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Abstract e new clusters or classifiers every minute (for the docu-

: . . ment sets retrieved hocqueries
“Bootstrapping” methods for learning require a small antoun ryd q )

of supervision to seed the learning process. We show that ét many distinct classifiers that correspond to different
is sometimes possible to eliminate this last bit of sup@wis  views of the dath

by trying many candidate seeds and selecting the one with the

most plausible outcome. We discuss such “strapping” methogeyen when building a single classifier, a human may not

in general, and exhibit a particular method for strappingdwo now how to pick a good seed when working with an
sense classifiers for ambiguous words. Our experimentseon th

Canadian Hansards show that our unsupervised technicge is sinfamiliar language or sublanguage, or when trying to
nificantly more effective than picking seeds by hand (Yalgws induce less intuitive hidden variables, such as grammar
1995), which in turn is known to rival supervised methods.  rules or fine-grained senses. And there is no reason to
) expect humans to have good intuitions about seeds for
1 Introduction mining non-linguistic data such as consumer purchasing

Some of NLP’s most interesting problems have to do Witlrlecor_ds. ) )

unsupervised learning. Human language learners are able! NiS Paper considers how to remove this last element
to discover word senses, grammatical genders, morph@t SUP€rvision. Our idea is to guess a number of plausi-
logical systems, grammars, discourse registers, and Qe see.ds, bu!ld a classifier for each one, and then try to
forth. One would like to build systems that discover thél€termine which of the seeds have grown successfully.
same linguistic patterns in raw text. For that matter, one FOT €xample, to discover the two senses of the En-
would also like to discover patterns in bilingual text (forliSh worddrug, we grow 200 classifiers (from different
translation), in document collections (for categorizatio seeds) that attempt to_ partition msltfl;mcedrmfgmto.two

and retrieval), and in other data that fall outside the scofa@Sses: We have ndirect supervision about which of
of humans'’ language learning. t_he r.esultmg partitions corresponds to the true sense dis-
)}mctlon. Instead, we rely on clues that tend to signal that

There are relatively few successful methods for full X -
unsupervised learning from raw text. For example? seed was fertile and led to a good partition. The clues

the EM algorithm (Dempster et al., 1977) extracts th@"e not specific to the wordfug, b_'“'t they may have been
“wrong” patterns or gets stuck in local maxima. demonstrated to be good clues in general for successfully

One of the most promising avenues in recent years h§£0Wwn word sense disambiguators.
been the use of “minimally supervised” methods. Such Demonstrated how? If we consider more than one clue,
methods are initialized with some sort of “seed” thatVe May need some data to learn which clues to trust, and

grows into a full classifier (or generative model). Wetheir relative weights. Our method is unsupervised in the

say that a seed is “fertile” if it grows into a classifier (orcOnventional sense, as it obtains a CIaTS'f'Edfng'th
model) that performs well on some desired criterion, O SUPEVISION abourug. I—.|owever', to learn what good
Ordinarily, it is up to a human to choose a seed thaglassifiers generally look likefor this task, we first use

he or she intuitively expects to be fertile. While this may 14 word token or document can be characterized by a 20-bit

be easy when building a single classifier, it is prohibitiverector, corresponding to its classifications by 20 diffetenary

when building many classifiers. For example, we maylassifiers. These vectors are detailed abstract repegiers of

wish to build the words or documents. They can be clustered, or all thisir bi
can be included as potentially relevant features in andtsi:

o word-sense classifiers for all words of a language (e.g., -Ando and Zhang (2005) independently used this phrase, for

to get sharper lexical translation probabilities in a ma2Semi-supervised, cross-taslamer that differs from oumsu-
. . pervised, cross-instandearner. Both their work and ours try
chine translation system)

to transfer knowledge to a target problem from many artificia
-enti supervised “auxiliary problems,” which are generated from
* named-entity extractors for many languages labeled data (e.g., our pseudoword disambiguation praf)lem
e new clusters or classifiers every day (for an evolvingdowever, in their “structural learning,” the target prablds
document collection) supervisedif inadequately), and the auxiliary problems (super-
vised instances of differenttask) are a source of usefuidden
*We thank David Yarowsky for advice on the choice of dataeatures for the classifierin our “strapping,” the target task is
and for theplant'tank dataset. unsupervisegdand the auxiliary problems (supervised instances

395

Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 395-402, Vancouver, October 2005. (©)2005 Association for Computational Linguistics



supervised data for a fewther ambiguous words—or new instance—i.e., a method fautomaticallychoosing
ambiguous pseudowords, a kind of artificial data wherseeds that discover a true sense distinction.
supervision comes for free. This supervision’s effect on A learned classifier for the instandeugis an ordered
drug might be callectross-instance learning decision list of contextual features (such as the presence
To take another metaphor, minimally supervised learref dealernearby) that strongly indicate one or the other
ing is often called “bootstrapping.” Our goal is to allow asense ofirug. Given a sample token afrug, the classi-
method to pull itself up by its own bootstraje/en when fier picks a sense according to the single highest-ranked
it has none. It places its stocking feet in anything handyeature that is present in the token’s context.
pulls on what it hopes to be sturdy straps, and checks to To bootstrap a decision-list classifier from a seed,
see how high it got. Yarowsky starts with all examples afrug that can be
We dub this family of methods “bootstrapping withoutclassified by using the seed words as the only features.
the boot,” or “strapping” for short. The name is meantThese few examples are used as supervised data to train
to evoke “bagging” and “boosting”—other methods that longer decision list, which includes the seed words and
train and combine multiple classifiers of the same formany other features that suffice to distinguish these exam-
However, we are careful to point out that strapping, unples with high confidence. This longer decision list can
like those theoretically motivated methods, isasuper- now classify further examples, which are used to train a
visedlearning technique (in the sense explained abovepew and even longer decision list, and so on.
The clusters or other hidden variables extracted by the Yarowsky's method works if it can maintain high ac-
winning classifier may or may not be the ones that onguracy as it gradually increases its coverage. A precise
had hoped to find. Designing a strapping algorithm for g|assifier at iteratiort tends to accurately classify new
particular task requires more art than designing a supesxamples. This tends to produce a still-accurate classifier
vised learner: one must invent not only appropriate feawith greater coverage at iteration- 1.
tures for classifying the data, but also appropriate clues The method fails if the initial classifier is inaccurate

for identifying “successful” classifiers. (i.e., if the two seed words do not accurately pick out ex-
. amples of the two senses). It may also fail if at some
2 Bootstrapping point, by bad luck on sparse data, the process learns some

To show where strapping might be useful, we briefly relnappropriate features. If the classifier at iteratiois.
view a range of successful bootstrapping work. We corfufficiently polluted by bad features, the classifier atiter
sider differentasks Given aninstanceof the task and a ationt + 1 will start trying to distinguish examples that
seeds for that instance, one bootstraps a classifiethat  donotcorrespond to different senses, which may lead to

can classifyexample®f the task instance. even worse classifiers on subsequent iterations. However,
_ some alternative seed may have escaped this bad luck by
2.1 The Yarowsky algorithm sprouting a different set of examples.

Yarowsky (1995) sparked considerable interest in boot- o .
strapping with his successful method for word sense dig-2 A Few Other Applications of Bootstrapping
ambiguation. An instance of this task involves a homonymnspired by Yarowsky, Blum and Mitchell (1998) built a
mous word such adrug. A seed for the instance is a pair classifier for the task of web page classificatfoithey
of words that are strongly associated, respectively, witbonsidered only one instance of this task, namely distin-
the two senses afrug, such astfafficking therapy. An  guishing course home pages from other web pages at a
example is a token afrug. computer science department. Their seed consisted of 3
For our purposes, a bootstrapping method can be rpositive and 9 negative examples. Strapping a web page
garded almost as a black box. However, we reviewlassifier would mean identifying seeds that lead to other
the details of the Yarowsky algorithm to illustrate how“natural classes” of web pages. Strapping may be useful
bootstrapping is possible, and why some seeds are bér unsupervised text categorization in general.
ter than others. We will use these intuitions later in de- Riloff et al. (2003) learned lists of subjective nouns
signing a method to strap the Yarowsky algorithm on & English, seeding their method with 20 high-frequency,
of the sametask) are a source afues for a meta-classifighat ~ Strongly subjective words. This seed set was chosen man-

chooses among classifiers grown from different seeds. Iri,shoually from an automatically generated list of 850 can-

their auxiliary problems help train the target classifigedily,

while ours help train only a simple meta-classifier that cfeso “More precisely, they bootstrappetivo Naive Bayes

among many unsupervised target classifiers. We use far fewelassifiers—one that looked at page content and the other tha

auxiliary problems but ours must be instances of the taeg#tt |ooked at links to the page. This “co-training” approach bas
3The reference is to Baron Munchausen, a fictional 18thecome popular. It was also used by the Cucerzan and Yarowsky

century adventurer who rescued himself from a pit in this.waypapers below, which looked at “internal” and “external”tfeas

Itis distinct from the "bootstrap” in non-parametric S&its. of a phrase.
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didate words. Strapping their method would identifyof a seed, i.e., the performance @f; measured against
subjective nouns in other languages, or other “naturaome set of correct answers for this instance. In gen-
classes” of English words. eral, we do not know the correct answers and hence do

Query expansion in IR searches for more document®t know f(s). That is why we are doingnsupervised
“similar to” a designated relevant document. This problearning.
lem too might be regarded as searching for a natural Strapping relies on twestimatef f(s). Letg(s) be
class—a small subset of documents that share some prapeuick estimate that considers only superficial features
erty of the original document—and approached using iBf the seed. h(s) is a more careful estimate that can be
erative bootstrapping. The seed would specify the origeomputed onc€’; has been grown.
nal documenplusone or two additional words or docu-  The basic method for strapping a classifier for a new
ments initially associated with the “relevant” and/or “ir- task instance is very simple:
relevant” classes. Strapping would guess various differ- ) ]
ent seeds that extended the original document, then try tol- Quickly select a sef of candidate seeds such that
determine which seeds founatahesivérelevant set.” 9(s) is high.

Collins and Singer (1999) bootstrapped a system for,
classifying phrases in context. Again, they considered
only one instance of this task: classifying English proper
names as persons, organizations, or locations. Their see@. Choose the seede S that maximized(s).
consisted of 7 simple rules (“th&tew York, California,
andU.S.are locations; that any name containimgor-

poratedis an organization; and thaB.M. andMicrosoft \3iants on this method are obviously possible. For
are organizations”). Strapping such a classifier would aLé'xampIe, instead of returning a single classifier one

tomatically discover named-entity classes in a different,iynt yse classifier combination to combine several clas-
language, or other phrase classes in English. sifiersC, that have highi(s)
A .

Cucerzan and Yarowsky (1999) built a similar system It is clearly important thay and/ be good estimates

that identified proper names as well as classifying then . Can data help us designand:? Unfortunately
Their seed consisted of a list of 40 to 300 names. Larg is not known in an unsupervised setting. However, if

seeds were not necessary for precision but did help rec Ine can get a fewupervisednstances of the same task,

Cucerzan and Yarowsky (2003) classified masculinfhen one can selegtandh sog(s) andh(s) approximate
vs. feminine nouns. They experimented with several tasg

, v diff | s) for various seeds for thoseinstances, wherg(s)
instances, namely different Indo-European languages. [, , be measured directly. The samendh can then be

each instance, their seed consisted of up to 30 feminingej fopunsupervisetearning on alhewtask instances.
and 30 masculine words (e.girl, princess, fathey.

Many more papers along these lines could be listed. 8.1 Selecting Candidate Seeds

rather different task is grammar induction, where a taskg first step in strapping a classifier is to select asset
instance is a corpus of text in some language, and g seeqds to try. For strapping to work, it is crucial that
learned classifier is a parser. Following Chomsky (1981js set contain a fertile seed. How can this be arranged?

we suggest that it may be possible to seed a grammgierent strategies are appropriate for different proise
induction method with a small number of facts about the bootstrapping methods.

word order of the language: the basic clause order (SVO,

SOV, etc.), whether pronominal subjects may be omitted Sometimes a simple heuristigs) can help identify
(Chomsky's ‘pro-drop” parameter), etc. These facts can plausibly fertile seeds, as in the pseudocode above. In
for example be used to construct a starting point for thestrapping the Yarowsky algorithm, we hope to find seeds
inside-outside algorithm (Baker, 1979), which like other s = (z,y) such thatr andy are strongly associated
EM algorithms is highly sensitive to starting point. In a with different senses of the ambiguous target word. We
strapping method, one would guess a number of differenthooses = (z,y) such thatz andy were never ob-
seeds and evaluate the learned grammars on likelihooderved in the same sentence, but each ahdy has
entropy (Wang et al., 2002), correlation with semantics,high pointwise mutual information with the ambiguous
or plausibility on other linguistic grounds that were not target word and appeared with it at least 5 times.
considered by the likelihood or the prior.

. For each seedl € S, learn a classifie€'; and mea-
sureh(s).

4. ReturnCj.

o If the space of possible seeds is small, it may be pos-

. sible to try many or all of them. In grammar induction,
3 Strapping for example, perhaps seeding with a few basic word or-
Given a seed for some task instance, lét; denote the  der facts is enough. There are not so many basic word
classifier grown frons. Let f(s) denote the true fertility — ordersto try.
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e Some methods have many fertile seeds—so many theluesto fertility, which may be combined into a meta-
a small random sample (perhaps filtered §iy)) is classifier that identifies fertile seeds.
likely to include at least one. We rely on this for Judge the result of classification withC';: Even with-
the Yarowsky algorithm. If the target word is a trueout a validation set, the result of running on the train-
homonym, there exist many wordsassociated strongly ing corpus can be validated in various ways, using inde-
with the first sense, and many words associated pendent plausibility criteria that wereot considered by
strongly with the second sense. Itis not difficult to stumthe bootstrapping learner.
ble into a fertile seed = (x, y), just as it is not difficult

for a human to think of ona. e Is the classification reasonably balanced? (If virtu-

) ally all examples of the target word are labeled with
o If fertile seeds are few and far between, one could  the same sense, théh has not found a sense dis-

abandon the use of a candidate Setelected byy(s), tinction.)
and directly use general-purpose search methods to look
for a seed whose predicted fertility s) is high. e When a document contains multiple tokens of the

target word, are all examples labeled with the same
sense? This property tends to hold for correct clas-
sifiers (Gale et al., 1992a), at least for homonyms.

For example, one could use genetic algorithms to
breed a population of seeds with high(s). Or
after evaluating several candidate seeds to obtain

h(s1),h(s2),...h(s), one could perform a regression ¢ True word senses usually correlate with document

analysis that predicts(s) from superficial features of or passage topic. Thus, choose a measure of simi-
s, and use this regression function (a kind;6f) that is larity between documents (e.g., the cosine measure
specific to the task instance) to pigk; . in TF/IDF space). Does the target word tend to

) ) ) ) have the same sense in a document and in its nearby
Strapping may be harder in cases like gender induc- neighbors?

tion: it is hard to stumble into the kind of detailed seed

used by Cucerzan and Yarowsky (2003). However, we o True word senses may also improve performance on
suspect that fertile seeds exist that are much smaller than some task. Is the perplexity of a language model
their lists of 50-60 words. While their large hand-crafted = much reduced by knowing whether senser sense
seed is sure to work, a handful of small seeds (each y (according toC;) appeared in the current con-
consisting of afew supposedly masculine and feminine text? (This relates to the previous point.) Likewise,
words) might be likely to contain at least one that is fer-  given a small bilingual text that has been automati-
tile.® That would be sufficient, assuming we have a way  cally (and perhaps poorly) word-aligned, is it easier
to guess which seed in the handful is most fertile. That to predict how the target word will translate when
issue is at the core of strapping, and we now turn to it. we know its sense (according €&)?

3.2 Clues for Evaluating Bootstrapped Classifiers Judge the internal structure of C;: DoesC look
like a typical supervised decision list for word-sense dis-

ambiguation? For instance, does it contain many features
with high log-likelihood ratios? (If a true sense distinc-
tion was discovered, we would expeoanycontextual
X ) features to correlate strongly with the predicted sense.)
consider features af’;, the growth trajectory ols, or Look at the process wherebyC; was learned: Does
the relation betweed’s and other classifiers. the bootstrapping run that starts frerfook like a typical

For concretness, we consider the Yarowsky method fof otstrapping run from a fertile seed? For example, did
word-sense disambiguation (WSD). How can we tell if & 5 iq1y add many new examples with high confidence?
seeds = (z,y) was fertile, without using even a small 5ce new examples were classified, did their classifica-
validation set to judge’s? There are several types of jqng remain stable rather than switching back and forth?

®Alignment methods in machine translation rely even more Judge the.robustness Qf learning with seed: Train
heavily on this property. While they begin with a small trans S€veral versions of’s, as in ensemble methods (but un-
lation lexicon, they are sufficiently robust to the choicethis ~ supervised), by restricting each to a random subset of the
initial seed (lexicon) that it suffices to construct a sirgged by  data, or a subset of the available features. Do these ver-
crude automatic means (Brown et al., 1990; Melamed, 1997}ions tend taagreeon how to classify the data? If not,
Human supervision (or strapping) is unnecessary. seeds does not reliably find true (or even false) classes.

6 . . . . . . .
This is particularly likely if one favors function words (in ) e
particular determiners and pronouns), which are strongénd Judge the agreement ofC’; with other classifiers:

tors of gender. Cucerzan and Yarowsky used only contentsvord\re there several other classifie?s that agree strongly
because they could be extracted from bilingual dictiosarie ~ with Cs on examples that they both classify? If the sense

Once we have identified a candidate seethd built the

classifierCs, we must evaluate whethér, “looks like”

the kind of classifier that tends to do well on our task.
This evaluation functiork(s) is task-specific. It may
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distinction is real, then many different seeds should be&aining an English-to-French MT system: separate pa-

able to find it. rameters can be learned for the two senseiog.’
Gale et al. (1992b) identified six such words in the
3.3 Training the Evaluation Function A (s) Canadian Hansards, a parallel sentence-aligned corpus of

Many of the above clues are necessary but not sufficierf2rliamentary debate in English and Frendrug, duty,
For example, a learned classification may be robust witénd: language, position, sentencé/e extracted all ex-

out being a sense distinction. We therefore define) amples of each word from the 14-million-word English
from a combination of several clues. portion of the Hansard.Note that this is considerably

In general,i(s) is a classifier or regression function smaller than Yarowsky's (1995) corpus of 460 million

that attempts to distinguish fertile from infertile seedsyvords’ SO bootstrgpplng will not' perform as well, and
ay be more sensitive to the choice of seed.

given the clues. As mentioned earlier, we train its fred" Because we are doing unsupervised learnin e both
parameters (e.g., coefficients for linear regression) on a use w INg unsupervi Ing, W

few supervisednstances of the task. These superviseH"’lmed and tested these.6 words on the English Hansards.
instances allow us to measure the fertilitys) of various We used the French portloq of the Hansards only t(.) create
seeds, and thus to model the behavior of fertile verSL?ngId standard for evaluating our restité.an English

infertile seeds. The presumption is that these behavit?frltencf qontalnlrrﬁrugls p:l'{,ae(?. with a I;regch sentence
patterns will generalize to new seeds. at contains exactly one ICamenbr drogug we

take that as an infallible indicator of its sense.

3.4 Training h(s) on Artificial Data 42 Comparing Classifiers

Optionally, to a_void the n.eed for any human annotation %uppose binary classifier 1 assigns class “+utof n
all, the supervised task instances used to thdii) may  examples; binary classifier 2 assigns class “+5 tf the
be artificial instances, whose correct classifications arggme, examples. Let be the number of examples where
known without annotation. the classifiers agree (both “+” or both “~").

In the case of word-sense disambiguation, one can au-an unsupervised classifier's polarity is arbitrary: clas-
tomatically construct ambiguoysseudowordgGale et sjfier 1's “+” may correspond to classifier 2's “~”. So we
al., 1992c; Schiitze, 1998) by replacing all occurences @fefine theoverlapas E = max(e, n — ¢), to reflect the
two words or phrases with their conflation. For examplepest polarity.
bananaand wine are replaced everywhere lhanana-  To evaluate a learned classifier, we measure its over-
wine. The original, unconflated text serves as a supefap with the true classification. The statistical signifi-
vised answer key for the artificial task of disambiguatingance is the probability that this level of overlap would
banana-wine be reached by chance under independent classifications

Traditionally, pseudowords are used as cheap test dajien the values, b, n:
to evaluate a disambiguation system. Our idea is to use
them as cheap development data to tune a system. In
our case, they tune a few free parameters(@f), which p= Z (Z) (’; - ;‘) /<’;)
says what a good classifier for this task looks like. Pseu-  max(a+b—n,0) < ¢ < [(a+b—E)/2]
dowords should be plausible instances of the task (Gaus- ]'((H—b—(n—E))/gr'\ < ¢ < min(a,b)
tad, 2001; Nakov and Hearst, 2003): so it is deliberate
that bananaandwine share syntactic and semantic fea- AlSO, we can measure ttegreemenbetween any two
tures, as senses of real ambiguous words often do.  learned classifiers as(logp)/n. Note that a classifier

Cheap “pseudo-supervised” data are also available fRat strongly favors one sense will have low agreement
some other strapping settings. For grammar inductioM/ith other classifiers.
one could construct an artificial probabilistic grammar at  71¢ hedge against the possibility of misclassification, one
random, and generate text from it. The task of recoveringpuld interpolate with non-sense-specific parameters.

the grammar from the text then has a known answer. ®We are not certain that our version of the Hansards is iden-
tical to that in (Gale et al., 1992b).

°By contrast, Gale et al. (1992b) used the French portion as
a source of training supervision. By contrast, we will assum
. - that we donot have a large bilingual text such as the Hansards.
4.1 Unsupervised Training/Test Data We train only on the English portion of the Hansards, igngrin

Our experiments focused on the original Yarowsky algot-he French. This mimics the situation where we must construc

. o an MT system with very little bilingual text. By first discov-
rithm. We attempted to strap word-sense classifiers, uéfing word senses in unsupervised monolingual data (foeeit

ing English data only, for English words whose Frenchanguage), we can avoid incorrectly mixing up two senses of
translations are ambiguous. This has obvious benefits fdrugin our translation model.

4 Experiments
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4.3 Generating Candidate Seeds (via(s)) 4.6 Development Data (for tuningh(s))

For each target word, we chose candidate seesls=  Before turning to the unsupervised Hansards, we tuned
(x,y) with a high scorgy(s), whereg(s) = MI(t,xz) +  our fertility estimatorh(s) to identify good seeds on de-
MI(t,y), provided that(z,y) = 0 andc(t,z) > 5 and  velopment data—i.e., on other, supervised task instances.
c(t,y) > 5and1/9 < c(t,x)/c(t,y) < 9.0 In the supervised condition, we used just 2 additional

The setS of 200 seeds fot was constructed by repeat- task instancesplant and tank, each with 4000 hand-
edly adding the top-scoring unused seedtexcept that annotated instances drawn from a large balanced corpus
to increase the variety of words, we disallowed a see@irarowsky, 1995).

s = (z,y) if x ory already appeare@l times inS. In the pseudo-supervised condition, we usedo hand-

. annotated datainstead constructing 10 artificial super-
4.4 Hand-Picked Seeds vised task instances (section 3.4) ?rom the Englisk?por-
To compare, we chose two seeds by hand for ach  tion of the Hansards. To facilitate cross-instance learn-

Thecasuallyhand-picked seed was chosen by intuitionng, we tried to construct these pseudowords to behave
from the list of 200 automatically generated seeds. Thisomething like our ambiguous test wofdsGiven a test
took about 2 minutes (per seed). word¢, we randomly selected a sed y) from its candi-

The carefullyhand-picked seed was not limited to thisdate list (section 4.3), excluding any that contained func-
list, and took up to 10 minutes to choose, in a data-guidegbn words!® Our basic idea was to conflate and y
fashion. We first looked at some supervised example sejmto a pseudoword:-y. However, to get a pseudoword
tences to understand the desired translational sense djgth only two senses, we tried to focus on the particular
tinction, and then for each sense chose the highest-Menses of andy that were selected by We constructed
word that both met some stringent subjective criteria angbout 500 pseudoword tokens by using onlgndy to-
appeared to retrieve an appropriate initial set of exampleigens that appeared in sentences that contained in
45 The Bootstrapping Classifier sentences rgsembling tho_se under a TF-IDF measure. We

' repeated this process twice per test word to obtain 12
Our approximate replication of Yarowsky’s algorithmpseudowords. We then discarded the 2 pseudowords for
used only a small set of features: which no seed beat baseline performance, reasoning that

« Original and lemmatized form of the word immedi. ey were ill-chosen and unlike real ambiguous wdftls.

ately preceding the target wotd 4.7 Clues to Fertility

¢ Original and lemmatized form of the word immedi- For each sees for each development or test target word,
ately followingt. we measured a few clués (s), ha(s) ... hg(s) that we
hoped might correlate with fertility. (In future work, we

¢ Original and lemmatized form of theontentwords plan to investigate more clues inspired by section 3.2.)

that appear in the same sentence.as

We used the seed to provisionally classify any token ot The.a_gre.eabilityof Cs with (some of) the other 199
the target word that appeared in a sentence with exactl{f/assifiers:

one of the two seed words. This formed our initial “train- 1/v
ing set” of disambiguated tokens. At each iteration of the O O
algorithm, we trained a decision list on the current train- 199 g agnCs, Cv)

s'#s

ing set. We then used the decision list to reclassify:all
tokens in the current training set, and also to augment th
training set by classifying thadditionalmax(50, k/10)
tokens on which the decision list was most confidént.

She agreement aff’s, C,/ ) was defined in section 4.2.
We tried 4 values foty (namely 1, 2, 5, 10), each result-
ing in a different feature.
¢(z,y) counts the sentences containing beéndy. MI(t, ——
z) = log c(t, z)c()/c(t)c(x) is pointwise mutual information.  ““We used collocates of Perhaps better yet would be words
11sych a token has some feature with high log-likelihood rathat are distributionally similar t¢ (appear in same contexts).
tio, i.e., it strongly indicates one of the senses in theamtrr Such words tend to be syntactically and semanticallydike
training set. We smoothed using the method of (Yarowsky, BFor an unknown language or domain, a lexicon of function
1996): when a feature has been observed with only one seng¢grds could be constructed automatically (Katz, 1996).
its log-likelihood ratio is estimated as a linear functidnttoe ¥Thus we discardedicohol-traffickingandaddicts-alcohgl
number of occurrences of the seen sense. Function words avete that these were indeed ill-chosen (difficult) sincehbot
smoothed with a different linear coefficient than contentdsp words unluckily corresponded to theame sense ofdrug.
in order to discount their importance. We borrowed the acThis left us with bound-constituents, customs-pray, claims-
tual coefficients from (Yarowsky, 1996), though we couldédav value, claims-veterans, culture-unparliamentary, estgliearn,
learned them. competitive-party, financial-party, death-quote, depéye.
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e Therobustnes®f the seed, defined by the agreemenseeds, bootstrapping 11 classifie@s,cﬁl), ..o
of C, with 10 variant classifiers’" that were trained from each seed, and choosing a particdlato return.
with the same seed but under different conditions:

4.9 Results
1 — (k) Our results are in Table 1. On both development and test
10 Zagr(cs, ) instances of the taslg(s) proposed seeds with a good
k=1

range of fertilities. The correlation of predicted with ac-
tual fertility on test data averaged an outstanding 85%.
Despite having no knowledge of the desired senses,

strapping significantly beat human selectioraih24 of

the possible comparisons between a hand-picked seed

e Theconfidenceof C, on its own training data: its av- (casual or careful) and a strapped seed (chosen hyn
erage confidence over thetraining tokens, minus the tuned on supervised or pseudo-supervised instances).
classifier skew Theh(s) tuned on annotateplant/tankactually chose
The decision list's confidence on a token is the |nghevery besbf the 200 seeds in 4 of the 6 instances. The

likelihood ratio of the single feature used to classify thaft(s) tuned on artificial pseudowords did nearly as well,
token. It has the fornilog(c/d)| (perhaps smoothed) N 2 of.6 instances |d'ent|'fy|ng the very best sqed, and in
and was previously used to select data while bootstrag-Of 6 instances ranking it among its top 3 choices.
pingC,. Subtracting the skewlog(a/(n—a))|,® gives We conclude that our unsupervised clues to fertility ac-
ameasurement 0. It corrects for confidence that arisestu@lly work. Furthermore, combining clues via regres-
from the classifier's overall bias, leaving only the adde@On Was wise, as it tended to work better than any single

We simply trained each classifi€t™ on a random sub-
set of then test examples, chosen by samplingimes
with replacement?

value of the relevant contextual feature. clue. Somewhat better regression weights for the WSD
task were learned from 2 out-of-domain hand-annotated
4.8 Tuning h(s) and Strapping New Classifiers words than from 10 in-domain artificial pseudowords.

For each of the 2 words or 10 pseudowotds our de- 5
velopment set (see section 4.6), we ranked its 200 seeds
s by their true fertility f(s). We then ran support vec- The work reported here raises many interesting questions

Open Questions

tor regressioft to learn a single linear functior,(s) =  for future research.
@ - (clue vector forCy), that predicts the fertilities of all  In the WSD task, we have only considered word types
2-200 or 10 - 200 seedg? with two unrelated senses (homonyms). A more general

Then, for each of our 6 Hansards test instances (segroblem is to determine when a word type is ambiguous
tion 4.1), we used(s) to pick thetop-ranked of 200 atall, and if so, how many coarse-grained or fine-grained
seeds? It took about 3 hours total to strap classifiers forsenses it has. Strapping seems naturally suited to this
all 6 instances, using about 40 machines and unoptimizgdoblem, since it aims to discover when a sense distinc-
Perl code on the 14-million-word Hansards. For eachon grown from some seed istale sense distinction.
of the 6 instances, this involved selecting 200 candidate Then we would like to know how well strapping gen-
——— _ eralizes to additional bootstrapping scenarios. Our WSD

1ZWe eliminated duplicates, perhaps unfortunately. strapping experiments were successful using only a sub-

As before,a andn — a are the numbers of tokens thall gt of the techniques proposed in section 3. Generalizing

classifies as “+” and “~" respectively. Thus the skew is thg lo to other task - ther techni f lecti
likelihood ratio of the decision list's “baseline” feature 0 other tasks may require other techniques for selecting

"\We used cross-validation among the 10 development pse@ld evalgating Ca!"_didate seeds, and perhaps combining

dowords to choose the options to S%@M (Joachims, 1999): a the resulting classifiers.

linear kernel, a regularization parameter of 0.3, and a et An interesting question is whether strapping can be

variable of 10/”) e [1,10] rather thanf(s) € [0, 1], which  ysed in an active learning context. Active learning is a

placed somewhat more emphasis on modeling the better seeflg,q of bootstrapping method that periodically requires

Our development objective function was the average ovet@he ds: itt to th h it get fused

pseudowords of the Spearman rank-order correlation betwel €W S€€AS: ILUrns 1o the user whenever it gets contused.

h(s) andf(s). Perhaps some of these seeds can be guessed nondetermin-
%We augmented the clue vector with binary clues of the fornistically and the guesses evaluated automatically, with or

t = plant, t = tank etc. The regression weight of such a cluewithout user confirmation.

is a learned bias term that models the inherent difficultyhef t Finally, there may be theoretical guarantees about

task instance (which varies greatly by). This allows the other strapping when something is known about the data.

regression features to focus on the quality of the ggeeht. . . ]
19e do not have a clue= . . . for this test instance. The re- WWNen%(s) is trained to estimatg(s) well on some su-

sulting lack of a bias term may subtract a constant from tee pr Pervised instances, there may be guarantees about how
dicted fertilities—but that does not affect the ranking eéds.  strapping will perform on unsupervised instances drawn
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strapping (unsupervised)

[ [ drug [ duty [ Tand [ language [ position [ sentence
baseline / # examples 51.2/371 70.1/633 | 76.6/1379 87.5/1012] 81.7/2949] 50.8/501
worst seed (of 200) 50.1 (200) traffickers trafficking 50.0 (200) | 50.1 (200) claims farming| 50.3 (200) | 56.1 (200) | 50.1 (200) length life

casually selected (from 200) 56.5 (87) food trafficking | 73.4° (40) | 76.2(24) farmveterans| 86.4 (76) 81.7 (41) 80.6" (40) page prison
carefully constructed 62.1° (75) alcohol costs 82.1" (8.5)| 76.6(20) farmstrong | 87.9 (25.5)| 81.4(56.5)| 86.8" (27) death quote
best/oracle seed (of 200) | 76.1°T (1)  alcohol medical | 86.2Z°T (1) | 81.3°T (1) acrescourts | 90.9°7 (1) | 88.3T (1) | 89.9°T (1) reads served

most agreeable seeq 1) | 72.6°T (5) abuse information] 64.7 (47) 67.5 (36) claims production 86.4 (79) 82.4 (36) 88.7°T (10) life quote
most robust seed 76.7°T (1)  alcohol medical | 86.2°T (1) | 71.7(29) claimsprice | 85.6 (93) | 82.7 (21) | 88.8°T (9) commuted ne
most confident seed 66.9" (32) traffickingused | 72.1° (42) | 77.9°T (3) claimscourts | 89.87 (10)| 84.47 (8) | 89.9°T (1) reads served

| h(s)-picked (plant/tank) | 76.7°T (1)  alcohol medical | 86.2°T (1) | 81.3T (1) acres courts | 90.3T(7) | 8457 (7) | 89.9T (1) reads served

h(s)-picked (10 pseudowd)] 70.4°T (10) alcoholfound | 86.2°T (1) | 78.9°T (2) childrenfarm | 89.7°T (17)] 83.7°T (16)] 89.9°T (1) reads served
h(s)-picked, 2nd place 69.1* (13)  alcohol related | 85.7°T (2) | 77.8°T (4) aboriginalacred 90.9°T (1) | 82.8 (19) 89.0°T (7)  prison quote
h(s)-picked, 3rd place | 76.1*T (1) alcohol medical | 84.2° (4) | 77.1*T (5) acrescies | 87.5(28) | 88.3°T (1) | 88.6°" (15) life reads
h(s) rank of oracle seed | 3 1 14 2 3 1
Spearman rank-order corr.| 0.863 0.905 0.718 0.825 0.842 0.937

Table 1: [See section 4.9 for highlights.] Accuracy (as petage) and rank (in parentheses) of bootstrapped class$dievariously
chosen seeds, some of which are shown. * denotes statistiighificant agreement with the truth (section 4p2,< 0.01).

1 denotes a seed having significantly better agreement véthrith than does the better of the hand-picked seeds (McR&etest,

p < 0.03). In each column, the best performance for an automatic ouadagseed appears [oldface The “most..." lines use no
tuning, the “plant/tank” line tunek(s) on 2 supervised instances, and the subsequent lineg{yuhen 10 pseudoword instances.
The last line gives the Spearman rank-order correlatiowden seeds’ predicted fertilitiég s) and their actual fertilitieg (s).

from the same source (cross-instance learning). Even innamed entity classification. Proc. of EMNLP/VLC
the fully unsupervised case, it may be possible to prov@ Cucerzan and D. Yarowsky. 1999. Language independent

: ; ; named entity recognition combining morphological and con-
that if the data were generated from a particular kind of textual evidence. IProc. of EMNLP/VLC

process (e.g., a Gaussian mixture), then a certain strag-cycerzan and D. Yarowsky. 2003. Minimally supervised

ping algorithm can recover the hidden variables. induction of grammatical gender. Froc. of HLT/NAACL
A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum
6 Conclusions likelihood from incomplete data via the EM algorithml.

Royal Statist. Soc. Ser, B9(1):1-38.
In this paper, we showed that it is sometimes possible-W. A. Gale, K. W. Church, and D. Yarowsky. 1992a. One sense

indeed, preferable—to eliminate the initial bit of supervi  Per discourse. IRroc. of the 4th DARPA Speech and Natural

sion in “bootstrapping” algorithms such as the Yarowsky,, LG%ugge KWowsréohr?j?gr]es azlfdg_DB\?(érowsky 1992b. Us-

(1995) algorithm for word sense disambiguation. OUr ing bilingual materials to develop word sense disambiguati
“strapping” approach tries many candidate seeds as start-methods. IrProc. of the 4th International Conf. on Theoret-
ing points and evaluates them automatically. The eval- ical and Methodological Issues in Machine Translation
uation function can be tuned if desired on other task inl/- A- Gale, K. W. Church, and D. Yarowsky. 1992c. Work on

¢ h tificiall tructed It th statistical methods for word sense disambiguation/Vark-
stances, pernaps artinicially constructed ones. It can ening Notes of the AAAI Fall Symposium on Probabilistic Ap-

be used wherever human guidance is impractical. proaches to Natural Languagpages 54—60.
We applied the method to unsupervised disambigud- Gaustad. 2001. Statistical corpus-based word sensedisa
tion of English words in the Canadian Hansards, as if for biguation: Pseudowords vs. real ambiguous words2roe.

: : : of ACL-EACL
English-French translation. Our results (see section 4'|9Joachims. 1999. Making large-scale SVM learning prattic

for several highlights) show that our automatic “strapped” | g, Scholkopf, C. Burges, and A. Smola, editokslvances
classifiers consistently outperform the classifiers boot- in Kernel Methods—Support Vector LearnildI T Press.
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text and language modellindlLE, 2(1):15-59.
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