
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 395–402, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Bootstrapping Without the Boot∗

Jason Eisner and Damianos Karakos
Center for Language and Speech Processing

Johns Hopkins University, Baltimore, MD 21218 USA
{eisner,damianos}@jhu.edu

Abstract

“Bootstrapping” methods for learning require a small amount
of supervision to seed the learning process. We show that it
is sometimes possible to eliminate this last bit of supervision,
by trying many candidate seeds and selecting the one with the
most plausible outcome. We discuss such “strapping” methods
in general, and exhibit a particular method for strapping word-
sense classifiers for ambiguous words. Our experiments on the
Canadian Hansards show that our unsupervised technique is sig-
nificantly more effective than picking seeds by hand (Yarowsky,
1995), which in turn is known to rival supervised methods.

1 Introduction

Some of NLP’s most interesting problems have to do with
unsupervised learning. Human language learners are able
to discover word senses, grammatical genders, morpho-
logical systems, grammars, discourse registers, and so
forth. One would like to build systems that discover the
same linguistic patterns in raw text. For that matter, one
would also like to discover patterns in bilingual text (for
translation), in document collections (for categorization
and retrieval), and in other data that fall outside the scope
of humans’ language learning.

There are relatively few successful methods for fully
unsupervised learning from raw text. For example,
the EM algorithm (Dempster et al., 1977) extracts the
“wrong” patterns or gets stuck in local maxima.

One of the most promising avenues in recent years has
been the use of “minimally supervised” methods. Such
methods are initialized with some sort of “seed” that
grows into a full classifier (or generative model). We
say that a seed is “fertile” if it grows into a classifier (or
model) that performs well on some desired criterion.

Ordinarily, it is up to a human to choose a seed that
he or she intuitively expects to be fertile. While this may
be easy when building a single classifier, it is prohibitive
when building many classifiers. For example, we may
wish to build

• word-sense classifiers for all words of a language (e.g.,
to get sharper lexical translation probabilities in a ma-
chine translation system)

• named-entity extractors for many languages

• new clusters or classifiers every day (for an evolving
document collection)

∗We thank David Yarowsky for advice on the choice of data
and for theplant/tankdataset.

• new clusters or classifiers every minute (for the docu-
ment sets retrieved byad hocqueries)

• many distinct classifiers that correspond to different
views of the data1

Even when building a single classifier, a human may not
know how to pick a good seed when working with an
unfamiliar language or sublanguage, or when trying to
induce less intuitive hidden variables, such as grammar
rules or fine-grained senses. And there is no reason to
expect humans to have good intuitions about seeds for
mining non-linguistic data such as consumer purchasing
records.

This paper considers how to remove this last element
of supervision. Our idea is to guess a number of plausi-
ble seeds, build a classifier for each one, and then try to
determine which of the seeds have grown successfully.

For example, to discover the two senses of the En-
glish worddrug, we grow 200 classifiers (from different
seeds) that attempt to partition instances ofdrug into two
classes. We have nodirect supervision about which of
the resulting partitions corresponds to the true sense dis-
tinction. Instead, we rely on clues that tend to signal that
a seed was fertile and led to a good partition. The clues
are not specific to the worddrug, but they may have been
demonstrated to be good clues in general for successfully
grown word sense disambiguators.

Demonstrated how? If we consider more than one clue,
we may need some data to learn which clues to trust, and
their relative weights. Our method is unsupervised in the
conventional sense, as it obtains a classifier fordrugwith
no supervision aboutdrug. However, to learn what good
classifiers generally look like2 for this task, we first use

1A word token or document can be characterized by a 20-bit
vector, corresponding to its classifications by 20 different binary
classifiers. These vectors are detailed abstract representations of
the words or documents. They can be clustered, or all their bits
can be included as potentially relevant features in anothertask.

2Ando and Zhang (2005) independently used this phrase, for
asemi-supervised, cross-tasklearner that differs from ourunsu-
pervised, cross-instancelearner. Both their work and ours try
to transfer knowledge to a target problem from many artificial
supervised “auxiliary problems,” which are generated fromun-
labeled data (e.g., our pseudoword disambiguation problems).
However, in their “structural learning,” the target problem is
supervised(if inadequately), and the auxiliary problems (super-
vised instances of adifferenttask) are a source of usefulhidden
features for the classifier. In our “strapping,” the target task is
unsupervised, and the auxiliary problems (supervised instances

395

supervised data for a fewother ambiguous words—or
ambiguous pseudowords, a kind of artificial data where
supervision comes for free. This supervision’s effect on
drugmight be calledcross-instance learning.

To take another metaphor, minimally supervised learn-
ing is often called “bootstrapping.” Our goal is to allow a
method to pull itself up by its own bootstraps3 even when
it has none. It places its stocking feet in anything handy,
pulls on what it hopes to be sturdy straps, and checks to
see how high it got.

We dub this family of methods “bootstrapping without
the boot,” or “strapping” for short. The name is meant
to evoke “bagging” and “boosting”—other methods that
train and combine multiple classifiers of the same form.
However, we are careful to point out that strapping, un-
like those theoretically motivated methods, is anunsuper-
visedlearning technique (in the sense explained above).
The clusters or other hidden variables extracted by the
winning classifier may or may not be the ones that one
had hoped to find. Designing a strapping algorithm for a
particular task requires more art than designing a super-
vised learner: one must invent not only appropriate fea-
tures for classifying the data, but also appropriate clues
for identifying “successful” classifiers.

2 Bootstrapping

To show where strapping might be useful, we briefly re-
view a range of successful bootstrapping work. We con-
sider differenttasks. Given aninstanceof the task and a
seeds for that instance, one bootstraps a classifierCs that
can classifyexamplesof the task instance.

2.1 The Yarowsky algorithm

Yarowsky (1995) sparked considerable interest in boot-
strapping with his successful method for word sense dis-
ambiguation. An instance of this task involves a homony-
mous word such asdrug. A seed for the instance is a pair
of words that are strongly associated, respectively, with
the two senses ofdrug, such as (trafficking, therapy). An
example is a token ofdrug.

For our purposes, a bootstrapping method can be re-
garded almost as a black box. However, we review
the details of the Yarowsky algorithm to illustrate how
bootstrapping is possible, and why some seeds are bet-
ter than others. We will use these intuitions later in de-
signing a method to strap the Yarowsky algorithm on a

of thesametask) are a source ofclues for a meta-classifierthat
chooses among classifiers grown from different seeds. In short,
their auxiliary problems help train the target classifier directly,
while ours help train only a simple meta-classifier that chooses
among many unsupervised target classifiers. We use far fewer
auxiliary problems but ours must be instances of the target task.

3The reference is to Baron Munchausen, a fictional 18th-
century adventurer who rescued himself from a pit in this way.
It is distinct from the ”bootstrap” in non-parametric statistics.

new instance—i.e., a method forautomaticallychoosing
seeds that discover a true sense distinction.

A learned classifier for the instancedrug is an ordered
decision list of contextual features (such as the presence
of dealernearby) that strongly indicate one or the other
sense ofdrug. Given a sample token ofdrug, the classi-
fier picks a sense according to the single highest-ranked
feature that is present in the token’s context.

To bootstrap a decision-list classifier from a seed,
Yarowsky starts with all examples ofdrug that can be
classified by using the seed words as the only features.
These few examples are used as supervised data to train
a longer decision list, which includes the seed words and
any other features that suffice to distinguish these exam-
ples with high confidence. This longer decision list can
now classify further examples, which are used to train a
new and even longer decision list, and so on.

Yarowsky’s method works if it can maintain high ac-
curacy as it gradually increases its coverage. A precise
classifier at iterationt tends to accurately classify new
examples. This tends to produce a still-accurate classifier
with greater coverage at iterationt + 1.

The method fails if the initial classifier is inaccurate
(i.e., if the two seed words do not accurately pick out ex-
amples of the two senses). It may also fail if at some
point, by bad luck on sparse data, the process learns some
inappropriate features. If the classifier at iterationt is
sufficiently polluted by bad features, the classifier at iter-
ation t + 1 will start trying to distinguish examples that
do not correspond to different senses, which may lead to
even worse classifiers on subsequent iterations. However,
some alternative seed may have escaped this bad luck by
sprouting a different set of examples.

2.2 A Few Other Applications of Bootstrapping

Inspired by Yarowsky, Blum and Mitchell (1998) built a
classifier for the task of web page classification.4 They
considered only one instance of this task, namely distin-
guishing course home pages from other web pages at a
computer science department. Their seed consisted of 3
positive and 9 negative examples. Strapping a web page
classifier would mean identifying seeds that lead to other
“natural classes” of web pages. Strapping may be useful
for unsupervised text categorization in general.

Riloff et al. (2003) learned lists of subjective nouns
in English, seeding their method with 20 high-frequency,
strongly subjective words. This seed set was chosen man-
ually from an automatically generated list of 850 can-

4More precisely, they bootstrappedtwo Naive Bayes
classifiers—one that looked at page content and the other that
looked at links to the page. This “co-training” approach hasbe-
come popular. It was also used by the Cucerzan and Yarowsky
papers below, which looked at “internal” and “external” features
of a phrase.

396

didate words. Strapping their method would identify
subjective nouns in other languages, or other “natural
classes” of English words.

Query expansion in IR searches for more documents
“similar to” a designated relevant document. This prob-
lem too might be regarded as searching for a natural
class—a small subset of documents that share some prop-
erty of the original document—and approached using it-
erative bootstrapping. The seed would specify the origi-
nal documentplusone or two additional words or docu-
ments initially associated with the “relevant” and/or “ir-
relevant” classes. Strapping would guess various differ-
ent seeds that extended the original document, then try to
determine which seeds found acohesive“relevant set.”

Collins and Singer (1999) bootstrapped a system for
classifying phrases in context. Again, they considered
only one instance of this task: classifying English proper
names as persons, organizations, or locations. Their seed
consisted of 7 simple rules (“thatNew York, California,
andU.S.are locations; that any name containingIncor-
poratedis an organization; and thatI.B.M. andMicrosoft
are organizations”). Strapping such a classifier would au-
tomatically discover named-entity classes in a different
language, or other phrase classes in English.

Cucerzan and Yarowsky (1999) built a similar system
that identified proper names as well as classifying them.
Their seed consisted of a list of 40 to 300 names. Large
seeds were not necessary for precision but did help recall.

Cucerzan and Yarowsky (2003) classified masculine
vs. feminine nouns. They experimented with several task
instances, namely different Indo-European languages. In
each instance, their seed consisted of up to 30 feminine
and 30 masculine words (e.g.,girl, princess, father).

Many more papers along these lines could be listed. A
rather different task is grammar induction, where a task
instance is a corpus of text in some language, and the
learned classifier is a parser. Following Chomsky (1981),
we suggest that it may be possible to seed a grammar
induction method with a small number of facts about the
word order of the language: the basic clause order (SVO,
SOV, etc.), whether pronominal subjects may be omitted
(Chomsky’s “pro-drop” parameter), etc. These facts can
for example be used to construct a starting point for the
inside-outside algorithm (Baker, 1979), which like other
EM algorithms is highly sensitive to starting point. In a
strapping method, one would guess a number of different
seeds and evaluate the learned grammars on likelihood,
entropy (Wang et al., 2002), correlation with semantics,
or plausibility on other linguistic grounds that were not
considered by the likelihood or the prior.

3 Strapping

Given a seeds for some task instance, letCs denote the
classifier grown froms. Let f(s) denote the true fertility

of a seeds, i.e., the performance ofCs measured against
some set of correct answers for this instance. In gen-
eral, we do not know the correct answers and hence do
not knowf(s). That is why we are doingunsupervised
learning.

Strapping relies on twoestimatesof f(s). Let g(s) be
a quick estimate that considers only superficial features
of the seeds. h(s) is a more careful estimate that can be
computed onceCs has been grown.

The basic method for strapping a classifier for a new
task instance is very simple:

1. Quickly select a setS of candidate seeds such that
g(s) is high.

2. For each seeds ∈ S, learn a classifierCs and mea-
sureh(s).

3. Choose the seed̂s ∈ S that maximizesh(ŝ).

4. ReturnCŝ.

Variants on this method are obviously possible. For
example, instead of returning a single classifierCŝ, one
might use classifier combination to combine several clas-
sifiersCs that have highh(s).

It is clearly important thatg andh be good estimates
of f . Can data help us designg andh? Unfortunately,
f is not known in an unsupervised setting. However, if
one can get a fewsupervisedinstances of the same task,
then one can selectg andh sog(s) andh(s) approximate
f(s) for various seedss for thoseinstances, wheref(s)
can be measured directly. The sameg andh can then be
used forunsupervisedlearning on allnewtask instances.

3.1 Selecting Candidate Seeds

The first step in strapping a classifier is to select a setS
of seeds to try. For strapping to work, it is crucial that
this set contain a fertile seed. How can this be arranged?
Different strategies are appropriate for different problems
and bootstrapping methods.

• Sometimes a simple heuristicg(s) can help identify
plausibly fertile seeds, as in the pseudocode above. In
strapping the Yarowsky algorithm, we hope to find seeds
s = (x, y) such thatx and y are strongly associated
with different senses of the ambiguous target word. We
chooses = (x, y) such thatx and y were never ob-
served in the same sentence, but each ofx andy has
high pointwise mutual information with the ambiguous
target word and appeared with it at least 5 times.

• If the space of possible seeds is small, it may be pos-
sible to try many or all of them. In grammar induction,
for example, perhaps seeding with a few basic word or-
der facts is enough. There are not so many basic word
orders to try.

397

• Some methods have many fertile seeds—so many that
a small random sample (perhaps filtered byg(s)) is
likely to include at least one. We rely on this for
the Yarowsky algorithm. If the target word is a true
homonym, there exist many wordsx associated strongly
with the first sense, and many wordsy associated
strongly with the second sense. It is not difficult to stum-
ble into a fertile seeds = (x, y), just as it is not difficult
for a human to think of one.5

• If fertile seeds are few and far between, one could
abandon the use of a candidate setS selected byg(s),
and directly use general-purpose search methods to look
for a seed whose predicted fertilityh(s) is high.

For example, one could use genetic algorithms to
breed a population of seeds with highh(s). Or
after evaluating several candidate seeds to obtain
h(s1), h(s2), . . . h(sk), one could perform a regression
analysis that predictsh(s) from superficial features of
s, and use this regression function (a kind ofg(s) that is
specific to the task instance) to picksk+1.

Strapping may be harder in cases like gender induc-
tion: it is hard to stumble into the kind of detailed seed
used by Cucerzan and Yarowsky (2003). However, we
suspect that fertile seeds exist that are much smaller than
their lists of 50–60 words. While their large hand-crafted
seed is sure to work, a handful of small seeds (each
consisting of afew supposedly masculine and feminine
words) might be likely to contain at least one that is fer-
tile.6 That would be sufficient, assuming we have a way
to guess which seed in the handful is most fertile. That
issue is at the core of strapping, and we now turn to it.

3.2 Clues for Evaluating Bootstrapped Classifiers

Once we have identified a candidate seeds and built the
classifierCs, we must evaluate whetherCs “looks like”
the kind of classifier that tends to do well on our task.

This evaluation functionh(s) is task-specific. It may
consider features ofCs, the growth trajectory ofCs, or
the relation betweenCs and other classifiers.

For concretness, we consider the Yarowsky method for
word-sense disambiguation (WSD). How can we tell if a
seeds = (x, y) was fertile, without using even a small
validation set to judgeCs? There are several types of

5Alignment methods in machine translation rely even more
heavily on this property. While they begin with a small trans-
lation lexicon, they are sufficiently robust to the choice ofthis
initial seed (lexicon) that it suffices to construct a singleseed by
crude automatic means (Brown et al., 1990; Melamed, 1997).
Human supervision (or strapping) is unnecessary.

6This is particularly likely if one favors function words (in
particular determiners and pronouns), which are strong indica-
tors of gender. Cucerzan and Yarowsky used only content words
because they could be extracted from bilingual dictionaries.

clues to fertility, which may be combined into a meta-
classifier that identifies fertile seeds.

Judge the result of classification withCs: Even with-
out a validation set, the result of runningCs on the train-
ing corpus can be validated in various ways, using inde-
pendent plausibility criteria that werenot considered by
the bootstrapping learner.

• Is the classification reasonably balanced? (If virtu-
ally all examples of the target word are labeled with
the same sense, thenCs has not found a sense dis-
tinction.)

• When a document contains multiple tokens of the
target word, are all examples labeled with the same
sense? This property tends to hold for correct clas-
sifiers (Gale et al., 1992a), at least for homonyms.

• True word senses usually correlate with document
or passage topic. Thus, choose a measure of simi-
larity between documents (e.g., the cosine measure
in TF/IDF space). Does the target word tend to
have the same sense in a document and in its nearby
neighbors?

• True word senses may also improve performance on
some task. Is the perplexity of a language model
much reduced by knowing whether sensex or sense
y (according toCs) appeared in the current con-
text? (This relates to the previous point.) Likewise,
given a small bilingual text that has been automati-
cally (and perhaps poorly) word-aligned, is it easier
to predict how the target word will translate when
we know its sense (according toCs)?

Judge the internal structure of Cs: DoesCs look
like a typical supervised decision list for word-sense dis-
ambiguation? For instance, does it contain many features
with high log-likelihood ratios? (If a true sense distinc-
tion was discovered, we would expectmanycontextual
features to correlate strongly with the predicted sense.)

Look at the process wherebyCs was learned:Does
the bootstrapping run that starts froms look like a typical
bootstrapping run from a fertile seed? For example, did
it rapidly add many new examples with high confidence?
Once new examples were classified, did their classifica-
tions remain stable rather than switching back and forth?

Judge the robustness of learning with seeds: Train
several versions ofCs, as in ensemble methods (but un-
supervised), by restricting each to a random subset of the
data, or a subset of the available features. Do these ver-
sions tend toagreeon how to classify the data? If not,
seeds does not reliably find true (or even false) classes.

Judge the agreement ofCs with other classifiers:
Are there several other classifiersCs′ that agree strongly
with Cs on examples that they both classify? If the sense

398

distinction is real, then many different seeds should be
able to find it.

3.3 Training the Evaluation Function h(s)

Many of the above clues are necessary but not sufficient.
For example, a learned classification may be robust with-
out being a sense distinction. We therefore defineh(s)
from a combination of several clues.

In general,h(s) is a classifier or regression function
that attempts to distinguish fertile from infertile seeds,
given the clues. As mentioned earlier, we train its free
parameters (e.g., coefficients for linear regression) on a
few supervisedinstances of the task. These supervised
instances allow us to measure the fertilityf(s) of various
seeds, and thus to model the behavior of fertile versus
infertile seeds. The presumption is that these behavior
patterns will generalize to new seeds.

3.4 Training h(s) on Artificial Data

Optionally, to avoid the need for any human annotation at
all, the supervised task instances used to trainh(s) may
be artificial instances, whose correct classifications are
known without annotation.

In the case of word-sense disambiguation, one can au-
tomatically construct ambiguouspseudowords(Gale et
al., 1992c; Schütze, 1998) by replacing all occurences of
two words or phrases with their conflation. For example,
bananaand wine are replaced everywhere bybanana-
wine. The original, unconflated text serves as a super-
vised answer key for the artificial task of disambiguating
banana-wine.

Traditionally, pseudowords are used as cheap test data
to evaluate a disambiguation system. Our idea is to use
them as cheap development data to tune a system. In
our case, they tune a few free parameters ofh(s), which
says what a good classifier for this task looks like. Pseu-
dowords should be plausible instances of the task (Gaus-
tad, 2001; Nakov and Hearst, 2003): so it is deliberate
that bananaandwine share syntactic and semantic fea-
tures, as senses of real ambiguous words often do.

Cheap “pseudo-supervised” data are also available in
some other strapping settings. For grammar induction,
one could construct an artificial probabilistic grammar at
random, and generate text from it. The task of recovering
the grammar from the text then has a known answer.

4 Experiments

4.1 Unsupervised Training/Test Data

Our experiments focused on the original Yarowsky algo-
rithm. We attempted to strap word-sense classifiers, us-
ing English data only, for English words whose French
translations are ambiguous. This has obvious benefits for

training an English-to-French MT system: separate pa-
rameters can be learned for the two senses ofdrug.7

Gale et al. (1992b) identified six such words in the
Canadian Hansards, a parallel sentence-aligned corpus of
parliamentary debate in English and French:drug, duty,
land, language, position, sentence. We extracted all ex-
amples of each word from the 14-million-word English
portion of the Hansards.8 Note that this is considerably
smaller than Yarowsky’s (1995) corpus of 460 million
words, so bootstrapping will not perform as well, and
may be more sensitive to the choice of seed.

Because we are doing unsupervised learning, we both
trained and tested these 6 words on the English Hansards.
We used the French portion of the Hansards only to create
a gold standard for evaluating our results.9 If an English
sentence containingdrug is paired with a French sentence
that contains exactly one ofmédicamentor drogue, we
take that as an infallible indicator of its sense.

4.2 Comparing Classifiers

Suppose binary classifier 1 assigns class “+” toa of n
examples; binary classifier 2 assigns class “+” tob of the
samen examples. Lete be the number of examples where
the classifiers agree (both “+” or both “–”).

An unsupervised classifier’s polarity is arbitrary: clas-
sifier 1’s “+” may correspond to classifier 2’s “–”. So we
define theoverlapasE = max(e, n − e), to reflect the
best polarity.

To evaluate a learned classifier, we measure its over-
lap with the true classification. The statistical signifi-
cance is the probability that this level of overlap would
be reached by chance under independent classifications
given the valuesa, b, n:

p =
∑

max(a+b−n,0) ≤ c ≤ ⌊(a+b−E)/2⌋
or

⌈(a+b−(n−E))/2⌉ ≤ c ≤ min(a,b)

„

a
c

« „

n − a
b − c

«

/
„

n
b

«

Also, we can measure theagreementbetween any two
learned classifiers as−(log p)/n. Note that a classifier
that strongly favors one sense will have low agreement
with other classifiers.

7To hedge against the possibility of misclassification, one
could interpolate with non-sense-specific parameters.

8We are not certain that our version of the Hansards is iden-
tical to that in (Gale et al., 1992b).

9By contrast, Gale et al. (1992b) used the French portion as
a source of training supervision. By contrast, we will assume
that we donot have a large bilingual text such as the Hansards.
We train only on the English portion of the Hansards, ignoring
the French. This mimics the situation where we must construct
an MT system with very little bilingual text. By first discov-
ering word senses in unsupervised monolingual data (for either
language), we can avoid incorrectly mixing up two senses of
drug in our translation model.

399

4.3 Generating Candidate Seeds (viag(s))

For each target wordt, we chose candidate seedss =
(x, y) with a high scoreg(s), whereg(s) = MI(t, x) +
MI(t, y), provided thatc(x, y) = 0 andc(t, x) ≥ 5 and
c(t, y) ≥ 5 and1/9 < c(t, x)/c(t, y) < 9.10

The setS of 200 seeds fort was constructed by repeat-
edly adding the top-scoring unused seed toS, except that
to increase the variety of words, we disallowed a seed
s = (x, y) if x or y already appeared60 times inS.

4.4 Hand-Picked Seeds

To compare, we chose two seeds by hand for eacht.
Thecasuallyhand-picked seed was chosen by intuition

from the list of 200 automatically generated seeds. This
took about 2 minutes (per seed).

Thecarefullyhand-picked seed was not limited to this
list, and took up to 10 minutes to choose, in a data-guided
fashion. We first looked at some supervised example sen-
tences to understand the desired translational sense dis-
tinction, and then for each sense chose the highest-MI
word that both met some stringent subjective criteria and
appeared to retrieve an appropriate initial set of examples.

4.5 The Bootstrapping Classifier

Our approximate replication of Yarowsky’s algorithm
used only a small set of features:

• Original and lemmatized form of the word immedi-
ately preceding the target wordt.

• Original and lemmatized form of the word immedi-
ately followingt.

• Original and lemmatized form of thecontentwords
that appear in the same sentence ast.

We used the seed to provisionally classify any token of
the target word that appeared in a sentence with exactly
one of the two seed words. This formed our initial “train-
ing set” of disambiguated tokens. At each iteration of the
algorithm, we trained a decision list on the current train-
ing set. We then used the decision list to reclassify allk
tokens in the current training set, and also to augment the
training set by classifying theadditionalmax(50, k/10)
tokens on which the decision list was most confident.11

10c(x, y) counts the sentences containing bothx andy. MI(t,
x) = log c(t, x)c()/c(t)c(x) is pointwise mutual information.

11Such a token has some feature with high log-likelihood ra-
tio, i.e., it strongly indicates one of the senses in the current
training set. We smoothed using the method of (Yarowsky,
1996): when a feature has been observed with only one sense,
its log-likelihood ratio is estimated as a linear function of the
number of occurrences of the seen sense. Function words are
smoothed with a different linear coefficient than content words,
in order to discount their importance. We borrowed the ac-
tual coefficients from (Yarowsky, 1996), though we could have
learned them.

4.6 Development Data (for tuningh(s))

Before turning to the unsupervised Hansards, we tuned
our fertility estimatorh(s) to identify good seeds on de-
velopment data—i.e., on other, supervised task instances.

In the supervised condition, we used just 2 additional
task instances,plant and tank, each with 4000 hand-
annotated instances drawn from a large balanced corpus
(Yarowsky, 1995).

In the pseudo-supervised condition, we usedno hand-
annotated data, instead constructing 10 artificial super-
vised task instances (section 3.4) from the English por-
tion of the Hansards. To facilitate cross-instance learn-
ing, we tried to construct these pseudowords to behave
something like our ambiguous test words.12 Given a test
wordt, we randomly selected a seed(x, y) from its candi-
date list (section 4.3), excluding any that contained func-
tion words.13 Our basic idea was to conflatex and y
into a pseudowordx-y. However, to get a pseudoword
with only two senses, we tried to focus on the particular
senses ofx andy that were selected byt. We constructed
about 500 pseudoword tokens by using onlyx andy to-
kens that appeared in sentences that containedt, or in
sentences resembling those under a TF-IDF measure. We
repeated this process twice per test word to obtain 12
pseudowords. We then discarded the 2 pseudowords for
which no seed beat baseline performance, reasoning that
they were ill-chosen and unlike real ambiguous words.14

4.7 Clues to Fertility

For each seeds for each development or test target word,
we measured a few cluesh1(s), h2(s) . . . h6(s) that we
hoped might correlate with fertility. (In future work, we
plan to investigate more clues inspired by section 3.2.)

• The agreeabilityof Cs with (some of) the other 199
classifiers:





1

199

∑

s′ 6=s

agr(Cs, Cs′)
γ





1/γ

The agreement agr(Cs, Cs′) was defined in section 4.2.
We tried 4 values forγ (namely 1, 2, 5, 10), each result-
ing in a different feature.

12We used collocates oft. Perhaps better yet would be words
that are distributionally similar tot (appear in same contexts).
Such words tend to be syntactically and semantically liket.

13For an unknown language or domain, a lexicon of function
words could be constructed automatically (Katz, 1996).

14Thus we discardedalcohol-traffickingandaddicts-alcohol;
note that these were indeed ill-chosen (difficult) since both
words unluckily corresponded to thesame sense ofdrug.
This left us with bound-constituents, customs-pray, claims-
value, claims-veterans, culture-unparliamentary, english-learn,
competitive-party, financial-party, death-quote, death-page.

400

• The robustnessof the seed, defined by the agreement
of Cs with 10 variant classifiersC(k)

s that were trained
with the same seed but under different conditions:

1

10

10
∑

k=1

agr(Cs, C
(k)
s)

We simply trained each classifierC
(k)
s on a random sub-

set of then test examples, chosen by samplingn times
with replacement.15

• Theconfidenceof Cs on its own training data: its av-
erage confidence over then training tokens, minus the
classifier skew.

The decision list’s confidence on a token is the log-
likelihood ratio of the single feature used to classify that
token. It has the form| log(c/d)| (perhaps smoothed)
and was previously used to select data while bootstrap-
pingCs. Subtracting the skew,| log(a/(n−a))|,16 gives
a measurement≥ 0. It corrects for confidence that arises
from the classifier’s overall bias, leaving only the added
value of the relevant contextual feature.

4.8 Tuning h(s) and Strapping New Classifiers

For each of the 2 words or 10 pseudowordst in our de-
velopment set (see section 4.6), we ranked its 200 seeds
s by their true fertilityf(s). We then ran support vec-
tor regression17 to learn a single linear function,h(s) =
~w · (clue vector forCs), that predicts the fertilities of all
2 · 200 or 10 · 200 seeds.18

Then, for each of our 6 Hansards test instances (sec-
tion 4.1), we usedh(s) to pick the top-ranked of 200
seeds.19 It took about 3 hours total to strap classifiers for
all 6 instances, using about 40 machines and unoptimized
Perl code on the 14-million-word Hansards. For each
of the 6 instances, this involved selecting 200 candidate

15We eliminated duplicates, perhaps unfortunately.
16As before,a andn − a are the numbers of tokens thatCs

classifies as “+” and “–” respectively. Thus the skew is the log-
likelihood ratio of the decision list’s “baseline” feature.

17We used cross-validation among the 10 development pseu-
dowords to choose the options to SVMlight (Joachims, 1999): a
linear kernel, a regularization parameter of 0.3, and a dependent
variable of10f(s) ∈ [1, 10] rather thanf(s) ∈ [0, 1], which
placed somewhat more emphasis on modeling the better seeds.
Our development objective function was the average over the10
pseudowords of the Spearman rank-order correlation between
h(s) andf(s).

18We augmented the clue vector with binary clues of the form
t = plant, t = tank, etc. The regression weight of such a clue
is a learned bias term that models the inherent difficulty of the
task instancet (which varies greatly byt). This allows the other
regression features to focus on the quality of the seedgivent.

19We do not have a cluet = . . . for this test instance. The re-
sulting lack of a bias term may subtract a constant from the pre-
dicted fertilities—but that does not affect the ranking of seeds.

seeds, bootstrapping 11 classifiersCs, C
(1)
s , . . . C

(10)
s

from each seed, and choosing a particularCs to return.

4.9 Results

Our results are in Table 1. On both development and test
instances of the task,g(s) proposed seeds with a good
range of fertilities. The correlation of predicted with ac-
tual fertility on test data averaged an outstanding 85%.

Despite having no knowledge of the desired senses,
strapping significantly beat human selection inall 24 of
the possible comparisons between a hand-picked seed
(casual or careful) and a strapped seed (chosen by anh(s)
tuned on supervised or pseudo-supervised instances).

Theh(s) tuned on annotatedplant/tankactually chose
thevery bestof the 200 seeds in 4 of the 6 instances. The
h(s) tuned on artificial pseudowords did nearly as well,
in 2 of 6 instances identifying the very best seed, and in
5 of 6 instances ranking it among its top 3 choices.

We conclude that our unsupervised clues to fertility ac-
tually work. Furthermore, combining clues via regres-
sion was wise, as it tended to work better than any single
clue. Somewhat better regression weights for the WSD
task were learned from 2 out-of-domain hand-annotated
words than from 10 in-domain artificial pseudowords.

5 Open Questions

The work reported here raises many interesting questions
for future research.

In the WSD task, we have only considered word types
with two unrelated senses (homonyms). A more general
problem is to determine when a word type is ambiguous
at all, and if so, how many coarse-grained or fine-grained
senses it has. Strapping seems naturally suited to this
problem, since it aims to discover when a sense distinc-
tion grown from some seed is atruesense distinction.

Then we would like to know how well strapping gen-
eralizes to additional bootstrapping scenarios. Our WSD
strapping experiments were successful using only a sub-
set of the techniques proposed in section 3. Generalizing
to other tasks may require other techniques for selecting
and evaluating candidate seeds, and perhaps combining
the resulting classifiers.

An interesting question is whether strapping can be
used in an active learning context. Active learning is a
kind of bootstrapping method that periodically requires
new seeds: it turns to the user whenever it gets confused.
Perhaps some of these seeds can be guessed nondetermin-
istically and the guesses evaluated automatically, with or
without user confirmation.

Finally, there may be theoretical guarantees about
strapping when something is known about the data.
Whenh(s) is trained to estimatef(s) well on some su-
pervised instances, there may be guarantees about how
strapping will perform on unsupervised instances drawn

401

st
ra

pp
in

g
(u

ns
up

e
rv

is
e

d)

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

drug duty land language position sentence

baseline / # examples 51.2 / 371 70.1 / 633 76.6 / 1379 87.5 / 1012 81.7 / 2949 50.8 / 501
worst seed (of 200) 50.1 (200) traffickers trafficking 50.0 (200) 50.1 (200) claims farming 50.3 (200) 56.1 (200) 50.1 (200) length life

casually selected (from 200) 56.5 (87) food trafficking 73.4∗ (40) 76.2 (24) farm veterans 86.4 (76) 81.7 (41) 80.6∗ (40) page prison
carefully constructed 62.1∗ (75) alcohol costs 82.1∗ (8.5) 76.6 (20) farm strong 87.9 (25.5) 81.4 (56.5) 86.8∗ (27) death quote

best/oracle seed (of 200) 76.1∗† (1) alcohol medical 86.2∗† (1) 81.3∗† (1) acres courts 90.9∗† (1) 88.3∗† (1) 89.9∗† (1) reads served

most agreeable seed (γ =1) 72.6∗† (5) abuse information 64.7 (47) 67.5 (36) claims production 86.4 (79) 82.4 (36) 88.7∗† (10) life quote

most robust seed 76.1∗† (1) alcohol medical 86.2∗† (1) 71.7 (29) claims price 85.6 (93) 82.7 (21) 88.8∗† (9) commuted next

most confident seed 66.9∗ (32) trafficking used 72.1∗ (42) 77.9∗† (3) claims courts 89.8∗† (10) 84.4∗† (8) 89.9∗† (1) reads served

h(s)-picked (plant/tank) 76.1∗† (1) alcohol medical 86.2∗† (1) 81.3∗† (1) acres courts 90.3∗† (7) 84.5∗† (7) 89.9∗† (1) reads served

h(s)-picked (10 pseudowd) 70.4∗† (10) alcohol found 86.2∗† (1) 78.9∗† (2) children farm 89.7∗† (17) 83.7∗† (16) 89.9∗† (1) reads served

h(s)-picked, 2nd place 69.1∗ (13) alcohol related 85.7∗† (2) 77.8∗† (4) aboriginal acres 90.9∗† (1) 82.8 (19) 89.0∗† (7) prison quote

h(s)-picked, 3rd place 76.1∗† (1) alcohol medical 84.2∗ (4) 77.1∗† (5) acres cities 87.5 (28) 88.3∗† (1) 88.6∗† (15) life reads
h(s) rank of oracle seed 3 1 14 2 3 1

Spearman rank-order corr. 0.863 0.905 0.718 0.825 0.842 0.937

Table 1: [See section 4.9 for highlights.] Accuracy (as percentage) and rank (in parentheses) of bootstrapped classifiers for variously
chosen seeds, some of which are shown. * denotes statistically significant agreement with the truth (section 4.2,p < 0.01).
† denotes a seed having significantly better agreement with the truth than does the better of the hand-picked seeds (McNemar’s test,
p < 0.03). In each column, the best performance for an automatic or manual seed appears inboldface. The “most . . . ” lines use no
tuning, the “plant/tank” line tunesh(s) on 2 supervised instances, and the subsequent lines tuneh(s) on 10 pseudoword instances.
The last line gives the Spearman rank-order correlation between seeds’ predicted fertilitiesh(s) and their actual fertilitiesf(s).

from the same source (cross-instance learning). Even in
the fully unsupervised case, it may be possible to prove
that if the data were generated from a particular kind of
process (e.g., a Gaussian mixture), then a certain strap-
ping algorithm can recover the hidden variables.

6 Conclusions

In this paper, we showed that it is sometimes possible—
indeed, preferable—to eliminate the initial bit of supervi-
sion in “bootstrapping” algorithms such as the Yarowsky
(1995) algorithm for word sense disambiguation. Our
“strapping” approach tries many candidate seeds as start-
ing points and evaluates them automatically. The eval-
uation function can be tuned if desired on other task in-
stances, perhaps artificially constructed ones. It can then
be used wherever human guidance is impractical.

We applied the method to unsupervised disambigua-
tion of English words in the Canadian Hansards, as if for
English-French translation. Our results (see section 4.9
for several highlights) show that our automatic “strapped”
classifiers consistently outperform the classifiers boot-
strapped from manually, knowledgeably chosen seeds.

References
R. K. Ando and T. Zhang. 2005. A high-performance semi-

supervised learning method for text chunking. InACL.
J. K. Baker. 1979. Trainable grammars for speech recogni-

tion. In Jared J. Wolf and Dennis H. Klatt, editors,Speech
Communication Papers Presented at the 97th meeting of the
Acoustical Society of America, MIT, Cambridge, MA, June.

A. Blum and Tom Mitchell. 1998. Combining labeled and un-
labeled data with co-training. InProc. of COLT, July.

P. F. Brown, J. Cook, S.A. Della Pietra, V.G. Della Pietra, F.Je-
linek, J.D. Lafferty, R.L. Mercer, and P.S. Roossin. 1990. A
statistical approach to machine translation.CL, 16(2).

N. Chomsky. 1981. Lectures on Government and Binding.
Foris, Dordrecht.

M. Collins and Y. Singer. 1999. Unsupervised models for

named entity classification. InProc. of EMNLP/VLC.
S. Cucerzan and D. Yarowsky. 1999. Language independent

named entity recognition combining morphological and con-
textual evidence. InProc. of EMNLP/VLC.

S. Cucerzan and D. Yarowsky. 2003. Minimally supervised
induction of grammatical gender. InProc. of HLT/NAACL.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum
likelihood from incomplete data via the EM algorithm.J.
Royal Statist. Soc. Ser. B, 39(1):1–38.

W. A. Gale, K. W. Church, and D. Yarowsky. 1992a. One sense
per discourse. InProc. of the 4th DARPA Speech and Natural
Language Workshop, pages 233–237.

W. A. Gale, K. W. Church, and D. Yarowsky. 1992b. Us-
ing bilingual materials to develop word sense disambiguation
methods. InProc. of the 4th International Conf. on Theoret-
ical and Methodological Issues in Machine Translation.

W. A. Gale, K. W. Church, and D. Yarowsky. 1992c. Work on
statistical methods for word sense disambiguation. InWork-
ing Notes of the AAAI Fall Symposium on Probabilistic Ap-
proaches to Natural Language, pages 54–60.

T. Gaustad. 2001. Statistical corpus-based word sense disam-
biguation: Pseudowords vs. real ambiguous words. InProc.
of ACL-EACL.

T. Joachims. 1999. Making large-scale SVM learning practical.
In B. Schölkopf, C. Burges, and A. Smola, editors,Advances
in Kernel Methods—Support Vector Learning. MIT Press.

S. M. Katz. 1996. Distribution of context words and phrases in
text and language modelling.NLE, 2(1):15–59.

I. Dan Melamed. 1997. A word-to-word model of translational
equivalence. InProc. of ACL/EACL, page 490.

P. Nakov and M. Hearst. 2003. Category-based pseudowords.
In HLT-NAACL’03, pages 67–69, Edmonton, Canada.

E. Riloff, J. Wiebe, and T. Wilson. 2003. Learning subjec-
tive nouns using extraction pattern bootstrapping. InProc.
of CoNLL, pages 25–32, May–June.

H. Schütze. 1998. Automatic word sense discrimination.Com-
putational Linguistics, 23.

S. Wang, R. Rosenfeld, Y. Zhao, and D. Schuurmans. 2002.
The latent maximum entropy principle. InProc. of ISIT.

D. Yarowsky. 1995. Unsupervised word sense disambiguation
rivaling supervised methods. InProc. of ACL.

D. Yarowsky. 1996.Three Machine Learning Algorithms for
Lexical Ambiguity Resolution. Ph.D. thesis, U. of Penn.

402

