarked earliefH(¢; ;)|  into a pre—built ontology such as WordNet.

is exponential in size so direct calculation of either As illustration, consider a simple approach that
p(ti ;| si,©) or F(t; ;,©) is impractical. However, splits each word into a domain of three word—sense
using the feature—vector decomposition in Eq. 4, whidden values (e.g., the wotzhnkwould yield the

can rewrite the key functions @ as follows: domain {bank , bank,, bank}). In this approach,
7 each word receives a domain of hidden values that
pltijlsi,©) = S Ty is not shared with any other word. The model is
F(t;,0) = then able to distinguish several different usages for
> ptij,w, hy)d(tij, w, hy) + each word, emulating a refinement operation. An
hi s J<(£Z,Lj) alternative approach is to split each word’s part—of—

speech tag into several sub—tags (ebgunk would
) ;D(tf)(ti’j’ Uy U huy o )§ (i g, 0, P, ho) yield {NN1, NNz, NN3}). This approach assigns the
hu € Hy (ti)) same domain to many words; for instance, singular
fro € Ho(t5) nouns such asond market andbankall receive the
where p(t; j,w, hy) and p(t;j,u,v, hy, hy) are same domain. The behavior of the model then emu-

marginalized probabilities and; ; is the associated |ates a clustering operation.

normalization constant: Figure 2 shows the single—variable and pairwise
Zij= 2 e2(ti,;,h)-© features used in our experiments. The features
heH(ti,5) are shown with hidden variables corresponding to
p(tij,w,x) = h‘hZ p(ti;, hlsi, ©) word—specific hidden values, such skares or
=x .
* bought. In our experiments, we made use of fea-
tii,u,v,,y) = tii,hls;, © L o .
pltig, v, 2.y) h‘hu:z;t,hv:yp( i B[ 50, ©) tures such as those in Figure 2 in combination with

The three quantities above can be computed with bterle following four definitions of the hidden—value

lief propagation (Yedidia et al., 2003), a dynamic— 3we also performed some experiments using the conjugate
programming technique that is efficiérand exact 9radient descent algorithm (Johnson et al., 1999). However, we
- did not find a significant difference between the performance of

2The running time of belief propagation varies linearly witheither method. Since stochastic gradient descent was faster and
the number of nodes iD(¢;,;) and quadratically with the car- required less memory, our final experiments used the stochastic
dinality of the largest hidden—value domain. gradient method.
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S(bought)

VBD(bought)

bought

sharesy)

VP (bought)
NP(shares) PP(in) NP(yesterday)
1.5m shares  in heavy trading yesterday
Single-variable features generated for (shares;) =
Word: shares)

sharesy,
sharesy,
sharesy,
sharesy,
sharesy,
sharesy,
sharesy,
sharesy,

sharesy,
sharesy,
sharesy,
sharesy,

POS: NN)

Word: shares, POS: NN)

Highest NT: NP)

Word: shares, Highest NT: NP)

POS: NN, Highest NT: NP)

Word: shares, POS: NN, Highest NT: NP)
Up Path: NP,VP,S)

Word: shares, Up Path: NP,VP,S)

Down Path: NP,NN)

Word: shares, Down Path: NP,NN)

Head Rule: NP — CD, CD, NNS,..q)

Word: shares, Head Rule: NP — CD, CD, NNS,...)

supersenses into three sub—supersenses. If no su-
persenses are available, we fall back to splitting
the part—of-speech into five sub—values. For ex-
ample,shareshas the supersensesun.possession,
noun.act and noun.artifact, which vyield the do-
main {noun.possessionl, noun.act, noun.artifactq, . . .
noun.possession 3, noun.acts, noun.artifactg}. On the
other hand,in does not have any WordNet super-
senses, so it is assigned the domiai, .. ., IN5 }.

4.2 The Final Feature Sets

We created eight feature sets by combining the
four hidden—value domains above with two alterna-

tive definitions of dependency structures: standard
head—modifier dependencies and “sibling dependen-

sharesy, Mod Rule: VP — VBDj.q, NP,0q, PP, NP) . . . . -
shares;, Word: shares, Mod Rule: VP — VBDyepa, NPyoa, PP, NP) cies.” When using S|b||ng dependenCIGS, connec-

shares;, Head Gpar Rule: VP — NP — CD, CD, NNS,,s) . .

shares;, Word: shares, Head Gpar Rule: VP — NP — CD, CD, NNS,...) tions are established between the headwords of ad-

shmcs1, Mod Gpar Rule: S — VP — VBDj.q, NP0, PP, NP) . ST . e

(shares;, Word: shares, Mod Gpar Rule: S — VP — VBDjes, NPpog, PP, NP) jacent S|b||ngS- For instance, the head-modifier
dependencies produced by the tree fragment in
Figure 2 are(boughtshares, (boughtin), and

(sharesn boualls, - Gpar fuler S =2 VP = VEDuwa NP PP NP) (bought yesterday, while the corresponding siblin

Figure 2: The features used in our model. We gnty b 9 9

show the single—variable features produced for hidden valldependencies arf@ought shares, (sharesin), and

shares and the pairwise features produced for hidden value(sm yesterday
(shares, bought), in the context of the given parse fragment.
Highest NT = highest nonterminaljp Path = sequence of ances- 4.3 Mixed Models

tor nonterminalsbown Path = sequence of headed nonterminals . . . .
Head Rule = rules headed by the wortlipd Rule = rule in which The different hidden—variable models display vary-

word acts as modifieRead/Mod Gpar Rule = Head/Mod Rule plus ing strengths and weaknesses. We created mixtures
grandparent nonterminal. of different models using a weighted average:

domains (in each case we give the model type that
results from the definition—clustering, refinementlog P(ti.j|si)

or pre—built ontology—in parentheses): : L
3 9 ) ) whereZ(s;) is a normalization constant that can be

Lexical (Refinement) Each word is split into ignored, as it does not affect the ranking of parses.

three sub—values. See Figure 2 for an example . . -
. . . e \,, weights are determined through optimiza-
features generated for this choice of domain. . .
tion of parsing scores on a development set.

Part—of-Speech (Clustering) The part—of— _
speech tag of each word is split into five sub—value® Experimental Results

In Figure 2, the wordshareswould be assigned \we trained and tested the model on data from the
the domain{NNS;, ... ,NNS5 }, and the wordought  penn Treebank (Marcus et al., 1994). Candidate
would have the domaifiveDy, . .., VBDs }. parses were produced by ah-best version of the
Highest Nonterminal (Clustering) The high- Collins (1999) parser. Our training data consists of
est nonterminal to which each word propagates ageebank Sections 2—21, divided into a training cor-
a headword is split into five sub—values. In Figure $us of 35,540 sentences and a development corpus
the wordboughtyields domain{si, ..., Ss}, while  of 3,676 sentences. In later experiments, we made
in yields{PPy, ...,PP5}. use of a secondary development corpus of 1,914 sen-
Supersense (Pre—Built Ontology) We borrow tences from Section 0. Sections 22—-24, containing
the idea of using WordNet lexicographer filename§,455 sentences, were held out as the test set.
as broad “supersenses” from Ciaramita and John- For each of the eight feature sets described in
son (2003). For each word, we split each of itSSection 4.2, we used the stochastic gradient descent

(
(
(
(
(
(
(
(
(
(sharesy,
(
(
(
(
(
(
(
(s
(

Pairwise features generated for (sharesy, boughts) =
(sharesy, boughty, Dependency: VBD, NP, VP, Right, +Adj,-CC)
(sharesy, boughty, Rule: VP — VBDjq; NP o4, PP, NP)

M
= Z Am logpm(tz‘,j|$z‘> Om) — Z(si)

m=1

511



Section 22 Section 23 Section 24 Total H H
R [R [P ITIR[P IR summarize the model, the major components of the

oo [ 89.12] 80.20] 85.14| 8856 | 87.17| 87.07| 86.10] 8s.60| approach are as follows:
MIX || 90.43| 90.61 | 89.25| 89.69 || 88.46| 89.29 | 89.41| 89.87 o We assume some set of candidate StrUCtﬂ[ﬁ‘S

wee | 9057 90.79| 8080 90.27| 98.78| 5973 8078 026, Which are to be reranked by the model. Each struc-
turet; ; hasn; ; wordswy, . .., wy, ;, and each word
Table 1:The results on Sections 22-24R = Labeled Recall, y, has a sefd}, (t; ;) of possible hidden values.

LP = Labeled Precision. ’

e We assume a grafdd(t; ;) for eacht; ; that de-
method to optimize the parameters of the model. Wenes possible interactions between hidden variables
created various mixtures of the eight models using, the model. We assume some definition of local
the weighted—average technique described in Sefeature vectors, which consider either single hidden
tion 4.3, testing the accuracy of each mixture on th@ariables, or pairs of hidden variables that are con-
secondary development set. Our final model was gected by an edge B(%; ;).
mixture of three of the eight possible models: super- The approach can be instantiated in several ways
sense hidden values with sibling trees, lexical hidywhen applying the model to other NLP tasks. We
den values with sibling trees, and highest nontermhave already seen that by changing the definition
nal hidden values with normal head—modifier treesgf the hidden—value domaind},(t; ;), we can de-

Our final tests evaluated four models. The tweive models with widely varying behavior. In ad-
baseline models are the Collins (1999) base parselition, there is no requirement that the hidden vari-
99, and the Collins (2000) reranker2k. The first  ables only be associated with words in the structure;
new model is thevix model, which is a combina- the hidden variables could be associated with other
tion of the c99 base model with the three modelsunits. For example, in speech recognition hidden
described above. The second new modek+, is variables could be associated with phonemes rather
created by augmentingix with features from the than words, and in Chinese word segmentation, hid-
method inc2k. Table 1 shows the results. Theden variables could be associated with individual
MIX model obtains arF'—measure improvement of characters rather than words.
~ 1.257% over thecog baseline, animprovementthat NLP tasks other than parsing involve structures
is comparable to the2k reranker. Thevix+ model ¢, ; that are not necessarily parse trees. For example,
yields an improvement of 0.25% beyondc2k in speech recognition candidates are simply strings

We tested the significance of 8 comparisons co(utterances); in tagging tasks candidates are labeled
responding to the results in Table 1 using the sigsequences (e.g., sentences labeled with part—of—
test: we testedvix vs.c99 on Sections 22, 23, and speech tag sequences); in machine translation can-
24 individually, as well as on Sections 22—-24 takedidate structures may be source-language/target—
as a whole; we also testaalx+ vs. c2k on these 4 language pairs, along with alignment structures
test sets. Of the 8 comparisons, all showed signispecifying the correspondence between words in the
icant improvements at the level < 0.01 with the two languages. Sentences and labeled sequences are
exception of one teskix+ vs.Cc2kon Section 24.  in a sense simplifications of the parsing case, where
a natural choice for the underlying gragi(t; ;)
would be anVt" order Markov structure, where each
6.1 Applying the Model to Other NLP Tasks word depends on the previodé words. Machine
In this section, we discuss how hidden—variablgranslation alignments are a more interesting type of
models might be applied to other NLP problems, angtructure, where the choice BX(¢; ;) might actually
in particular to structures other than parse trees. Tgepend on the alignment between the two sentences.
Tﬂputto the sign test is a set of sentences with judge- A.S a final note, there is some erXIb!IIty in the
ments for each sentence indicating whether model 1 gives%ho'ce ofD(#;;). Inthe case thaD(t;;) is a tree
better parse than model 2, model 2 gives a better parse thelief propagation is exact. In the more general case
model 1, or models 1 and 2 give equal quality parses. WheyhereD(¢, ;) contains cycles, there are alternative
using the sign test, for each sentence in question we calculat . .
the F—measure at the sentence level for the two models bei gorithms that are either exact (Cowell et al., 1999)
compared, deriving the required judgement from these scoresor approximate (Yedidia et al., 2003).

6 Discussion
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6.2 Packed Representations and Locality majority of cases, words tagge either modify a

One natural extension of our reranker is to adapt it t810dal verb taggesb (€.g., inthe new rate willp
candidate parses represented as a packed parse R§B payablg or the infinitival marketo (e.g., inin
est, so that it can operate on the base parsers f@p &ffort to streamlinefs bureaucracy. The statis-
output instead of a limitedV-best list. However, tics of our corpus reflect this distinction. In 11,546
as we described in Section 3.1, our features are 1625€s of the/B, hidden value, 10,652 cases mod-
cally scoped with respect to hidden—variable interacli€d t0, and 81 cases modified modals taggenl
tions but unrestricted regarding information derived? contrast, in 11,042 cases of the, value, the
from the underlying candidate parses, which posé&/mbers were 8,354 and 599 for modification of
a problem for the use of packed representation§l0dals andto respectively, showing the opposite
For instance, thelp/Down Path features (see Figure Preference. This polarization of hidden values al-
2) enumerate the vertical sequences of nontermPWs modifiers to thevs (e.g., payablein the new
nals that extend above and below a given headwort®t€ Will be payablg to be sensitive to whether the
We could restrict the features to local scope on théeTP is modifying a modal ato.

candidate parses, allowing dynamic—programming In a related case, the hidden values for the part—
to be used to train the model with a packed rep?f~SPeechro (corresponding to the wortb) also
resentation. However, even with these restriction§"OW that the model is leaming useful structure.
finding arg max, "y, p(t,h | s, ©) is NP—hard, and Consider cases Whetg heads a clause WhICh may
the Viterbi approximatiorarg max, , p(t, h | s, ©) or may r_wot have a subject (e.g. jiexpectgits salgs
—or other approximations — would have to be use& 'eémain steadyvs. a proposal(to ease reporting

(see Matsuzaki et al. (2005)). requirementy). We find that for hidden valueso,
. . . andTo; together, 946 out of 976 cases have a sub-
6.3 Empirical Analysis of the Hidden Values ject. In contrast, for the hidden value,, only 29

Our model makes no assumptions about the interpreut of 10,148 cases have a subject. This splitting
tation of the hidden values assigned to words: duof the TO part—of—speech allows modifiers tim, or
ing training, the model simply learns a distributionwords modified byo, to be sensitive to the presence
over global hidden—value assignments that is usefol absence of a subject in the clause headei.by
in improving the log-likelihood of the training data. Finally, consider the hidden values for the part—
Intuitively, however, we expect that the model willof—speechNNs (plural noun). In this case, the model
learn to make hidden—value assignments that are readistinguishes contexts where a plural noun acting as
sonable from a linguistic standpoint. In this sectiorthe head of a noun—phrase is or isn’t modified by a
we describe some empirical observations concerpost—modifier (such as a prepositional phrase or rel-
ing hidden values assigned by the model. ative clause). For hidden valuenss, 12,003 out
We established a corpus of parse trees withf the 12,664 instances in our corpus have a post—
hidden—value annotations, as follows. First, we finghodifier, but for hidden valuaNss, only 4,099 of
the optimal parameter®* on the training set. For the 39,763 occurrences have a post—modifier. Sim-
every sentencs; in the training set, we then useilar contextual effects were observed for other noun
©* to find ¢, the most probable candidate parse unzategories such as singular or proper nouns.
der the model. Finally, we us®* to decodeh’,
the most probable global assignment of hidden va
ues, for each parse treg. We created a corpus of The hidden—variable model is a novel method for
(t¥, hY) pairs for the feature set defined by part—of+epresenting NLP structures in the reranking frame-
speech hidden—value domains and standard depewerk. We can obtain versatile behavior from the
dency structures. The remainder of this section denodel simply by manipulating the definition of the
scribes trends for several of the most common parttidden—value domains, and we have experimented
of—speech categories in the corpus. with models that emulate word clustering, word re-
As a first example, consider the hidden valuenement, and mappings from words into an existing
for the part—of—speectB (infinitival verb). In the ontology. In the case of the parse reranking task,
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the hidden—variable model achieves reranking pertichael Collins. 2002. Ranking algorithms for named entity
formance comparable to the reranking approach de- extraction: Boosting and the voted perceptronAGL 2002
scribed by Collins (2000), and the two rerankers caRobert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and
. . Expert SystemsSpringer.

Future work may consider the use of hidden—
Value domains W|th mixed ContentS, SUCh as a dd}Aark Johnson, Stuart Geman, Stephen Canon, Zhlyl Chi, and

in that tains 3 refi t—oriented lexical val Stefan Riezler. 1999. Estimators for stochastic “unification—
main that contains 3 refinement-—oriented lexical val- a5eq grammars. IRroceedings of the 37 ACL
ues and 3 clustering—oriented part—of-speech vag- Lecun. L Bottou. Y. Beni 4 P. Haf 1098

; ; . LeCun, L. Bottou, Y. Bengio, and P. Haffner. .

ues_. These mixed Vall“!e_s WOUId_ allow the hidden= Gradient-based learning applied to document recognition.
variable model to exploit interactions between clus- Proceedings of the IEEB6(11):2278-2324, November.
tering an_d refinement at the level of words and_dq\'/litchell P. Marcus, Beatrice Santorini, and Mary Ann
pendencies. Another area for future research is to Marcinkiewicz. 1994. Building a large annotated corpus
investigate the use of unlabeled data within the ap- Ogezﬂgsllsgi 3T3hc? penn treebaniComputational Linguistics
proach, for example by making use of clusters de- 19(2):313-330.
rived from large amounts of unlabeled data (e.g., sé@kuya Matsuzaki, Yusuke Miyao, and Jun‘ichi Tsujii. 2005.
Miller et al. (2004)). Finally, future work may apply Probabilistic cfg with latent annotations. ACL.

the models to NLP tasks other than parsing. George A. Miller, Richard Beckwith, Christiane Fellbaum,
Derek Gross, and Katherine Miller. 1993. Five papers on
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