
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 411–418, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Unsupervised Large-Vocabulary Word Sense Disambiguation
with Graph-based Algorithms for Sequence Data Labeling

Rada Mihalcea
Department of Computer Science

University of North Texas
rada@cs.unt.edu

Abstract

This paper introduces a graph-based algo-
rithm for sequence data labeling, using ran-
dom walks on graphs encoding label de-
pendencies. The algorithm is illustrated
and tested in the context of an unsuper-
vised word sense disambiguation problem,
and shown to significantly outperform the
accuracy achieved through individual label
assignment, as measured on standard sense-
annotated data sets.

1 Introduction

Many natural language processing tasks consist of la-
beling sequences of words with linguistic annotations,
e.g. word sense disambiguation, part-of-speech tag-
ging, named entity recognition, and others. Typical
labeling algorithms attempt to formulate the annota-
tion task as a traditional learning problem, where the
correct label is individually determined for each word
in the sequence using a learning process, usually con-
ducted independent of the labels assigned to the other
words in the sequence. Such algorithms do not have
the ability to encode and thereby exploit dependen-
cies across labels corresponding to the words in the
sequence, which potentially limits their performance
in applications where such dependencies can influence
the selection of the correct set of labels.

In this paper, we introduce a graph-based sequence
data labeling algorithm well suited for such natural
language annotation tasks. The algorithm simultane-
ously annotates all the words in a sequence by ex-
ploiting relations identified among word labels, us-
ing random walks on graphs encoding label dependen-
cies. The random walks are mathematically modeled

through iterative graph-based algorithms, which are
applied on the label graph associated with the given
sequence of words, resulting in a stationary distribu-
tion over label probabilities. These probabilities are
then used to simultaneously select the most probable
set of labels for the words in the input sequence.

The annotation method is illustrated and tested on
an unsupervised word sense disambiguation prob-
lem, targeting the annotation of all open-class words
in unrestricted text using information derived exclu-
sively from dictionary definitions. The graph-based
sequence data labeling algorithm significantly outper-
forms the accuracy achieved through individual data
labeling, resulting in an error reduction of 10.7%, as
measured on standard sense-annotated data sets. The
method is also shown to exceed the performance of
other previously proposed unsupervised word sense
disambiguation algorithms.

2 Iterative Graphical Algorithms for
Sequence Data Labeling

In this section, we introduce the iterative graphical al-
gorithm for sequence data labeling. The algorithm is
succinctly illustrated using a sample sequence for a
generic annotation problem, with a more extensive il-
lustration and evaluation provided in Section 3.

Given a sequence of words W = {w1, w2, ..., wn},
each word wi with corresponding admissible labels

Lwi
= {l1wi

, l2wi
, ..., l

Nwi
wi }, we define a label graph G

= (V,E) such that there is a vertex v ∈ V for every pos-
sible label ljwi

, i = 1..n, j = 1..Nwi
. Dependencies

between pairs of labels are represented as directed or
indirected edges e ∈ E, defined over the set of vertex
pairs V × V . Such label dependencies can be learned
from annotated data, or derived by other means, as il-
lustrated later. Figure 1 shows an example of a graph-

411

1w

1

2

3

2

1 1 1

2

4

w 2 w 3 w 4

w1

w1

3

w1
l

l

l
w2

w2

l

l

w3
l

w4

w4

w4

w4
l

l

l

l

1.1

0.4
0.2

0.5

0.2

0.1

1.3

0.9

0.6

0.7

1.6

[1.12]

[1.39]

[0.86]

[1.13]

[1.38]

[1.56] [0.40]

[1.05]

[0.58]

[0.48]

Figure 1: Sample graph built on the set of possible
labels (shaded nodes) for a sequence of four words
(unshaded nodes). Label dependencies are indicated
as edge weights. Scores computed by the graph-based
algorithm are shown in brackets, next to each label.

ical structure derived over the set of labels for a se-
quence of four words. Note that the graph does not
have to be fully connected, as not all label pairs can
be related by a dependency.

Given such a label graph associated with a sequence
of words, the likelihood of each label can be recur-
sively determined using an iterative graph-based rank-
ing algorithm, which runs over the graph of labels and
identifies the importance of each label (vertex) in the
graph. The iterative graphical algorithm is modeling a
random walk, leading to a stationary distribution over
label probabilities, represented as scores attached to
vertices in the graph. These scores are then used to
identify the most probable label for each word, result-
ing in the annotation of all the words in the input se-
quence. For instance, for the graph drawn in Figure 1,
the word w1 will be assigned with label l1w1

, since the
score associated with this label (1.39) is the maximum
among the scores assigned to all admissible labels as-
sociated with this word.

A remarkable property that makes these iterative
graphical algorithms appealing for sequence data la-
beling is the fact that they take into account global
information recursively drawn from the entire graph,
rather than relying on local vertex-specific informa-
tion. Through the random walk performed on the la-
bel graph, these iterative algorithms attempt to collec-
tively exploit the dependencies drawn between all la-
bels in the graph, which makes them superior to other
approaches that rely only on local information, indi-
vidually derived for each word in the sequence.

2.1 Graph-based Ranking

The basic idea implemented by an iterative graph-
based ranking algorithm is that of “voting” or “recom-
mendation”. When one vertex links to another one, it
is basically casting a vote for that other vertex. The
higher the number of votes that are cast for a vertex,
the higher the importance of the vertex. Moreover,
the importance of the vertex casting a vote determines
how important the vote itself is, and this information
is also taken into account by the ranking algorithm.

While there are several graph-based ranking algo-
rithms previously proposed in the literature, we focus
on only one such algorithm, namely PageRank (Brin
and Page, 1998), as it was previously found success-
ful in a number of applications, including Web link
analysis, social networks, citation analysis, and more
recently in several text processing applications.

Given a graph G = (V,E), let In(Va) be the set
of vertices that point to vertex Va (predecessors), and
let Out(Va) be the set of vertices that vertex Va points
to (successors). The PageRank score associated with
the vertex Va is then defined using a recursive function
that integrates the scores of its predecessors:

P (Va) = (1− d) + d ∗
∑

Vb∈In(Va)

P (Vb)

|Out(Vb)|
(1)

where d is a parameter that is set between 0 and 11.
This vertex scoring scheme is based on a random

walk model, where a walker takes random steps on the
graph G, with the walk being modeled as a Markov
process – that is, the decision on what edge to follow
is solely based on the vertex where the walker is cur-
rently located. Under certain conditions, this model
converges to a stationary distribution of probabilities,
associated with vertices in the graph. Based on the
Ergodic theorem for Markov chains (Grimmett and
Stirzaker, 1989), the algorithm is guaranteed to con-
verge if the graph is both aperiodic and irreducible.
The first condition is achieved for any graph that is a
non-bipartite graph, while the second condition holds
for any strongly connected graph – property achieved
by PageRank through the random jumps introduced
by the (1 − d) factor. In matrix notation, the PageR-
ank vector of stationary probabilities is the principal
eigenvector for the matrix Arow, which is obtained
from the adjacency matrix A representing the graph,
with all rows normalized to sum to 1: (P = AT

rowP).
Intuitively, the stationary probability associated

with a vertex in the graph represents the probability

1The typical value for d is 0.85 (Brin and Page, 1998), and this
is the value we are also using in our implementation.

412

of finding the walker at that vertex during the ran-
dom walk, and thus it represents the importance of the
vertex within the graph. In the context of sequence
data labeling, the random walk is performed on the
label graph associated with a sequence of words, and
thus the resulting stationary distribution of probabili-
ties can be used to decide on the most probable set of
labels for the given sequence.

2.2 Ranking on Weighted Graphs

In a weighted graph, the decision on what edge to fol-
low during a random walk is also taking into account
the weights of outgoing edges, with a higher likeli-
hood of following an edge that has a larger weight.
The weighted version of the ranking algorithm is
particularly useful for sequence data labeling, since
the dependencies between pairs of labels are more
naturally modeled through weights indicating their
strength, rather than binary 0/1 values. Given a set of
weights wab associated with edges connecting vertices
Va and Vb, the weighted PageRank score is determined
as:

WP (Va) = (1−d)+d
∑

Vb∈In(Va)

wba∑
Vc∈Out(Vb)

wbc

WP (Vb) (2)

2.3 Algorithm for Sequence Data Labeling

Given a sequence of words with their corresponding
admissible labels, the algorithm for sequence data la-
beling seeks to identify a graph of label dependencies
on which a random walk can be performed, resulting
in a set of scores that can be used for label assignment.
Algorithm 1 shows the pseudocode for the labeling
process. The algorithm consists of three main steps:
(1) construction of label dependencies graph; (2) la-
bel scoring using graph-based ranking algorithms; (3)
label assignment.

First, a weighted graph of label dependencies is
built by adding a vertex for each admissible label, and
an edge for each pair of labels for which a dependency
is identified. A maximum allowable distance can be
set (MaxDist), indicating a constraint over the dis-
tance between words for which a label dependency
is sought. For instance, if MaxDist is set to 3, no
edges will be drawn between labels corresponding to
words that are more than three words apart, counting
all running words. Label dependencies are determined
through the Dependency function, whose definition
depends on the application and type of resources avail-
able (see Section 2.4).

Next, scores are assigned to vertices using a graph-
based ranking algorithm. Current experiments are

Algorithm 1 Graph-based Sequence Data Labeling
Input: Sequence W = {wi|i = 1..N}
Input: Admissible labels Lwi

= {ltwi
|t = 1..Nwi

},i = 1..N
Output: Sequence of labels L = {lwi

|i = 1..N}, with label lwi

corresponding to word wi from the input sequence.

Build graph G of label dependencies
1: for i = 1 to N do
2: for j = i + 1 to N do
3: if j − i > MaxDist then
4: break
5: end if
6: for t = 1 to Nwi

do
7: for s = 1 to Nwj

do
8: weight← Dependency(ltwi

, lswj
, wi, wj)

9: if weight > 0 then
10: AddEdge(G, ltwi

, lswj
, weight)

11: end if
12: end for
13: end for
14: end for
15: end for

Score vertices in G
1: repeat
2: for all Va ∈ V ertices(G) do
3: WP (Va) = (1− d) + d∗∑

Vb∈In(Va)

wbaWP (Vb)/
∑

Vc∈Out(Vb)

wbc

4: end for
5: until convergence of scores WP (Va)

Label assignment
1: for i = 1 to N do
2: lwi

← argmax{WP (ltwi
)|t = 1..Nwi

}
3: end for

based on PageRank, but other ranking algorithms can
be used as well.

Finally, the most likely set of labels is determined
by identifying for each word the label that has the
highest score. Note that all admissible labels corre-
sponding to the words in the input sequence are as-
signed with a score, and thus the selection of two or
more most likely labels for a word is also possible.

2.4 Label Dependencies

Label dependencies can be defined in various ways,
depending on the application at hand and on the
knowledge sources that are available. If an annotated
corpus is available, dependencies can be defined as
label co-occurrence probabilities approximated with
frequency counts P (ltwi

, lswj
), or as conditional prob-

abilities P (ltwi
|lswj

). Optionally, these dependencies
can be lexicalized by taking into account the corre-
sponding words in the sequence, e.g. P (ltwi

|lswj
) ×

P (wi|l
t
wi

). In the absence of an annotated corpus, de-
pendencies can be derived by other means, e.g. part-

413

of-speech probabilities can be approximated from a
raw corpus as in (Cutting et al., 1992), word-sense de-
pendencies can be derived as definition-based similar-
ities, etc. Label dependencies are set as weights on
the arcs drawn between corresponding labels. Arcs
can be directed or undirected for joint probabilities or
similarity measures, and are usually directed for con-
ditional probabilities.

2.5 Labeling Example

Consider again the example from Figure 1, consisting
of a sequence of four words, and their possible cor-
responding labels. In the first step of the algorithm,
label dependencies are determined, and let us assume
that the values for these dependencies are as indicated
through the edge weights in Figure 1. Next, vertices
in the graph are scored using an iterative ranking al-
gorithm, resulting in a score attached to each label,
shown in brackets next to each vertex. Finally, the
most probable label for each word is selected. Word
w1 is thus assigned with label l1w1

, since the score of
this label (1.39) is the maximum among the scores as-
sociated with all its possible labels (1.39, 1.12, 0.86).
Similarly, word w2 is assigned with label l2w2

, w3 with
label l1w3

, and w4 receives label l2w4
.

2.6 Efficiency Considerations

For a sequence of words W = {w1, w2, ..., wn}, each
word wi with Nwi

admissible labels, the running time
of the graph-based sequence data labeling algorithm

is proportional with O(C
n∑

i=1

i+MaxDist∑
j=i+1

(Nwi
×Nwj

))

(the time spent in building the label graph and iterating
the algorithm for a constant number of times C). This
is order of magnitudes better than the running time

of O(
n∏

i=1
Nwi

) for algorithms that attempt to select the

best sequence of labels by searching through the en-
tire space of possible label combinations, although it
can be significantly higher than the running time of

O(
n∑

i=1
Nwi

) for individual data labeling.

2.7 Other Algorithms for Sequence Data
Labeling

It is interesting to contrast our algorithm with previ-
ously proposed models for sequence data labeling, e.g.
Hidden Markov Models, Maximum Entropy Markov
Models, or Conditional Random Fields. Although
they differ in the model used (generative, discrimina-
tive, or dual), and the type of probabilities involved
(joint or conditional), these previous algorithms are

all parameterized algorithms that typically require pa-
rameter training through maximization of likelihood
on training examples. In these models, parameters that
maximize sequence probabilities are learned from a
corpus during a training phase, and then applied to
the annotation of new unseen data. Instead, in the
algorithm proposed in this paper, the likelihood of a
sequence of labels is determined during test phase,
through random walks performed on the label graph
built for the data to be annotated. While current eval-
uations of our algorithm are performed on an unsuper-
vised labeling task, future work will consider the eval-
uation of the algorithm in the presence of an annotated
corpus, which will allow for direct comparison with
these previously proposed models for sequence data
labeling.

3 Experiments in Word Sense
Disambiguation

The algorithm for sequence data labeling is illustrated
and tested on an all-words word sense disambiguation
problem. Word sense disambiguation is a labeling task
consisting of assigning the correct meaning to each
open-class word in a sequence (usually a sentence).
Most of the efforts for solving this problem were con-
centrated so far toward targeted supervised learning,
where each sense tagged occurrence of a particular
word is transformed into a feature vector used in an
automatic learning process. The applicability of such
supervised algorithms is however limited to those few
words for which sense tagged data is available, and
their accuracy is strongly connected to the amount of
labeled data available at hand. Instead, algorithms that
attempt to disambiguate all-words in unrestricted text
have received significantly less attention, as the devel-
opment and success of such algorithms has been hin-
dered by both (a) lack of resources (training data), and
(b) efficiency aspects resulting from the large size of
the problem.

3.1 Graph-based Sequence Data Labeling for
Unsupervised Word Sense Disambiguation

To apply the graph-based sequence data labeling algo-
rithm to the disambiguation of an input text, we need
information on labels (word senses) and dependencies
(word sense dependencies). Word senses can be eas-
ily obtained from any sense inventory, e.g. WordNet
or LDOCE. Sense dependencies can be derived in var-
ious ways, depending on the type of resources avail-
able for the language and/or domain at hand. In this
paper, we explore the unsupervised derivation of sense

414

dependencies using information drawn from machine
readable dictionaries, which is general and can be ap-
plied to any language or domain for which a sense in-
ventory is available.

Relying exclusively on a machine readable dictio-
nary, a sense dependency can be defined as a measure
of similarity between word senses. There are several
metrics that can be used for this purpose, see for in-
stance (Budanitsky and Hirst, 2001) for an overview.
However, most of them rely on measures of seman-
tic distance computed on semantic networks, and thus
they are limited by the availability of explicitly en-
coded semantic relations (e.g. is-a, part-of). To
maintain the unsupervised aspect of the algorithm, we
chose instead to use a measure of similarity based on
sense definitions, which can be computed on any dic-
tionary, and can be evaluated across different parts-of-
speech.

Given two word senses and their corresponding def-
initions, the sense similarity is determined as a func-
tion of definition overlap, measured as the number of
common tokens between the two definitions, after run-
ning them through a simple filter that eliminates all
stop-words. To avoid promoting long definitions, we
also use a normalization factor, and divide the content
overlap of the two definitions with the length of each
definition. This sense similarity measure is inspired
by the definition of the Lesk algorithm (Lesk, 1986).

Starting with a sense inventory and a function for
computing sense dependencies, the application of the
sequence data labeling algorithm to the unsupervised
disambiguation of a new text proceeds as follows.
First, for the given text, a label graph is built by
adding a vertex for each possible sense for all open-
class words in the text. Next, weighted edges are
drawn using the definition-based semantic similarity
measure, computed for all pairs of senses for words
found within a certain distance (MaxDist, as defined
in Algorithm 1). Once the graph is constructed, the
graph-based ranking algorithm is applied, and a score
is determined for all word senses in the graph. Finally,
for each open-class word in the text, we select the ver-
tex in the label graph which has the highest score, and
label the word with the corresponding word sense.

3.2 An Example

Consider the task of assigning senses to the words
in the text The church bells no longer rung on Sun-
days2. For the purpose of illustration, we assume at

2Example drawn from the data set provided during the
SENSEVAL-2 English all-words task. Manual sense annotations

The church bells no longer rung on Sundays.

church
1: one of the groups of Christians who have their own beliefs

and forms of worship
2: a place for public (especially Christian) worship
3: a service conducted in a church

bell
1: a hollow device made of metal that makes a ringing sound

when struck
2: a push button at an outer door that gives a ringing or buzzing

signal when pushed
3: the sound of a bell

ring
1: make a ringing sound
2: ring or echo with sound
3: make (bells) ring, often for the purposes of musical edifica-

tion

Sunday
1: first day of the week; observed as a day of rest and worship

by most Christians

bell ring

[1.46]

[0.99]

[0.96] [2.56]

[0.63]

[0.58]

[0.42]

[0.67]

Sundaychurch

S2

S1

s3

s2

s3

s2

S3

s1 S1s1

0.35

0.501.06

0.40

0.19

0.34

1.01

0.55 [0.73]

0.30

[0.93]

0.35

0.31

0.80

0.85

0.23

Figure 2: The label graph for assigning senses to
words in the sentence The church bells no longer rung
on Sundays.

most three senses for each word, which are shown in
Figure 2. Word senses and definitions are obtained
from the WordNet sense inventory (Miller, 1995). All
word senses are added as vertices in the label graph,
and weighted edges are drawn as dependencies among
word senses, derived using the definition-based sim-
ilarity measure (no edges are drawn between word
senses with a similarity of zero). The resulting label
graph is an undirected weighted graph, as shown in
Figure 2. After running the ranking algorithm, scores
are identified for each word-sense in the graph, indi-
cated between brackets next to each node. Selecting
for each word the sense with the largest score results in
the following sense assignment: The church#2 bells#1

were also made available for this data.

415

no longer rung#3 on Sundays#1, which is correct ac-
cording to annotations performed by professional lex-
icographers.

3.3 Results and Discussion

The algorithm was primarily evaluated on the
SENSEVAL-2 English all-words data set, consisting
of three documents from Penn Treebank, with 2,456
open-class words (Palmer et al., 2001). Unlike other
sense-annotated data sets, e.g. SENSEVAL-3 or Sem-
Cor, SENSEVAL-2 is the only testbed for all-words
word sense disambiguation that includes a sense map,
which allows for additional coarse-grained sense eval-
uations. Moreover, there is a larger body of previous
work that was evaluated on this data set, which can be
used as a base of comparison.

The performance of our algorithm is compared with
the disambiguation accuracy obtained with a variation
of the Lesk algorithm3 (Lesk, 1986), which selects the
meaning of an open-class word by finding the word
sense that leads to the highest overlap between the cor-
responding dictionary definition and the current con-
text. Similar to the definition similarity function used
in the graph-based disambiguation algorithm (Section
3.1), the overlap measure used in the Lesk implemen-
tation does not take into account stop-words, and it is
normalized with the length of each definition to avoid
promoting longer definitions.

We are thus comparing the performance of se-
quence data labeling, which takes into account label
dependencies, with individual data labeling, where a
label is selected independent of the other labels in
the text. Note that both algorithms rely on the same
knowledge source, i.e. dictionary definitions, and thus
they are directly comparable. Moreover, none of the
algorithms take into account the dictionary sense order
(e.g. the most frequent sense provided by WordNet),
and therefore they are both fully unsupervised.

Table 1 shows precision and recall figures4 for a

3Given a sequence of words, the original Lesk algorithm at-
tempts to identify the combination of word senses that maxi-
mizes the redundancy (overlap) across all corresponding defini-
tions. The algorithm was later improved through a method for
simulated annealing (Cowie et al., 1992), which solved the com-
binatorial explosion of word senses, while still finding an optimal
solution. However, recent comparative evaluations of different
variants of the Lesk algorithm have shown that the performance
of the original algorithm is significantly exceeded by an algorithm
variation that relies on the overlap between word senses and cur-
rent context (Vasilescu et al., 2004). We are thus using this latter
Lesk variant in our implementation.

4Recall is particularly low for each individual part-of-speech
because it is calculated with respect to the entire data set. The
overall precision and recall figures coincide, reflecting the 100%
coverage of the algorithm.

context size (MaxDist) equal to the length of each
sentence, using: (a) sequence data labeling with itera-
tive graph-based algorithms; (b) individual data label-
ing with a version of the Lesk algorithm; (c) random
baseline. Evaluations are run for both fine-grained
and coarse-grained sense distinctions, to determine
the algorithm performance under different classifica-
tion granularities.

The accuracy of the graph-based sequence data la-
beling algorithm exceeds by a large margin the indi-
vidual data labeling algorithm, resulting in 10.7% er-
ror rate reduction for fine-grained sense distinctions,
which is statistically significant (p < 0.0001, paired
t-test). Performance improvements are equally dis-
tributed across all parts-of-speech, with comparable
improvements obtained for nouns, verbs, and adjec-
tives. A similar error rate reduction of 11.0% is ob-
tained for coarse-grained sense distinctions, which
suggests that the performance of the graph-based se-
quence data labeling algorithm does not depend on
classification granularity, and similar improvements
over individual data labeling can be obtained regard-
less of the average number of labels per word.

We also measured the variation of performance with
context size, and evaluated the disambiguation ac-
curacy for both algorithms for a window size rang-
ing from two words to an entire sentence. The win-
dow size parameter limits the number of surround-
ing words considered when seeking label dependen-
cies (sequence data labeling), or the words counted
in the measure of definition–context overlap (individ-
ual data labeling). Figure 3 plots the disambiguation
accuracy of the two algorithms as a function of con-
text size. As seen in the figure, both algorithms ben-
efit from larger contexts, with a steady increase in
performance observed for increasingly larger window
sizes. Although the initial growth observed for the se-
quence data labeling algorithm is somewhat sharper,
the gap between the two curves stabilizes for window
sizes larger than five words, which suggests that the
improvement in performance achieved with sequence
data labeling over individual data labeling does not de-
pend on the size of available context.

The algorithm was also evaluated on two other
data sets, SENSEVAL-3 English all-words data
(Snyder and Palmer, 2004) and a subset of SemCor
(Miller et al., 1993), although only fine-grained sense
evaluations could be conducted on these test sets.
The disambiguation precision on the SENSEVAL-3
data was measured at 52.2% using sequence data
labeling, compared to 48.1% obtained with individual

416

Fine-grained sense distinctions Coarse-grained sense distinctions
Random Individual Sequence Random Individual Sequence

Part-of baseline (Lesk) (graph-based) baseline (Lesk) (graph-based)
speech P R P R P R P R P R P R
Noun 41.4% 19.4% 50.3% 23.6% 57.5% 27.0% 42.7% 20.0% 51.4% 24.1% 58.8% 27.5%
Verb 20.7% 3.9% 30.5% 5.7% 36.5% 6.9% 22.8% 4.3% 31.9% 6.0% 37.9% 7.1%
Adjective 41.3% 9.3% 49.1% 11.0% 56.7% 12.7% 42.6% 42.6% 49.8% 11.2% 57.6% 12.9%
Adverb 44.6% 5.2% 64.6% 7.6% 70.9% 8.3% 40.7% 4.8% 65.3% 7.7% 71.9% 8.5%
ALL 37.9% 37.9% 48.7% 48.7% 54.2% 54.2% 38.7% 38.7% 49.8% 49.8% 55.3% 55.3%

Table 1: Precision and recall for graph-based sequence data labeling, individual data labeling, and random
baseline, for fine-grained and coarse-grained sense distinctions.

 35

 40

 45

 50

 55

 60

 0 5 10 15 20 25 30

D
is

am
bi

gu
at

io
n

pr
ec

is
io

n
(%

)

Window size

sequence
individual

random

Figure 3: Disambiguation results using sequence data
labeling, individual labeling, and random baseline, for
various context sizes.

data labeling, and 34.3% achieved through random
sense assignment. The average disambiguation figure
obtained on all the words in a random subset of 10
SemCor documents, covering different domains, was
56.5% for sequence data labeling, 47.4% for individ-
ual labeling, and 35.3% for the random baseline.

Comparison with Related Work
For a given sequence of ambiguous words, the origi-
nal definition of the Lesk algorithm (Lesk, 1986), and
more recent improvements based on simulated anneal-
ing (Cowie et al., 1992), seek to identify the combina-
tion of senses that maximizes the overlap among their
dictionary definitions. Tests performed with this algo-
rithm on the SENSEVAL-2 data set resulted in a dis-
ambiguation accuracy of 39.5%. This precision is ex-
ceeded by the Lesk algorithm variation used in the ex-
periments reported in this paper, which measures the
overlap between sense definitions and the current con-
text, for a precision of 48.7% on the same data set (see
Table 1). In the SENSEVAL-2 evaluations, the best

performing fully unsupervised algorithm5 was devel-
oped by (Litkowski, 2001), who combines analysis of
multiword units and contextual clues based on collo-
cations and content words from dictionary definitions
and examples, for an overall precision and recall of
45.1%. More recently, (McCarthy et al., 2004) reports
one of the best results on the SENSEVAL-2 data set,
using an algorithm that automatically derives the most
frequent sense for a word using distributional similari-
ties learned from a large raw corpus, for a disambigua-
tion precision of 53.0% and a recall of 49.0%.

Another related line of work consists of the disam-
biguation algorithms based on lexical chains (Morris
and Hirst, 1991), and the more recent improvements
reported in (Galley and McKeown, 2003) – where
threads of meaning are identified throughout a text.
Lexical chains however only take into account con-
nections between concepts identified in a static way,
without considering the importance of the concepts
that participate in a relation, which is recursively de-
termined in our algorithm. Moreover, the construction
of lexical chains requires structured dictionaries such
as WordNet, with explicitly defined semantic relations
between word senses, whereas our algorithm can also
work with simple unstructured dictionaries that pro-
vide only word sense definitions. (Galley and McK-
eown, 2003) evaluated their algorithm on the nouns
from a subset of SEMCOR, reporting 62.09% dis-
ambiguation precision. The performance of our al-
gorithm on the same subset of SEMCOR nouns was
measured at 64.2%6. Finally, another disambiguation
method relying on graph algorithms that exploit the

5Algorithms that integrate the most frequent sense in Word-
Net are not considered here, since this represents a supervised
knowledge source (WordNet sense frequencies are derived from a
sense-annotated corpus).

6Note that the results are not directly comparable, since (Gal-
ley and McKeown, 2003) used the WordNet sense order to break
the ties, whereas we assume that such sense order frequency is not
available, and thus we break the ties through random choice.

417

structure of semantic networks was proposed in (Mi-
halcea et al., 2004), with a disambiguation accuracy of
50.9% measured on all the words in the SENSEVAL-2
data set.

Although it relies exclusively on dictionary defini-
tions, the graph-based sequence data labeling algo-
rithm proposed in this paper, with its overall perfor-
mance of 54.2%, exceeds significantly the accuracy
of all these previously proposed unsupervised word
sense disambiguation methods, proving the benefits of
taking into account label dependencies when annotat-
ing sequence data. An additional interesting benefit of
the algorithm is that it provides a ranking over word
senses, and thus the selection of two or more most
probable senses for each word is also possible.

4 Conclusions

We proposed a graphical algorithm for sequence data
labeling that relies on random walks on graphs encod-
ing label dependencies. Through the label graphs it
builds for a given sequence of words, the algorithm ex-
ploits relations between word labels, and implements
a concept of recommendation. A label recommends
other related labels, and the strength of the recom-
mendation is recursively computed based on the im-
portance of the labels making the recommendation.
In this way, the algorithm simultaneously annotates
all the words in an input sequence, by identifying the
most probable (most recommended) set of labels.

The algorithm was illustrated and tested on an unsu-
pervised word sense disambiguation problem, target-
ing the annotation of all words in unrestricted texts.
Through experiments performed on standard sense-
annotated data sets, the graph-based sequence data la-
beling algorithm was shown to significantly outper-
form the accuracy achieved through individual data la-
beling, resulting in a statistically significant error rate
reduction of 10.7%. The disambiguation method was
also shown to exceed the performance of previously
proposed unsupervised word sense disambiguation al-
gorithms. Moreover, comparative results obtained un-
der various experimental settings have shown that the
algorithm is robust to changes in classification granu-
larity and context size.

Acknowledgments
This work was partially supported by a National Sci-
ence Foundation grant IIS-0336793.

References
S. Brin and L. Page. 1998. The anatomy of a large-scale

hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7).

A. Budanitsky and G. Hirst. 2001. Semantic distance in
wordnet: An experimental, application-oriented evalu-
ation of five measures. In Proceedings of the NAACL
Workshop on WordNet and Other Lexical Resources,
Pittsburgh.

J. Cowie, L. Guthrie, and J. Guthrie. 1992. Lexical disam-
biguation using simulated annealing. In Proceedings of
the 5th International Conference on Computational Lin-
guistics (COLING 1992).

D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. 1992.
A practical part-of-speech tagger. In Proceedings of
the Third Conference on Applied Natural Language Pro-
cessing ANLP-92.

M. Galley and K. McKeown. 2003. Improving word sense
disambiguation in lexical chaining. In Proceedings of
the 18th International Joint Conference on Artificial In-
telligence (IJCAI 2003), Acapulco, Mexico, August.

G. Grimmett and D. Stirzaker. 1989. Probability and Ran-
dom Processes. Oxford University Press.

M.E. Lesk. 1986. Automatic sense disambiguation using
machine readable dictionaries: How to tell a pine cone
from an ice cream cone. In Proceedings of the SIGDOC
Conference 1986, Toronto.

K. Litkowski. 2001. Use of machine readable dictionaries
in word sense disambiguation for Senseval-2. In Pro-
ceedings of ACL/SIGLEX Senseval-2, Toulouse, France.

D. McCarthy, R. Koeling, J. Weeds, and J. Carroll.
2004. Using automatically acquired predominant senses
for word sense disambiguation. In Proceedings of
ACL/SIGLEX Senseval-3, Barcelona, Spain.

R. Mihalcea, P. Tarau, and E. Figa. 2004. PageRank on se-
mantic networks, with application to word sense disam-
biguation. In Proceedings of the 20st International Con-
ference on Computational Linguistics (COLING 2004).

G. Miller, C. Leacock, T. Randee, and R. Bunker. 1993.
A semantic concordance. In Proceedings of the 3rd
DARPA Workshop on Human Language Technology,
Plainsboro, New Jersey.

G. Miller. 1995. Wordnet: A lexical database. Communi-
cation of the ACM, 38(11):39–41.

J. Morris and G. Hirst. 1991. Lexical cohesion, the the-
saurus, and the structure of text. Computational Lin-
guistics, 17(1):21–48.

M. Palmer, C. Fellbaum, S. Cotton, L. Delfs, and H.T.
Dang. 2001. English tasks: all-words and verb lexi-
cal sample. In Proceedings of ACL/SIGLEX Senseval-2,
Toulouse, France.

B. Snyder and M. Palmer. 2004. The English all-
words task. In Proceedings of ACL/SIGLEX Senseval-3,
Barcelona, Spain.

F. Vasilescu, P. Langlais, and G. Lapalme. 2004. Evalu-
ating variants of the Lesk approach for disambiguating
words. In Proceedings of the Conference of Language
Resources and Evaluations (LREC 2004).

418

