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Abstract

We present a practically unsupervised
learning method to produce single-snippet
answers to definition questions in ques-
tion answering systems that supplement
Web search engines. The method exploits
on-line encyclopedias and dictionaries to
generate automatically an arbitrarily large
number of positive and negative definition
examples, which are then used to train an
SVM to separate the two classes. We show
experimentally that the proposed method
is viable, that it outperforms the alterna-
tive of training the system on questions
and news articles fromTREC, and that it
helps the search engine handle definition
questions significantly better.

1 Introduction

Question answering (QA) systems for document col-
lections typically aim to identify in the collections
text snippets (e.g., 50 or 250 characters long) or ex-
act answers (e.g., names, dates) that answer natu-
ral language questions submitted by their users. Al-
though they are commonly evaluated on newspaper
archives, as in theTREC QA track, QA systems can
also supplement Web search engines, to help them
return snippets, as opposed to Web pages, that pro-
vide more directly the information users require.

Most currentQA systems first classify the input
question into one of several categories (e.g., ques-
tions asking for locations, persons, etc.), producing

expectations for types of named entities that must
be present in the answer (locations, person names,
etc.). Using the question’s terms as a query, an infor-
mation retrieval (IR) system identifies relevant doc-
uments. Snippets of these documents are then se-
lected and ranked, using criteria such as whether or
not they contain the expected types of named enti-
ties, the percentage of the question’s terms they con-
tain, etc. The system then outputs the most highly-
ranked snippets, or named entities therein.

The approach highlighted above performs poorly
with definition questions (e.g., “What is gasohol?”,
“Who was Duke Ellington?”), because definition
questions do not generate expectations for particular
types of named entities, and they typically contain
only a single term. Definition questions are particu-
larly common; in theQA track ofTREC-2001, where
the distribution of question types reflected that of
real user logs, 27% of the questions were requests
for definitions. Of course, answers to many defini-
tion questions can be found in on-line encyclopedias
and dictionaries.1 There are always, however, new
or less widely used terms that are not included in
such resources, and this is also true for many names
of persons and products. Hence, techniques to dis-
cover definitions in ordinary Web pages and other
document collections are valuable. Definitions of
this kind are often ‘hidden’ in oblique contexts (e.g.,
“He said thatgasohol, a mixture of gasoline and
ethanol, has been great for his business.”).

In recent work, Miliaraki and Androutsopoulos
(2004), hereafterM& A, proposed a method we call

1See, for example, Wikipedia (http://www.wikipedia.org/).
WordNet’s glosses are another on-line source of definitions.
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DEFQA, which handles definition questions. The
method assumes that a question preprocessor sep-
arates definition from other types of questions, and
that in definition questions this module also identi-
fies the term to be defined, called thetarget term.2

The input toDEFQA is a (possibly multi-word) tar-
get term, along with ther most highly ranked docu-
ments that anIR system returned for that term. The
output is a list ofk 250-character snippets from the
r documents, at least one of which must contain an
acceptable short definition of the target term, much
as in theQA track ofTREC-2000 andTREC-2001.3

We note that since 2003,TREC requires defini-
tion questions to be answered by lists ofcomple-
mentarysnippets, jointly providing a range of in-
formation nuggets about the target term (Voorhees,
2003). In contrast, here we focus on locating single-
snippet definitions. We believe this task is still in-
teresting and of practical use. For example, a list
of single-snippet definitions accompanied by their
sourceURLs is a good starting point for users of
search engines wishing to obtain definitions. Single-
snippet definitions can also be useful in information
extraction, where the templates to be filled in often
require short entity descriptions. We also note that
the post-2003TREC task has encountered evaluation
problems, because it is difficult to agree on which
nuggets should be included in the multi-snippet def-
initions (Hildebrandt et al., 2004). In contrast, our
experimental results of Section 4 indicate strong
inter-assessor agreement for single-snippet answers,
suggesting that it is easier to agree upon what con-
stitutes an acceptable single-snippet definition.

DEFQA relies on anSVM, which is trained to clas-
sify 250-character snippets that have the target term
at their centre, hereafter calledwindows, as accept-
able definitions or non-definitions.4 To train the
SVM, a collection ofq training target terms is used;
M& A used the target terms of definition questions
from TREC-2000 andTREC-2001. The terms are
submitted to anIR system, which returns ther most

2Alternatively, the user can be asked to specify explicitly the
question type and target term via a form-based interface.

3Definition questions were not considered inTREC-2002.
4See, for example, Scholkopf and Smola (2002) for in-

formation onSVMs. Following M& A, we use a linearSVM,
as implemented by Weka’sSMO class (http://www.cs.waikato.
ac.nz/ml/weka/). The windows may be shorter than 250 charac-
ters, when the surrounding text is limited.

highly ranked documents per target term. The win-
dows of theq · r resulting documents are tagged
as acceptable definitions or non-definitions, and be-
come the training instances of theSVM. At run time,
when a definition question is submitted, ther top-
ranked documents are obtained, their windows are
collected, and for each window theSVM returns a
score indicating how confident it is that the window
is a definition. Thek windows with the highest con-
fidence scores are then reported to the user.

The SVM actually operates on vector representa-
tions of the windows, that comprise the verdicts or
attributes of previous methods by Joho and Sander-
son (2000) and Prager et al. (2002), as well as
attributes corresponding to automatically acquired
lexical patterns. OnTREC-2000 andTREC-2001
data,M& A found thatDEFQA clearly outperformed
the original methods of Joho and Sanderson and
Prager et al. Their best configuration answered cor-
rectly 73% of 160 definition questions in a cross-
validation experiment withk = 5, r = 50, q = 160.

A limitation of DEFQA is that it cannot be trained
easily on new document collections, because it re-
quires the training windows to be tagged as defini-
tions or non-definitions. In the experiments ofM& A,
there were 18,473 training windows. Tagging them
was easy, because the windows were obtained from
TREC questions and documents, and theTREC or-
ganizers provide Perl patterns that can be used to
judge whether a snippet fromTREC’s documents is
among the acceptable answers of aTREC question.5

For non-TREC questions and document collections,
however, where such patterns are unavailable, sep-
arating thousands of training windows into the two
categories by hand is a laborious task.

In this paper, we consider the case whereDE-
FQA is used as an add-on to a Web search engine.
There are three training alternatives in this setting:
(i) train DEFQA on TREC questions and documents;
(ii) train DEFQA on a large collection of manually
tagged training windows obtained from Web pages
that the search engine returned for training target
terms; or (iii) devise techniques to tag automatically
the training windows of (ii). We have developed a
technique along alternative (iii), which exploits on-

5The patterns’ judgements are not always perfect, which in-
troduces some noise in the training examples.
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line encyclopedias and dictionaries. This allows us
to generate and tag automatically an arbitrarily large
number of training windows, in effect converting
DEFQA to an unsupervised method. We show ex-
perimentally that the new unsupervised method is
viable, that it outperforms alternative (i), and that it
helps the search engine handle definition questions
significantly better than on its own.

2 Attributes of DEFQA

DEFQA represents each window as a vector compris-
ing the values of the following attributes:6

SN: The ordinal number of the window in the
document, in our case Web page, it originates from.
The intuition is that windows that mention the target
term first in a document are more likely to define it.

WC: What percentage of the 20 words that are
most frequent across all the windows of the tar-
get term are present in the particular window rep-
resented by the vector. A stop-list and a stemmer are
applied first when computingWC .7 In effect, the 20
most frequent words form a simplistic centroid of all
the candidate answers, andWC measures how close
the vector’s window is to this centroid.

RK: The ranking of the Web page the window
originates from, as returned by the search engine.

Manual patterns: 13 binary attributes, each sig-
nalling whether or not the window matches a differ-
ent manually constructed lexical pattern (e.g., “tar-
get, a/an/the”, as in “Tony Blair, the British prime
minister”). The patterns are those used by Joho and
Sanderson, and four more added byM& A. They are
intended to perform well across text genres.

Automatic patterns: A collection ofm binary at-
tributes, each showing if the window matches a dif-
ferent automatically acquired lexical pattern. The
patterns are sequences ofn tokens (n ∈ {1, 2, 3})
that must occur either directly before or directly af-
ter the target term (e.g., “target, which is”). These
patterns are acquired as follows. First, all then-
grams that occur directly before or after the target
terms in the training windows are collected. Then-
grams that have been encountered at least 10 times
are considered candidate patterns. From those, the

6SN andWC originate from Joho and Sanderson (2000).
7We use the 100 most frequent words of the British National

Corpus as the stop-list, and Porter’s stemmer.

m patterns with the highest precision scores are re-
tained, whereprecision is the number of training
definition windows the pattern matches divided by
the total number of training windows it matches. We
setm to 200, the value that led to the best results
in the experiments ofM& A. The automatically ac-
quired patterns allow the system to detect definition
contexts that are not captured by the manual pat-
terns, including genre-specific contexts.

M& A also explored an additional attribute, which
carried the verdict of Prager et al.’s WordNet-based
method (2002). However, they found the additional
attribute to lead to no significant improvements, and,
hence, we do not use it. We have made no attempt to
extend the attribute set ofM& A; for example, with
attributes showing if the window contains the target
term in italics, if the window is part of a list that
looks like a glossary, or if the window derives from
an authority Web page. We leave such extensions
for future work. Our contribution is the automatic
generation of training examples.

3 Generating training examples

When trainingDEFQA on windows from Web pages,
a mechanism to tag the training windows as defi-
nitions or non-definitions is required. Rather than
tagging them manually, we use a measure of how
similar the wording of each training window is to
the wording of definitions of the same target term
obtained from on-line encyclopedias and dictionar-
ies. This is possible because we pick training target
terms for which there are several definitions in dif-
ferent on-line encyclopedias and dictionaries; here-
after we call theseencyclopedia definitions.8 Train-
ing windows whose wording is very similar to that
of the corresponding encyclopedia definitions are
tagged as definition windows (positive examples),
while windows whose wording differs significantly
from the encyclopedia definitions are tagged as non-
definitions (negative examples). Training windows
for which the similarity score does not indicate great
similarity or dissimilarity to the wording of the en-
cyclopedia definitions are excluded fromDEFQA’s

8We use randomly selected entries from the index of
http://www.encyclopedia.com/ as training terms, and Google’s
‘define:’ feature, that returns definitions from on-line encyclo-
pedias and dictionaries, to obtain the encyclopedia definitions.
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training, as they cannot be tagged as positive or neg-
ative examples with sufficiently high confidence.

Note that encyclopedia definitions are used only
to tag training windows. Once the system has been
trained, it can be used to discover on ordinary Web
pages definitions of terms for which there are no en-
cyclopedia definitions, and indeed this is the main
purpose of the system. Note also that we trainDE-
FQA on windows obtained from Web pages returned
by the search engine for training terms. This allows
it to learn characteristics of the particular search en-
gine being used; for example, what weight to as-
sign to RK , depending on how much the search
engine succeeds in ranking pages containing defi-
nitions higher. More importantly, it allowsDEFQA

to select lexical patterns that are indicative of def-
initions in Web pages, as opposed to patterns that
are indicative of definitions in electronic encyclope-
dias and dictionaries. The latter explains why we
do not trainDEFQA directly on encyclopedia defi-
nitions; another reason is thatDEFQA requires both
positive and negative examples, while encyclopedia
definitions provide only positive ones.

We now explain how we compute the similar-
ity between a training window and the collection
C of encyclopedia definitions for the window’s tar-
get term. We first remove stop-words, punctua-
tion, other non-alphanumeric characters and the tar-
get term from the training window, and apply a stem-
mer, leading to a new formW of the training win-
dow. We then compute the similarity ofW to C as:

sim(W,C) = 1/|W | · Σ|W |
i=1sim(wi, C)

where|W | is the number of distinct words inW , and
sim(wi, C) is the similarity of thei-th distinct word
of W to C, defined as follows:

sim(wi, C) = fdef (wi, C) · idf (wi)

fdef (wi, C) is the percentage of definitions inC that
containwi, andidf (wi) is the inverse document fre-
quency ofwi in the British National Corpus (BNC):

idf (wi) = 1 + log
N

df(wi)

N is the number of documents inBNC, anddf (wi)
the number ofBNC documents wherewi occurs; if

wi does not occur inBNC, we use the lowestdf score
of BNC. sim(wi, C) is highest for words that oc-
cur in all the encyclopedia definitions and are used
rarely in English. A training window with a large
proportion of such words most probably defines the
target term. More formally, given two thresholdst+
and t− with t− ≤ t+, we tagW as a positive ex-
ample ifsim(W,C) ≥ t+, as a negative example if
sim(W,C) ≤ t−, and we exclude it from the train-
ing of DEFQA if t− < sim(W,C) < t+. Hereafter,
we refer to this method of generating training exam-
ples as thesimilarity method.

To select reasonable values fort+ andt−, we con-
ducted a preliminary experiment fort− = t+ = t;
i.e., both thresholds were set to the same valuet
and no training windows were excluded. We used
q = 130 training target terms fromTREC definition
questions, for which we had multiple encyclopedia
definitions. For each term, we collected ther = 10
most highly ranked Web pages.9 To alleviate the
class imbalance problem, whereby the positive ex-
amples (definitions) are much fewer than the nega-
tive ones (non-definitions), we kept only the first 5
windows from each Web page (SN ≤ 5), based on
the observation that windows with greatSN scores
are almost certainly non-definitions; we do the same
in the training stage of all the experiments of this pa-
per, and at run-time, when looking for windows to
report, we ignore windows withSN > 5. From the
resulting collection of training windows, we selected
randomly 400 windows, and tagged them both man-
ually and via the similarity method, witht ranging
from 0 to 1. Figures 1 and 2 show the precision and
recall of the similarity method on positive and neg-
ative training windows, respectively, for varyingt.
Here,positive precisionis the percentage of training
windows the similarity method tagged as positive
examples (definitions) that were indeed positive; the
true classes of the training windows were taken to be
those assigned by the human annotators.Positive re-
call is the percentage of truly positive examples that
the similarity method tagged as positive.Negative
precisionandnegative recallare defined similarly.

Figures 1 and 2 indicate that there is no single
thresholdt that achieves both high positive preci-
sion and high negative precision. To be confident

9In all our experiments, we used the Altavista search engine.

326



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
similarity threshold

pr
ec

is
io

n-
re

ca
ll

precision of positive examples
recall of positive examples

Figure 1: Positive precision and recall

that the training windows the similarity method will
tag as positive examples are indeed positive (high
positive precision), one has to sett close to 1; and to
be confident that the training windows the similar-
ity method will tag as negative examples are indeed
negative (high negative precision),t has to be set
close to 0. This is why we use two separate thresh-
olds and discard the training windows whose simi-
larity score is betweent− andt+. Figures 1 and 2
also indicate that in both positive and negative ex-
amples the similarity method achieves perfect pre-
cision only at the cost of very low recall; i.e., if we
insist that all the resulting training examples must
have been tagged correctly (perfect positive and neg-
ative precision), the resulting examples will be very
few (low positive and negative recall). There is also
another consideration when selectingt− andt+: the
ratio of positive to negative examples that the sim-
ilarity method generates must be approximately the
same as the true ratio before discarding any training
windows, in order to avoid introducing an artificial
bias in the training ofDEFQA’s SVM; the true ratio
among the 400 training windows before discarding
any windows was approximately0.37 : 1.

Based on the considerations above, in the remain-
ing experiments of this paper we sett+ to 0.5. In
Figure 1, this leads to a positive precision of 0.72
(and positive recall 0.49), which does not improve
much by adopting a largert+, unless one is willing
to sett+ at almost 1 at the price of very low posi-
tive recall. In the case oft−, setting it to any value
less than 0.34 leads to a negative precision above
0.9, though negative recall drops sharply ast− ap-
proaches 0 (Figure 2). For example, settingt− to
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Figure 2: Negative precision and recall

0.32, leads to 0.92 negative precision, 0.75 negative
recall, and approximately the same positive to nega-
tive ratio (0.31 : 1) as the true observed ratio. In the
experiments of Section 4, we keept+ fixed to 0.5,
and sett− to the value in the range(0, 0.34) that
leads to the positive to negative ratio that is closest
to the true ratio we observed in the 400 windows.

The high negative precision we achieve (> 0.9)
suggests that the resulting negative examples are al-
most always truly negative. In contrast, the lower
positive precision (0.72) indicates that almost one in
every four resulting positive examples is in reality a
non-definition. This is a point where our similarity
method needs to be improved; we return to this point
in Section 6. Our experiments, however, show that
despite this noise, the similarity method already out-
performs the alternative of trainingDEFQA on TREC

data. Note also that once the thresholds have been
selected, we can generate automatically an arbitrar-
ily large set of training examples, by starting with a
sufficiently large numberq of training terms to com-
pensate for discarded training examples.

4 Evaluation

We tested two different forms ofDEFQA. The first
one, dubbedDEFQAt , was trained on theq = 160
definition questions ofTREC-2000 andTREC-2001
and the correspondingTRECdocuments, resulting in
3,800 training windows.10 The second form ofDE-

10For each question, theTRECorganizers provide the 50 most
highly ranked documents that an IR engine returned from the
TREC document collection. We keep the topr = 10 of these
documents, whileM& A kept all 50. Furthermore, as discussed
in Section 3, we retain up to the first 5 windows from each doc-
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FQA, dubbedDEFQAs , was trained via the similarity
method, withq = 480 training target terms, leading
to 7,200 training windows; as discussed in Section 3,
one of the advantages of the similarity method is that
one can generate an arbitrarily large set of training
windows. As in the preliminary experiment of Sec-
tion 3, r (Web pages per target term) was set to 10
in both systems. To simplify the evaluation and test
DEFQA in a more demanding scenario, we setk to
1, i.e., the systems were allowed to return only one
snippet per question, as opposed to the more lenient
k = 5 in the experiments ofM& A.

We also wanted a measure of how wellDEFQAt

and DEFQAs perform compared to a search engine
on its own. For this purpose, we compared the per-
formance of the two systems to that of a baseline,
dubbedBASE1 , which always returns the first win-
dow of the Web page the search engine ranked first.
In a search engine that highlights question terms
in the returned documents, the snippet returned by
BASE1 is presumably the first snippet a user would
read hoping to find an acceptable definition. To
study how muchDEFQAt andDEFQAs improve upon
random behaviour, we also compared them to a sec-
ond baseline,BASEr , which returns a randomly se-
lected window among the first five windows of allr
Web pages returned by the search engine.

All four systems were evaluated on 81 unseen tar-
get terms. Their responses were judged indepen-
dently by two human assessors, who had to mark
each response as containing an acceptable short def-
inition or not. As already pointed out,DEFQAt and
DEFQAs consult encyclopedia definitions only dur-
ing training, and at run time the systems are in-
tended to be used with terms for which no ency-
clopedia definitions are available. During this eval-
uation, however, we deliberately chose the 81 test
terms from the index of an on-line encyclopedia.
This allowed us to give the encyclopedia’s defini-
tions to the assessors, to help them judge the accept-
ability of the single-snippet definitions the systems
located on Web pages; many terms where related to,
for example, medicine or biology, and without the
encyclopedia’s definitions the assessors would not
be aware of their meanings. The following is a snip-
pet returned correctly byDEFQAs for ‘genome’:

ument. This is why we have fewer training windows thanM& A.

discipline comparative genomics functional genomics bioinfor-

matics the emergence of genomics as a discipline in 1920 , the

term genomewas proposed to denote the totality of all genes on

all chromosomes in the nucleus of a cell . biology has. . .

while what follows is a non-definition snippet re-
turned wrongly byBASE1 :

what is a genomenational center for biotechnology information

about ncbi ncbi at a glance a science primer databases. . .

The examples illustrate the nature of the snippets
that the systems and assessors had to consider. The
snippets often contain phrases that acted as links in
the original pages, or even pieces of programming
scripts that our rudimental preprocessing failed to
remove. (We remove onlyHTML tags, and apply
a simplistic tokenizer.) Nevertheless, in most cases
the assessors had no trouble agreeing whether or
not the resulting snippets contained acceptable short
definitions. KCo was 0.80, 0.81, 0.90, 0.89, and
0.86 in the assessment of the responses ofDEFQAs ,
DEFQAt , BASEr , BASE1 , and all responses, respec-
tively, indicating strong inter-assessor agreement.11

The agreement was slightly lower inDEFQAs and
DEFQAt , because there were a few marginally ac-
ceptable or truncated definitions the assessors were
uncertain about. There were also 4DEFQAs answers
and 3BASE1 answers that defined secondary mean-
ings of the target terms; e.g., apart from a kind of
lizard, ‘gecko’ is also the name of a graphics engine,
and ‘Exodus’ is also a programme for ex-offenders.
Such answers were counted as wrong, though this
may be too strict. With a largerk, there would be
space to return both the main and secondary mean-
ings, and the evaluation could require this.

Table 1 shows thatDEFQAs answered correctly
approximately 6 out of 10 definition questions. This
is lower than the score reported byM& A (73%),
but remarkably high given that in our evaluation
the systems were allowed to return only one snip-
pet per question; i.e., the task was much harder than
in M& A ’s experiments.DEFQAs answered correctly
more than twice as many questions asDEFQAt , de-
spite the fact that its training data contained a lot of
noise. (Single-tailed difference-of-proportions tests
show that all the differences of Table 1 are statisti-

11We follow the notation of Di Eugenio and Glass (2004).
The KS&C figures were identical. The2 · P (A) − 1 figures
were 0.80, 0.85, 0.95, 0.95, and 0.89 respectively.
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assessor 1 assessor 2 average
BASEr 14.81 (12) 14.81 (12) 14.81 (12)
BASE1 14.81 (12) 12.35 (10) 13.58 (11)
DEFQAt 25.93 (21) 25.93 (21) 25.93 (21)
DEFQAs 55.56 (45) 60.49 (49) 58.02 (47)

Table 1: Percentage of questions answered correctly

cally significant atα = 0.001.) The superiority of
DEFQAs appears to be mostly due to its automati-
cally acquired patterns.DEFQAt too was able to ac-
quire several good patterns (e.g., ‘bytarget’, ‘known
astarget’, ‘ target, which is’, ‘target is used in’), but
its pattern set also comprises a large number of irrel-
evantn-grams; this had also been observed byM& A.
In contrast, the acquired pattern set ofDEFQAs is
much cleaner, with much fewer irrelevantn-grams,
which is probably due to the largest, almost double,
number of training windows. Furthermore, the pat-
tern set ofDEFQAs contains manyn-grams that are
indicative of definitions on the Web. For example,
many Web pages that define terms contain text of the
form “What is atarget? A targetis. . . ”, andDEFQAs

has discovered patterns of the form ‘what is a/an/the
target’, ‘? A/an/the target’, etc. It has also discov-
ered patterns like ‘FAQ target’, ‘home pagetarget’,
‘ target page’ etc., that seem to be good indications
of Web windows containing definitions.

Overall,DEFQA’s process of acquiring lexical pat-
terns worked better inDEFQAs than inDEFQAt , and
we believe that the performance ofDEFQAs could be
improved further by acquiring more than 200 pat-
terns; we hope to investigate this in future work,
along with an investigation of how the performance
of DEFQAs relates toq, the number of training target
terms. Finally, note that the scores of both baselines
are very poor, indicating thatDEFQAs performs sig-
nificantly better than picking the first, or a random
snippet among those returned by the search engine.

5 Related work

Definition questions have recently attracted several
QA researchers. Many of the proposed approaches,
however, rely on manually crafted patterns or heuris-
tics to identify definitions, and do not employ learn-
ing algorithms (Liu et al., 2003; Fujii and Ishikawa,
2004; Hildebrandt et al., 2004; Xu et al., 2004).

Ng et al. (2001) use machine learning (C5 with
boosting) to classify and rank candidate answers in
a generalQA system, but they do not treat defi-
nition questions in any special way; consequently,
their worst results are for “What. . . ?” questions,
that presumably include definition questions. Itty-
cheriah and Roukos (2002) employ a maximum en-
tropy model to rank candidate answers in a general-
purposeQA system. Their maximum entropy model
uses a very rich set of attributes, that includes 8,500
n-gram patterns. Unlike our work, theirn-grams are
five or more words long, they are coupled to two-
word question prefixes, and, in the case of definition
questions, they do not need to be anchored at the tar-
get term. The authors, however, do not provide sep-
arate performance figures for definition questions.

Blair-Goldensohn et al. (2003) focus on defini-
tion questions, but aim at producing coherent multi-
snippet definitions, rather than single-snippet defi-
nitions. The heart of their approach is a compo-
nent that uses machine learning (Ripper) to identify
sentences that can be included in the multi-sentence
definition. This component plays a role similar to
that of ourSVM, but it is intended to admit a larger
range of sentences, and appears to employ only at-
tributes conveying the ordinal number of the sen-
tence in its document and the frequency of the target
term in the sentence’s context.

Since TREC-2003, several researchers have pro-
posed ways to generate multi-snippet definitions
(Cui et al., 2004; Fujii and Ishikawa, 2004; Hilde-
brandt et al., 2004; Xu et al., 2004). The typical
approach is to locate definition snippets, much as
in our work, and then report definition snippets that
are sufficiently different; most of the proposals use
some form of clustering to avoid reporting redun-
dant snippets. Such methods could also be applied
to DEFQA, to extend it to the post-2003TREC task.

On-line encyclopedias and dictionaries have been
used to handle definition questions in the past, but
not as in our work. Hildebrandt et al. (2004) look up
target terms in encyclopedias and dictionaries, and
then, knowing the answers, try to find supporting
evidence for them in theTREC document collection.
Xu et al. (2004) collect from on-line encyclopedias
and dictionaries words that co-occur with the tar-
get term; these words and their frequencies are then
used as a centroid of the target term, and candidate
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answers are ranked by computing their similarity to
the centroid. This is similar to ourWC attribute.

Cui et al. (2004) also employ a form of centroid,
comprising words that co-occur with the target term.
The similarity to the centroid is taken into consider-
ation when ranking candidate answers, but it is also
used to generate training examples for a learning
component that produces soft patterns, in the same
way that we use the similarity method to produce
training examples for theSVM. As in our work, the
training examples that the centroid generates may
be noisy, but the component that produces soft pat-
terns manages to generalize over the noise. To the
best of our knowledge, this is the only other unsu-
pervised learning approach for definition questions
that has been proposed. We hope to compare the
two approaches experimentally in future work. For
the moment, we can only point out that Cui et al.’s
centroid approach generates only positive examples,
while our similarity method generates both positive
and negative ones; this allows us to use a principled
SVM learner, as opposed to Cui et al.’s more ad hoc
soft patterns that incorporate only positive examples.

6 Conclusions and future work

We presented an unsupervised method to learn to lo-
cate single-snippet answers to definition questions
in QA systems that supplement Web search en-
gines. The method exploits on-line encyclopedias
and dictionaries to generate automatically an arbi-
trarily large number of positive and negative defini-
tion examples, which are then used to train anSVM

to separate the two classes. We have shown experi-
mentally that the proposed method is viable, that it
outperforms training theQA system onTREC data,
and that it helps the search engine handle definition
questions significantly better than on its own.

We have already pointed out the need to improve
the positive precision of the training examples. One
way may be to combine our similarity method with
Cui et al.’s centroids. We also plan to study the ef-
fect of including more automatically acquired pat-
terns and using more training target terms. Finally,
our method can be improved by including attributes
for the layout and authority of Web pages.
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