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Abstract In this paper, we describe context-based models for
morphological disambiguation that take full account of
Finite-state approaches have been highly successful at descréxisting morphological dictionaries by estimatiogndi-

ing the morphological processes of many languages. Sugfynally against only dictionary-accepted analyses of a
approaches have largely focused on modeling the phone- ar

character-level processes that generate candidate |eyjmeg S_entence&). T_hese model§ are an instance of condi-
rather thantokensin context For the full analysis of words tional random fields (CRFs; Lafferty et al., 2001) and

in context,disambiguatioris also required (HakkaniiFf et al., include overlapping features. Our applications include
2000; Hajt et al., 2001). In this paper, we apply a noveldiverse disambiguation frameworks and we make use of

source-channel model to the problem of morphological disamyqyistically-inspired features, such as local lemma de-
biguation (segmentation into morphemes, lemmatization, ancrI

POS tagging) for concatenative, templatic, and inflectional larPendencies and inflectional agreement. We apply our
guages. The channel model exploits an existing morphologicgiodel to Korean and Arabic, demonstrating state-of-the-
dictionary, constraining each word’s analysis to be linguisticallyart results in both case§3). We then describe how our

valid. The source model is a factored, conditionally-estimate¢ghodel can be expanded to complex, structured morpho-

random field (Lafferty et al., 2001) that learns to disambiguat?ogiced tagging, including an efficient estimation method,
the full sentence by modeling local contexts. Compared with

baseline state-of-the-art methods, our method achieves staﬂ&@monstratlng performance on Czegh)(
cally significant error rate reductions on Korean, Arabic, and )
Czech, for various training set sizes and accuracy measures. 2 Modellng Framework

Our framework is a source-channel model (Jelinek,
1 Introduction 1976). Thesource(modeled probabilistically by,) gen-

. _ .. . erates a sequence of unambiguous tagged morphemes
One of the great successes in computational |InngtI%§ — (y1.y2,..) € YT (Y is the set of unambiguous

has been the construction of morphological analyzers f%gged morphemes in the languageThe precise con-

diverse Ianguaggs. Such tooI; take in words ar_ld eNtsnts of the tag will vary by language and corpus but
merate the possible morphological analyses—typically &ill minimally include POS.y passes through ehan-

sequence of morphemes, perhaps part-of-speech taggﬁgr (modeled byp,), which outputsx = (z1, a2, ...) €

They are often encoded as finite-state transducers (K U {oov})*, a sequence of surface-level words in the
plan and Kay, 1981; Koskenniemi, 1983; Beesley ang‘guage and out-of-vocabulary wordsay; X is the

Karttunen, 2003). language’s vocabulary). Note that| may be smaller

What such tools do not provide is a meansdis-  an |y since some morphemes may combine to make
ambiguatea word incontext For languages with com- 5 \vord. We will denote by the contiguous subse-

plex morphological systems (inflective, agglutinativequence of that generates;: 7 will refer to a dictionary-
and polysynthetic languages, for example), a word for%cognizedypein Y+,

may have many analyses. To pick thE_’ right one, we At test time, wedecodethe observed into the most
must consider t_he Wor_ds_ context. This problem haérobable sequence of tag/morpheme pairs:
been tackled using statistical sequence models for Turk-

ish (Hakkani-Tr et al., 2000) and Czech (Hajet al.,
2001); their approaches (and ours) are not unlike PO
tagging, albeit with complex tags.

y — argmax = argmax ps - De 1
& = argma p(y [ x) argima ps(y) - pe(x|y) (1)

Training involves constructing, andp.. We assume

*This work was supported by a Fannie and John Hert here exi rainin r f tex h
Foundation Fellowship, a NSF Fellowship, and a NDSEG Felfhat there exists a training corpus of text (each weyd

lowship (sponsored by ARO and DOD). The views expresseannotated with its correct ana!yg@) and a morpholog-

are not necessarily endorsed by sponsors. We thank Eric Gol§a! dictionary. We next describe the channel model and
lust and Markus Dreyer for Dyna language support and Jasdhe source model.

Eisner, David Yarowsky, and three anonymous reviewers for

comments that improved the paper. We also thank JartHaji The sequence also includes segmentation markings be-
and Pavel Krbec for sharing their Czech tagger. tween words, not shown to preserve clarity.
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a. WAHAZE o S/ U . There are many kinds of trench mortars.
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b.  da5an @blie JMialy sl Jl s slese — 1998 1998—Sanaa accuses Riyadh of occupying border territories.
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c. Klimatizovara jidelna, setla mistnost pro sidare. Air-conditioned dining room, well-lit breakfast room.

__ Adj {Neu PI Pos Aff}/svetly

Noun (F;r:q S! Acrcr{\}"[)r/mislnm(

Noun {Fem Si Nom Aff}/jidelna Punc/,

 Noun {Fem Si Nom Aff}/mistnost

Figure 1: Lattices for example sentences in Korean (a), Arabic (b), and Czech (c). Arabic lemmas are not shown, and some Arabic
and Czech arcs are unlabeled, for readability. The Arabic morphemes are shown in Buckwalter's encoding. The arcs in the correct
path through each lattice are solid (incorrect arcs are dashed). Note the adjective-noun agreement in the correct path through the
Czech lattice (c). The Czech lattice has no lemma-ambiguity; this is typical in Czec{see

2.1 Morphological dictionaries and the channel

X
A great deal of research has gone into developing mor- pelx | y) & ﬁp(lﬂi | yi) )
phological analysis tools that enumerate valid analyses i1
y € Yt for a particular wordr € X. Typically these The simplest estimate of this model is to make, -)
tools are unweighted and therefore do not enable tokemiform over (z, ) such thaty € d(z). Doing so and
disambiguatior?. marginalizing to gep(z | %) makes the channel model

They are available for many languages. We will refeencode categorial information only, leaving all learning

to this source of categorial lexical information as a morto the source modél.

phological dictionaryl that mapsC — 2¥" The setl(x) Another way to estimate this model is, of course,
is the set of analyses for word the set!(x) is the set of from data.  This is troublesome, because—modulo
whole-sentence analyses for senterce (z1, z, ...). optionality—ax is expected to b&nowngiven 7, result-

d(x) can be represented as an acyclic lattice with {9 in @& huge model with mostly 1-valued probabili-
“sausage” shape familiar from work in speech recogniliés. Our solution is to take projection of 4 and let
tion (Mangu et al., 1999). Note that for languages wit®(* | %) = p(- | 7(%)). In this papersr maps the analysis
bound morphemesi|z) will consist of a set of sequences 10 It morphological tag (or tag sequence). We will refer

of tokens, so a given “link” in the sausage lattice may© this as the “tag channel.”

contain paths of different lengths. Fig. 1 shows sausagg,,,  Morphological dictionaries typically do not have

lattices for sentences in three languages. complete coverage of a language. We can augment them
In this paper, the dictionary defines the support set qf two ways using the training data. If a known word

the channel model. That ig.(x | y) > 0if and only  (one for whichd(z) is non-empty) appears in the training

if y € d(x). This is a clean way to incorporate do-dataset with an analysis not if{z), we add the entry to

main knowledge into the probabilistic model; this kindthe dictionary. Unknown words (those not recognized by

of constraint has been applied in previous work at decoghe dictionary) are replaced by @ov symbol. d(0ov)

ing time (Hakkani-Tir et al., 2000; Hagi et al., 2001). In js taken to be the set of all analyses for angv word

such a model, each word is independent of its neighbokgen in training. Rather than attempt to recover the mor-

(because the dictionary ignores context). pheme sequence for aov word, in this paper we try
o ) ] only for the tag sequence, replacing all of@aov’'s mor-
Estimation. = A unigramchannel model defines phemes with thevov symbol. Sinceoov symbols ac-

- count for less than 2% of words in our corpora, we leave

2Probabilistic modeling of what we call the morphologi- -
cal channel was first carried out by Levinger et al. (1995), who *Note that this makes the channel term in Eq. 1 a constant.
used unlabeled data to estimaig/ | «) for Hebrew, with the Then decoding means maximizipg(y) overy € d(x), equiv-
support defined by a dictionary. alently maximizingp(y | d(x)).
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more sophisticated channel models to future work. Our approach is the same, with two modifications.
First, we model the relationship between labgjsand
wordsz; in a separately-estimated channel modgl 1).
The source modep, defines a probability distribution Second, our labels are complex. Each woyds tagged
overY™, sequences of (tag, morpheme) pairs. Our souragith a sequencef one or more tagged morphemes; the
models can be viewed as weighted multi-tape finite-statags may include multiple fields. This leads to models
automata, where the weights are associated with local, ofith more parameters. It also makes the dictionary es-
ten overlapping features of the path through the automaecially important for limiting the size of the sum in the
ton. denominator, since a complex label $etould in prin-
ciple lead to a huge hypothesis space for a given sen-
tencex. Importantly, it makes training conditions more
closely match testing conditions, ruling out hypotheses a
Z p(x,y)logps <y | d(x), 5) (3) dictionary-aware decoder would never consider.

(x,y) X+ xY+

2.2 The source model

Estimation. We estimate the sour@®nditionallyfrom
annotated data. That is, we maximize

Optimization. The objective function (Eg. 3) is con-
wherep(-, ) is the empirical distribution defined by the cave and known to have a unique global maximum. Be-
training data and/ are the model parameters. In termscause log-linear models and CRFs have been widely de-
of Fig. 1, our learner maximizes the weight of the correcscribed elsewhere (e.g., Lafferty, 2001), we note only that
(solid) path through each lattice, at the expense of thee apply a standard first-order numerical optimization

other incorrect (dashed) paths. Note that method (L-BFGS; Liu and Nocedal, 1989). The struc-
5 ture, features, and regularization of our models will be
Ds (y | 9) described irk3 andg4.

log ps (y | d(X)ﬁ) = log 5
Zy’ed(x) Ps (y' | 9) Prior work (morphological source models).
akkani-Tur et al. (2000) described a system for Turkish
at was essentially a source model; HEat al. (2001)
described an HMM-based system for Czech that could
eDe viewed as a combined source and channel. Both
used dictionaries and estimated their (generative) models
using maximum likelihood (with smoothing). Given
enough data, a ML-estimated model will learn to recog-
nize a good patly, but it may not learn to discriminate
a goody from wrong alternativeper se The generative
ramework is limiting as well, disallowing the straight-
orward inclusion of arbitrary overlapping features. We
resent a competitive Czech modekih

The sum in the denominator is computed using a dynam
programming algorithm (akin to the forward algorithm);
it involves computing the sum of all paths through th
“sausage” lattice of possible analyses far By doing
this, we allow knowledge of the support of tkhannel
model to enter into our estimation of teeurcemodel. It
is important to note that thestimationof the model (the
objective function used in training, Eq. 3) is distinct from
the source-channstructureof the model (Eq. 1).

The lattice-conditional estimation approach wa
first used by Kudo etal. (2004) for Japanese se
mentation and hierarchical POS-tagging and b
Smith and Smith (2004) for Korean morphological .
disambiguation. The resulting model is an instance op CONcatenative Models

a conditional random fieldCRF; Latferty et al., 2001). The beauty of log-linear models is that estimation is

When training a CRF for POS tagging, IOB chunking_,. _. hf . f h
(Sha and Pereira, 2003), or word segmentation (Pe straightforward giverany features, even ones that are

: . t orthogonal (i.e., “overlap”). This permits focusing
et al., .2.(.)04)'. one typpally structu.res the_ condltlon_a n feature (or feature template) selection without worries
probabilities (in the objective function) using domain

. . about the mathematics of training.
knowledge: in POS tagging, the set of allowed tags for . :
; o : . «~ m:_ We consider two languages modeled by concatenative

a word is used; in 0B chunking, the bigram “O I" is . S

. ) . . : . rocesses with surface changes at morpheme boundaries:
disallowed; and in segmentation, a lexicon is used t .

; . orean and Arabic.

enumerate the possible word boundafies. .
- Our model includes features for taggrams, mor-
_ 4Thi_S refinement is in the same vein as the move froax-  phemen-grams, and pairs of the two (possibly of differ-
imum likelihoodestimation toconditional estimation. MLE gt lengths and offsets). Fig. 2 illustratea3, our base

would make the sum in the denominator of Eqy#, which .
for log-linear models is often intractable to compute (and f0|m0de|' TM3 includes feature templates for some tuples

sequence models may not converge). Conditional estimatid¥ three or fewer elements, plus begin and end templates.
limits the sum to the subset Yf that is consistent witlk,and

our variant further stipulates consistency with the dictionary en- °Haji¢ et al. also included a rule-based system for pruning
tries forx. hypotheses, which gave slight performance gains.
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tag trigram . -
premee e : was correctly identified.

end

tag big?" Lemmaaccuracy is the fraction of words whose lemma
tag + prev. morpheme

begin
features

T P

features

-2~ 2 3.2 Korean experiments

We appliedTM3 andTM3H to Korean. The dataset is
the Korean Treebank (Han et al., 2002), with up to 90%
used for training and 10% (5K words) for test. The mor-
phological dictionary iklex (Han, 2004). There are 27
POS tags in the tag set; the corpus contains 10K word
: types and 3,272 morpheme types. There are 1.7 mor-
; phemes per word token on average=£ 0.75). A Ko-

:) rean word generally consists of a head morpheme with a
series of enclitic suffixes. In training the head-augmented
model TM3H, we assume the first morpheme of every

Figure 2: The base two-level trigram source moatel3. Each word is the head and lemma.

polygon corresponds to a feature template. This is a two level, Results are shown in Tab. 1M3H achieved very slight

second-order Markov model (weighted finite-state machine) Pyains overrm3, and the tag channel model was helpful

rameterized with overlapping features. Note that only some fe%’nly with the smaller training set. The oracle (last line
tures are labeled in the diagram. _
of Tab. 1) demonstrates that the coverage of the dictio-

A variant, TM3H, includes all of the same templates,nary remains an obstacle, particularly for recovering mor-
plus a similar set of templates that look onlyhatdmor- phemes. Anpther limitation is.the ;mall amount of train—_
phemes. For instance, a feature fires for each trigrafid data, which may be masking differences among esti-
of heads, even though there are (bound) morphemes BBation conditions. We report the performancersf3+
tween them. This increases the domain of locality for se¥ith “factored” estimation. This will be discussed in
mantic content-bearing morphemes. This model requiré$tail in §4; it means that a model containiraply the
slight changes to the dynamic programming algorithmﬁeaq features was tra?ned on its own, then cqmbined with
for inference and training (the previous two heads mudp€ independently trainetv3 model at test time. Fac-
be remembered at each state). tored training was slightly faster and di'd not aﬁeqt per-

Every instantiation of the templates seeraitylattice ~ formance at all; accuracy scores were identical with un-

d(x) built from training data is included in the model, notfactored training.
just those seen in correct analyses®

|
|
|
|
|
|
|
|
|
L - - -

morpheme trigram tag/morpheme pair.

morpheme unigram

Prior work (Korean).  Similar results were presented
by Smith and Smith (2004), using a similar estimation
strategy with a model that included far more feature tem-
In all of our experiments, we vary the training set sizeplates. TM3 has about a third as many parameters and
and the amount of smoothing, which is enforced by a difm3H about half; performance is roughly the same (num-
agonal Gaussian priof{ regularizer) with variance.  bers omitted for space). Korean disambiguation results
Theo? = oo case is equivalent to not smoothing. Wewere also reported by Cha et al. (1998), who applied a
compare performance to the expected performance ofdeterministic morpheme pattern dictionary to segment
randomized baseline that picks for each word tokem  words, then used a bigram HMM tagger. They also ap-
analysis fromi(z); this gives a measure of the amount ofplied transformation-based learning to fix common er-
ambiguity and is denoted “channel only.” Performanceors. Due to differences in tag set and data, we cannot
of unigram, bigram, and trigram HMMs estimated uscompare to that model; a bigram baseline is included.
ing maximum likelihood (barely smoothed, using add-

10-'%) is also reported. (The unigram HMM simply 3.3 Arabic experiments

picks the most likelyj for eachz, based on training data \we appliedrm3 andTM3H to Arabic. The dataset is the

and is so marked.) Arabic Treebank (Maamouri et al., 2003), with up to 90%
In the experiments in this section, we report three peiysed for training and 10% (13K words) for test. The mor-

formance measures.Tagging accuracy is the fraction phological dictionary is Buckwalter's analyzer (version

of words whose tag sequence was correctly identifieg) made available by the LDC (Buckwalter, 2064Jhis

in entirety; morphemeaccuracy is defined analogously.analyzer has total coverage of the corpus; there are no

3.1 Experimental design

81f we used only features observed to occuyif we would "Arabic morphological processing was also addressed by
not be able to learn negative weights @mlikelybits of structure  Kiraz (2000), who gives a detailed review of symbolic work in
seen in the latticé(x) but notiny™*. that area, and by Darwish (2002).
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Korean Arabic

POS tagging morpheme [emmal POS tagging morpheme [emma

accuracy accuracy accuracy accuracy accuracy accuracy
o2 32K 49K 32K 49K 32K 49K || 38K 76K 114K 38K 76K 114K 38K 76K 114K
most likelyy | 86.0 86.9| 87.5 88.8] 95.3 95.7 845 87.0 88.3] 83.2 86.2 87.0] 37.9 39.8 40.9
channelonly | 62.6 62.6] 70.3 70.8| 86.4 86.4 43.7 43.7 43.7 41.2 412 412 27.2 27.2 27.2
bigram HMM | 90.7 91.2| 83.2 86.1| 96.9 97.2|| 90.3 92.0 92.8 89.2 91.4 91.6| 85.7 87.8 87.9
trigram HMM | 91.5 91.8| 83.3 86.0| 97.0 97.2 89.8 92.0 93.00 885 91.3 91.3 85.2 87.8 87.7"
™3 oo | 90.7 91.3]89.3 90.5] 97.1 974 94.6 954 9590 934 94.3 94.9] 89.7 90.5 90.7"
10| 91.2 91.7| 89.4 90.6| 97.1 97.6 95.3 95.7 96.1) 93.9 945 95.0, 90.Z 90.6" 91.I"
1|915 92.2|89.4 90.6| 97.1 97.5 95.2 95.7 96.0] 93.9 94.5 94.7| 90.0° 90.7 91.0°
TM3H oo | 92.1 91.1] 89.3 90.4| 97.2 97.5 95.0 95.7 96.0f 94.0 94.8 95.3] 93.3 939 942
(factored) 10| 91.3 91.9| 89.5 90.6| 97.3 97.6|| 95.3 95.7 96.1| 94.2 94.7 95.4| 93.4 93.6 94.4
1914 922|895 90.7| 97.3 97.6 954 958 96.1 944 948 95.1] 93.3 93.8 94.2

channelonly | 51.4 51.3| 60.6 60.4| 81.2 81.7|| 41.4 40.6 40.1] 39.9 39.1 38.6] 26.7 26.5 26.4
bigram HMM | 91.2 90.9| 88.9 90.1| 97.0 97.3 91.0 92.3 934 89.7 915 91.9| 88.I" 89.9 90.0°
tigram HMM | 91.6 91.9| 88.9 90.2| 97.1 97.4 91.1 929 93.7] 89.6 92.2 92.0] 88.1" 90.6" 90.4
™3 oo | 90.8 91.0 89.5 90.5| 974 97.5 95.1 95.7 96.0] 93.8 94.6 95.00 92. 93.T' 93.7

10 | 90.6 91.1| 89.5 90.7| 97.2 97.6 95.2 95.6 96.0] 93.9 94.7 95.0f 92.4 93.2 93.5

1]90.1 909|895 90.7| 97.1 97.6 949 955 958 938 945 94.8 92.2° 93.0° 93.1"
TM3H oo | 91.0 91.0] 89.4 90.5] 97.2 97.6 95.1 958 96.0] 94.0 95.1 954] 93.3 94.3 944
(factored) 10| 90.4 91.2| 89.6 90.7| 97.4 97.6 95.2 957 96.0, 94.1 94.8 954 93.3 94.0 94.6

1901 91.0|895 90.7| 97.3 97.6 95.1 955 959 94.1 949 951 93.3 94.0 94.4
oracle giverd (x) 95.3 957 | 902 91.2| 981 983 100.0 1000 100.0( 100.0 1000 100.0/ 100.0  100.0 100.0

uniform channel

tag channel

Table 1: Korean (left, 5K test-set) and Arabic (right, 13K test-set) disambiguation. A word is marked correct only if its entire
tag (or morpheme) sequence (or lemma) was correctly identified. Morpheme and lemma accuracy do naddcludeds. The

oracle is an upper bound on accuracy given the morphological dictioridhese models do not explicitly predict lemmas; the
lemma is chosen arbitrarily from those that match the hypothesized tag/morpheme sequence for ed®bldvecdres indicate a
significant improvement over the trigram HMM (binomial sign test; 0.05).

oov words. There are 139 distinct POS tags; these cofrior work (Arabic). Both Diab etal. (2004) and
tain some inflectional information which we treat atom-Habash and Rambow (2005) use support-vector ma-
ically. For speed,TM3H was trained in two separate chines with local features; the former for tokenization,
pieces:TM3 and the lemma features addedty3H. POS tagging, and base phrase chunking; the latter for
full morphological disambiguation. Diab et al. report
Arabic has a templatic morphology in which conso+esults for a coarsened 24-tag set, while we use the full
nantal roots are transformed into surface words by th&39 tags from the Arabic Treebank, so the systems are
insertion of vowels and ancillary consonants. Our sysaot directly comparable. Habash and Rambow present
tem does not model this process except through the ueeen better results on the same POS tag set. Our full dis-
of Buckwalter's dictionary to define the set of analyseambiguation results appear to be competitive with theirs.
for each word (cf., Daya et al., 2004, who modeled interkKhoja (2001) and Freeman (2001) describe Arabic POS
digitation in Hebrew). We treat the analysis of an Arataggers and many of the issues involved in developing
bic word as a sequencg of pairs of morphemes and them, but because tagged corpora did not yet exist, there
POS tags, plus a lemma. The lemma, given in the di@are no comparable quantitative results.
tionary, provides further disambiguation beyond the head
morpheme. The lemma is a standalone dictionary head- Czech: Model and Experiments
word and not merely the consonantal root, as in some
other work. The “heads” modeled by 3H correspond Inflective languages like Czech present a new set of chal-
to these lemmas. There are 20K word types, and 34knges. Our treatment of Czech is not concatenative;
morpheme types. There are 1.7 morphemes per word timllowing prior work, the analysis for each wordis a
ken on averages(= 0.77). single tag/lemma paiy. Inflectional affixes in the sur-
face form are represented as features in the tag. While
Results are shown in Tab. 1. Across tasks and trainilgmmatization of Czech is not hard (there is little ambi-
set sizes, our models reduce error rates by more than 3634ity), tagging is quite difficult, because morphological
compared to the trigram HMM source with tag channeltags are highly complex. Our tag set is the Prague Depen-
The TM3H model and the tag channel offer slight gainsdency Treebank (PDT; Hdjj 1998) set, which consists of
over the basem3 model (especially on lemmatization), fifteen-field tags that indicate POS as well as inflectional
though the tag channel offers no help in POS tagging. information (case, number, gender, etc.). There are over
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@

feature templates are included twice: once for the full tag
and once for a coarser tag (the first PDT field, for which
there are 12 possible valués).

morph. ta A

Qos\é)
orphological
tags
lemmas

Y

@

gen. / [num. 0S

gender Pos Gender, number, and case models. The full tag is re-
GO placed by the gender (or case or number) field. This
Y2 O-(O) model includes bigrams and trigrams as well as field-
OO morpheme unigram features. These models are intended
to learn to predict local agreement.

Vs é number case

| Tag-lemma model. This model contains unigram fea-
tures of full PDT tags, both alone and with lemmas. Itis
intended to learn to penalize morphological tags that are
¥, rare, or that are rare with a particular lemma. In our for-

mulation, this isnot a channel model, because it ignores
the surface word forms.

full model (decoding) factored models (training)

Figure 3: The Czech model, shown as an undirected graphi- Each model is estimated independently of the others.
cal model. The structure of the full model is on the left; fac-The latticed(x) against which the conditional probabili-

tored components for estimation are shown on the right. Ea . . L
of these five models contains a subset of theS features. The s are estimated contains the relevargectionof the

full model is only used to decode. The factored models mak!! morpholqgical tags.(with lemmas). To d?COde, we
training faster and are used for pruning. run a Viterbi-like algorithm that uses the union of all

o ] models’ features to pick the best analysis (full morpho-

1,400 distinct tag types in the PDT. logical tags and lemmas) allowed by the dictionary.
Czech has been treated probabilistically before, per- rhere gre two important advantages of factored train-
haps most successfully by Hajetal. (2001). In con- o First, each model is faster to train alone than a model

trast, we estimate conditionally (rather than by maximuni, 4| features merged; in fact, training the fully merged

likelihood for a generative HMM) and separate the traing, o e takes far too long to be practical. Second, factored

ing of the source and the channel. We also introduce &, qels can be held out at test time to measure their effect
novelfactoredtreatment of the morphological tags. on the system, without retraining.

4.1 Factored tags and estimation Prior work (factored training). Separately training
Because Czech morphological tags are not monolithiclifferent models that predict the same variables (exg.,
the choice among them can be treated as several moreamdy) then combining them for consensus-based infer-
less orthogonal decisions. The case feature of one worglhce (either through a mixture or a product of proba-
for example, is expected to be conditionally independerttilities) is an old idea (Genest and Zidek, 1986). Re-
of the next word's gender, given the next word’s casecent work in learning weights for the component “ex-
Constraints in the language are expected to cause featupest” models has turned wooperativetechnigues (Hin-
like case, number, and gender to agree locally (on worden, 1999). Decoding that finds (givenx) to maximize
that have such features) and somewhat independently ssme weighted average of log-probabilities is known as
each other. Coarser POS tagging may be treated as antogarithmic opinion pool(LOP). LOPs were applied
other, roughly independent stream. to CRFs (for named entity recognition and tagging) by
Log-linear models and the use of a morphological dicSmith et al. (2005), with an eye toward regularization.
tionary make this kind of tag factoring possible. OurTheir experts (each a CRF) contained overlapping feature
approach is to separately train five log-linear modelssets, and the combined model achieved much the same
Each model is itself an instance of some of the templatesffect as training a single model with smoothing. Note
from TM3, modeling a projection of the full analysis. that our models, unlike theirpartition the feature space;
The model and its factored components are illustrated ithere is only one CRF, but some parameters are ignored
Fig. 3. when estimating other parameters. We have not estimated

. log-domain mixing coefficients—we weight all models’
F;hO Sf_m(t)ctiel. f-.”;g flﬂ'!d;[ag IS repélgcsgsb >t/ the P_ﬁ?n;tagcontributions equally. Sutton and McCallum (2005) have
(the first two fields); there are ags. applied factored estimation to CRFs, motivated (like us)
8Czech morphological processing was studied byy speed; they also describe how factored estimation
PetkevE (2001), Hlaacowa (2001) (who focuses on han-
dling oov words), and Makova and Sedlacek (2003) (who use  °Lemma-trigram and fine POS-unigram/lemma-bigram fea-
partial parsing to reduce the set of possible analyg@s),alia.  tures were eliminated to limit model size.
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full morph. lemma POS oov POS

accuracy accuracy accuracy accuracy
o 376K 768K 376K 768K 376K 768K 376K 768K Table 2: Czech disambiguation:
channel only 61.4 60.3] 851 84.2] 885 87.2] 17.8 16.4] test-set (109K words) accuracy. A
most likely y 80.0 80.8 | 98.1 98.1] 979 97.8] 520 52.0| Wwordis marked correct only if its
Hajic et al. HMM 888 89.2| O/0 979| 958 958| 52.0 52.0| entire morphological tag (or mor-
+ 00V model 905 908 979 979 96.7 966 w30 o20| Pheme or POS tag) was correctly
ful 0 881 885| 083 985 083 98.3| 602 61.8| Identfied. Note that the full tag
oracle given pruning 98.6 99.3 99.5 99.6 99.1 99.7 60.2 90.3 Is a Complex_’ 15-field morphOI.ogl'
10 | 88.4 885 98.4 98.4| 983 98.2| 61.8 59.4| Ccallabel, while “POS”is a projec-
oracle given pruning 99.3 99.3 99.5 99.6 99.8 99.7 93.4 90.6 tion down to a tagset of SI.ZB 60.
1 88.6 88.6| 98.4 98.4| 982 98.1| 60.0 56.7| Lemma accuracy does not include
oracle given pruning 99.3 99.3 99.5 99.6 99.8 99.8 95.0 94.0 oov words. “The POS-onIy model
~PoS ~ | 879 80| 982 98J| 980 97.8| 557 51.7| SelectsonlyPOS, notfulltags; these

¢ measures are expected performance
10 88.1 88.3| 982 983 98.0 97.9| 554 516 if the full tag is selected randomly

1| 884 885| 982 982| 980 97.9| 550 51.9| gom those in the dictionary that
—tag-lemma o~ 87.8 88.3| 98.3 98.6| 983 98.3| 60.2 59.7| maich the selected PO%Required

10 88.0 88.1| 984 985| 983 98.2| 59.1 59.1| e aggressive pruning. Bold

1 880 88.1] 984 984| 982 981] 590 58.1| georeswere significantly better than
POS only 00 65.6" 65.5| 98.3 98.6| 98.3 98.4| 60.2 63.7| the HMM of Hajic et al. (binomial

10 65.7 65.5°| 98,5 98.6| 985 985| 652 66.4 sign test,p < 0.05). Our models
1 65.77 65.5| 98.6 98.7| 986 98.6| 67.2 67.2| \yereslightly butsignificantly worse
POS & 00 81.2 823 983 98.6] 983 984| 60.2 63.9| on full tagging, but showed signif-
tag-lemma 10 81.9 82.3 98.5 98.6 98.4 98.5 65.8 67.2| jcant improvements on recovering

1 82.0 82.3| 984 985| 985 98.4| 67.8 66.3| POStagsandlemmas.
oracle givend(x) 99.8 99.8 99.5 99.6 99.9 99.9 100.0 100.0

maximizes a lower bound on the unfactored objectiveracy on all words, and POS accuracy@av words. The
Smith and Smith (2004) applied factored estimation to ahannel model (not shown) tended to have a small, harm-
bilingual weighted grammar, driven by data limitations. ful effect on performance.

Without any explicitoov treatment, our POS-only
4.2 Experiments component model significantly reduces lemma and POS

Our corpus is the PDT (Hajj 1998), with up to 60% used €MOrs compargd to Hdjiet al.’s modgl. On rgcovering
for training and 10% (109K words) used for té&tThe full morphological tags, ouull model is close in perfor-
morphological dictionary is the one packaged with thénance to Haji et al., but still significantly worse. _It is
PDT: it covers about 98% of the tokens in the corpus. Thikely that for many tasks, these performance gains are
remaining 2% have (unsurprisingly) a diverse set of 3oomMore helpful t,han the loss on full tagging is harmful.
400 distinct tags, depending on the training set $ize. Why doesn't our full model perform as well as Hagt
Results are shown in Tab. 2. We compare to the HMNM-'S model? An error analysis reveals that our full model
of (Haji¢ et al., 2001 withoutits oov component2 we ~ (768K,o” = 1), compared to theOHMM (768K) had 91% .
report morphological tagging accuracy on words; we als§S many number errors but 0.1% more gender and 31%
report lemma accuracy (on namsv words), POS accu- more case errors. Taking out those three models (“POS
' & tag-lemma” in Fig. 2) is helpful on all measures ex-
19e used less than the full corpus to keep training im&ePt full tagging accuracy, due in part to substantially
down; note that the training sets are nonetheless substantiaijcreased errors on gender (87% increase), case (54%),
larger than in the Korean and Arabic experiments. and number (35%). The net effect of these components,

'During training, these project down to manageable numthen, is helpful, but not quite helpful enough to match

bers of hypotheses in the factored models. At test-time, hov\éi well-smoothed HMM on complex tagging. We com-
ever, Viterbi search is quite difficult whemov symbols occur )

consecutively. To handle this, we pruoev arcs from the lat- pared the models on the training set and found the same

tices using the factored POS and inflectional models. For eadtattern, demonstrating that this is not merely a matter of
oov, every model prunes a projection of the analysis (e.g., thever-fitting.

POS model prunes POS tags) until 90% of the posterior mass or

3 arcs remain (whichever is more conservative). Viterbi decoc!-) Future Work

ing is run on a lattice containingov arcs consistent with the

pruned projected lattices. Two clear ways to improve our models present them-

12 : .
Resultswiththeoov component are also reported in Tab. 2, 0 .
but we cannot guarantee their experimental validity, since th%elves. The first is betteyov handling, perhaps through

ooV component is pre-trained and may have been trained ¢ improved channel model. Possibilities include learn-
data in our test set. ing weights to go inside the FST-encoded dictionaries and
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directly modeling spelling changes. The second is to turf. Hajit. 1998. Building a syntactically annotated corpus:
our factored model into a LOP. Training the mixture co- The Prague Dependency Treebankidsues of Valency and

. . PRI : Meaning
Ef.ﬁCIentS should be straightforward (if time consumlng)D. Z. Hakkani-Tur, K. Oflazer, and G. @r. 2000. Statistical
with a development dataset.

) _ morphological disambiguation for agglutinative languages.
A drawback of our system (especially for Czech) is |n Proc. of COLING

that some components (most notably, the Czech PGS-H. Han, N.-R. Han, E.-S. Ko, H. Yi, and M. Palmer. 2002.

model) take a great deal of time to train (up to two weeks Penn Korean Treebank: Development and evaluation. In

f : Proc. Pacific Asian Conf. Language and Comp.
on 2GHz Pentium systems). Speed improvements aﬁa.-R. Han. 2004. Klex: Finite-state lexical transducer for Ko-

expected to come from eliminating some of the over- o0 | DC2004L01.

lapping feature templates, generalized speedups for 10g- Hinton. 1999. Products of experts. Pnoc. of ICANN
linear training, and perhaps further factoring. J. Hlavdcova. 2001. Morphological guesser of Czech words.
In Proc. of TSD
: F. Jelinek. 1976. Continuous speech recognition by statistical
6 Conclusion methods Proc. of the IEEE64(4):532-557.

We h lored hological di bi fi fd'R' M. Kaplan and M. Kay. 1981. Phonological rules and finite-
¢ have explored morphological disambiguation OF dI- - giat6 transducers. Presented at Linguistic Society of Amer-

verse languages using log-linear sequence models. Ourca.
approach reduces error rates significantly on POS tag- Khoja. 2001. APT: Arabic part-of-speech tagger.Phoc.
ging (Arabic and Czech), morpheme sequence recovery of NAACL Student Workshop

(Korean and Arabic), and lemmatization (all three lan- 'tﬁggglfiﬁggoéuﬁgﬂggei 2322”;%?%?233% :ﬁigi?;%li;
guages), compared to baseline state-of-the-art methOdSC0mputati0nal Linguistice26(1):77—105.

For complex analysis tasks (e.g., Czech tagging), we haye koskenniemi. 1983. Two-level morphology: A general
demonstrated that factoring a large model into smaller computational model of word-form recognition and produc-
components can S|mp||fy training and achieve excel- tion. Technical Report 11, University of Helsinki.

lent results. We conclude thatcanditionallyestimated - Kudo, K. Yamamoto, and Y. Matsumoto. 2004. Applying
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