
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 291–298, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Learning What to Talk About in Descriptive Games

Hugo Zaragoza
Microsoft Research

Cambridge, United Kingdom
hugoz@microsoft.com

Chi-Ho Li
University of Sussex

Brighton, United Kingdom
C.H.Li@sussex.ac.uk

Abstract

Text generation requires a planning mod-
ule to select an object of discourse and its
properties. This is specially hard in de-
scriptive games, where a computer agent
tries to describe some aspects of a game
world. We propose to formalize this prob-
lem as a Markov Decision Process, in
which an optimal message policy can be
defined and learned through simulation.
Furthermore, we propose back-off poli-
cies as a novel and effective technique to
fight state dimensionality explosion in this
framework.

1 Introduction

Traditionally, text generation systems are decom-
posed into three modules: the application module
which manages the high-level task representation
(state information, actions, goals, etc.), the text plan-
ning module which chooses messages based on the
state of the application module, and the sentence
generation module which transforms messages into
sentences. The planning module greatly depends
on the characteristics of both the application and
the generation modules, solving issues in domain
modelling, discourse and sentence planning, and to
some degree lexical and feature selection (Cole et
al., 1997). In this paper we concentrate on one
of the most basic tasks that text planning needs to
solve: selecting the message content, or more sim-
ply, choosing what to talk about.

Work on text-generation often assumes that an
object or topic has been already chosen for discus-
sion. This is reasonable for many applications, but
in some cases choosing what to talk about can be
harder than choosing how to. This is the case in the
type of text generation applications that we are in-
terested in: generating descriptive messages in com-
puter games. In a modern computer game at any
given moment there may be an enormous number
of object properties that can be described, each with
varying importance and consequences. The outcome
of the game depends not only on the skill of the
player, but also on the quality of the descriptive mes-
sages produced. We refer to such situations as de-
scriptive games.

Our goal is to develop a strategy to choose the
most interesting descriptive messages that a particu-
lar talker may communicate to a particular listener,
given their context (i.e. their knowledge of the world
and of each-other). We refer to this as message plan-
ning.

Developing a general framework for planning is
very difficult because of the strong coupling be-
tween the planning and application modules. We
propose to frame message planning as a Markov De-
cision Process (MDP) which encodes the environ-
ment, the information available to the talker and lis-
tener, the consequences of their communicative and
non-communicative acts, and the constraints of the
text generation module. Furthermore we propose to
use Reinforcement Learning (RL) to learn the op-
timal message policy. We demonstrate the overall
principle (Section 2) and then develop in more de-
tail a computer game setting (Section 3).

291

One of the main weaknesses of RL is the problem
of state dimensionality explosion. This problem is
specially acute in message planning, since in typical
situations there can be hundreds of thousands of po-
tential messages. At the same time, the domain is
highly structured. We propose to exploit this struc-
ture using a form of the back-off smoothing princi-
ple on the state space (Section 4).

1.1 Related Work

Our problem setting can be seen as a generalisation
of the content selection problem in the generation of
referring expressions in NLG. In the standard set-
ting of this problem (see for example (van Deemter
and Krahmer, to appear)) an algorithm needs to se-
lect the distinguishing description of an object in a
scene. This description can be seen as a subset of
scene properties which i) uniquely identifies a given
target object, and ii) is optimal in some sense (min-
imal, psychologically plausible, etc.) van Deemter
and Krahmer show that most content selection algo-
rithms can be described as different cost functions
over a particular graph representation of the scene.
Minimising the cost of a subgraph leads to a distin-
guishing description.

Some aspects of our work generalise that of con-
tent selection: i) we consider the target object is un-
known, ii) we consider scenes (i.e. world states) that
are dynamic (i.e. they change over time) and reac-
tive (i.e. utterances change the world), and iii) we
consider listeners that have partial knowledge of the
scene. This has important consequences. For exam-
ple, the cost of a description cannot be directly eval-
uated; instead, we must play the game, that is, gener-
ate utterances and observe the rewards obtained over
time. Also identical word-states may lead to differ-
ent optimal messages, depending on the listener’s
partial knowledge. Other aspects of our work are
very simplistic compared to current work in con-
tent selection, for example with respect to the use
of negation and of properties that are boolean, rel-
ative or graded (van Deemter and Krahmer, to ap-
pear). We hope to incorporate these ideas into our
work soon.

Probabilistic dialogue policies have been previ-
ously proposed for spoken dialogue systems (SDS)
(see for example (Singh et al., 2002; Williams et
al., 2005) and references therein). However, work in

SDS focus mainly on coping with the noise and un-
certainty resulting from speech recognition and sen-
tence parsing. In this context MDPs are used to infer
features and plan communicative strategies (modal-
ity, confusion, initiative, etc.) In our work we do not
need to deal with uncertainty or parsing; our main
concern is in the selection of the message content.
In this sense our work is closer to (Henderson et al.,
2005), where RL is used to train a SDS with very
many states encoding message content.

Finally, with respect to the state-explosion prob-
lem in RL, related work can be found in the areas of
multi-task learning and robot motion planning (Diet-
terich, 2000, and references therein). In these works
the main concern is identifying the features that are
relevant to specific sub-tasks, so that robots may
learn multiple loosely-coupled tasks without incur-
ring state-explosion. (Henderson et al., 2005) also
addresses this problem in the context of SDS and
proposes a semi-supervised solution. Our approach
is related to these works, but it is different in that
we assume that the feature structure is known in ad-
vance and has a very particular form amenable to a
form of back-off regularisation.

2 Message planning

Let us consider an environment comprising a world
with some objects and some agents, and some dy-
namics that govern their interaction. Agents can ob-
serve and memorize certain things about the world,
can carry out actions and communicate with other
agents. As they do so, they are rewarded or pun-
ished by the environment (e.g. if they find food, if
the complete some goal, if they run out of energy,
etc.)

The agents’ actions are governed by a policy. We
will consider separately the physical action policy
(π), which decides which physical action to take
given the state of the agent, and the message action
policy (µ), which decides when to communicate, to
whom, and what about. Our main concern in this
paper will be to learn an optimal µ. Before we de-
fine this goal more precisely, we will introduce some
notation.

A property is a set of attribute-value pairs. An
object is a set of properties, with (at least) attributes
Type and Location. A domain is a set of objects. Fur-

292

thermore, we say that s′ is a sub-domain of s if s′ can
be obtained by deleting property–value pairs from
s (while enforcing the condition that remaining ob-
jects must have Type and Location). Sub(s) is the set
containing s, all sub-domains of s, and the empty
domain ∅.

A world state can be represented as a domain,
noted sW . Any partial view of the world state can
also be represented as a domain s ∈ Sub(sW). Sim-
ilarly the content of any descriptive message about
the world, noted m, can be represented as a partial
view of it. An agent is the tuple:

A :=
(
sA, πA, {µAA′ , sAA′}A′ �=A

)

• sA ∈ Sub(sW): knowledge that A has about
the state of the world.

• sAA′ ∈ Sub(sA ∩ s′A): knowledge that A
has about the knowledge that A′ has about the
world.

• πa := P (c|sA) is the action policy of A, and c
is a physical action.

• µAA′ := P (m ∈ M(sA)|sA, sAA′) is the mes-
sage policy of A for sending messages to A′,
and M(sA) are all valid messages at state sA
(discussed in Section 2.3).

When an agent A decides to send a message to A′,
it can use its knowledge of A′ to choose messages
effectively. For example, A will prefer to describe
things that it knows A′ does not know (i.e. not in
sAA′). This is the reason why the message policy
µA depends on both sA and sAA′ . After a message is
sent (i.e. realised and uttered) the agent’s will update
their knowledge states sA′ , sA′A and sAA′ .

The question that we address in this paper is that
of learning an optimal message policy µAA′ .

2.1 Talker’s Markov Decision Process

We are going to formalize this problem as a stan-
dard Markov Decision Process (MDP). In general a
MDP (Sutton and Barto, 1998) is defined over some
set of states S := {si}i=1..K and actions associated
to every state, A(si) := {aij}j=1..Ni

. The envi-
ronment is governed by the state transition function
Pa

ss′ := P (s′|s, a). A policy determines the likeli-
hood of actions at a given state: π(s) := P (a|s). At

each state transition a reward is generated from the
reward function Ra

ss′ := E{r|s, s′, a}.
MDPs allow us to define and find optimal poli-

cies which maximise the expected reward. Classical
MDPs assume that the different functions introduced
above are known and have some tractable analyti-
cal form. Reinforcement Learning (RL) in as ex-
tension of MDPs in which the environment function
Pa

ss′ is unknown or complex, and so the optimal pol-
icy needs to be learned online by directly interacting
with the environment. There exist a number of algo-
rithms to solve a RL problem, such as Q-Learning
or SARSA (Sutton and Barto, 1998).

We can use a MDP to describe a full descrip-
tive game, in which several agents interact with the
world and communicate with each-other. To do so
we would need to consider composite states con-

taining sW , {sA}A, and
{
{sAA′}A′ �=A

}
A

. Simi-

larly, we need to consider composite policies con-

taining {πA}A and
{
(µAA′)A′ �=A

}
A

. Finally, we

would consider the many constrains in this model;
for example: only physical actions affect the state
of the world, only message actions affect believes,
and only believe states can affect the choice of the
agent’s actions.

MDPs provide us with a principled way to deal
with these elements and their relationships. How-
ever, dealing with the most general case results in
models that are very cumbersome and which hide
the conceptual simplicity of our approach. For this
reason, we will limit ourselves in this paper to one
of the simplest communication cases of interest: a
single all-knowing talker, and a single listener com-
pletely observed by the talker. We will discuss later
how this can be generalized.

2.2 The Talking God Setting

In the simplest case, an all-knowing agent A0 sits in
the background, without taking any physical actions,
and uses its message policy (µ01) to send messages
to a listener agent A1. The listener agent cannot talk
back, but can interact with the environment using
its physical action policy π1. Rewards obtained by
A1 are shared by both agents. We refer to this set-
ting as the talking God setting. Examples of such
situations are common in games, for example when
a computer character talks to its (computer) team-

293

w w’

s1 s’1

m0

a1

s s’

a

r

Figure 1: Talking God MDP.

mates, or when a mother-ship with full information
of the ground sends a small simple robot to do a task.
Another example would be that of a teacher talking
to a learner, except that the teacher may not have full
information of the learners head!

Since the talker is all-knowing, it follows that
s0 = sW and s01 = s1. Furthermore, since the
talker does not take physical actions, π0 does not
need to be defined. Similarly, since the listener does
not talk we do not need to define µ10 or s10. This
case is depicted in Figure 1 as a graphical model.
By grouping states and actions (dotted lines) we can
see that this is can be modelled as a standard MDP.
If all the probability distributions are known analyt-
ically, or if they can be sampled, optimal physical
and message policies can be learnt (thick arrows).

Several generalizations of this model are possible.
A straight forward generalization is to consider more
than one listener agent. We can then choose to learn
a single policy for all, or individual policies for each
agent.

A second way to generalize the setting is to make
the listeners mind only partially observable to the
talker. In this case the talker continues to know the
entire world (s0 = sW), but does not know ex-
actly what the listener knows (s01 �= s0). This is
more realistic in situations in which the listener can-
not talk back to the talker, or in which the talkers
mind is not observable. However, to model this we
need a partially observable MDP (POMDP). Solv-
ing POMDPS is much harder than solving MDPs,
but there have been models proposed for dialogue

management (Williams et al., 2005).
In the more general case, the talker would have

partial knowledge of the world and of the listener,
and would itself act. In that case all agents are equal
and can communicate as they evolve in the envi-
ronment. The other agents minds are not directly
observable, but we obtain information about them
from their actions and their messages. This can all
be in principle modelled by POMDPs in a straight-
forward manner, although solving these models is
more involved. We are currently working towards
doing so.

Finally, we note that all the above cases have
dealt with worlds in which objects are static (i.e.
information does not become obsolete), agents do
not gain or communicate erroneous information, and
communication itself is non-ambiguous and loss-
less. This is a realistic scenario for text generation,
and for communication between computer agents in
games, but it is far removed from the spoken dia-
logue setting.

2.3 Generation Module and Valid Messages

Generating descriptive sentences of domains can be
done in a number of ways, from template to feature-
based systems (Cole et al., 1997). Our framework
does not depend on a particular choice of generation
module, and so we do not need to discuss this mod-
ule. However, our message policy is not decoupled
of the generation module; indeed, it would not make
sense to develop a planning module which plans
messages that cannot be realised! In our framework,
the generation module is seen simply as a fixed and
known filter over all possible the messages.

We formalize this by representing an agent’s gen-
eration module as a function ΓA(m) mapping a mes-
sage m to a NL sentence, or to ∅ if the module can-
not fully realise m. The set of available messages
to an agent A in state sA is therefore: M(sA) :=
{m |m ∈ Sub(sA) , ΓA(m) �= ∅}.

3 A Simple Game Example

In this section we will use a simple computer game
to demonstrate how the proposed framework can be
used to learn message policies.

The game evolves in a grid-world. A mother-
ship sends a scout, which will try to move from its

294

Figure 2: Example of a Simple Game Board.

starting position (top left corner) to a target (bot-
tom right). There are two types of objects on the
board, Type := {bomb, tree}, with a property Size :=
{big, small} in addition of Location. If a scout at-
tempts to move into a big tree, the move is blocked;
small trees have no effect. If a scout moves into
a bomb the scout is destroyed and a new one is
created at the starting position. Before every step
the mother-ship may send a message to the scout.
Then the scout moves one step (horizontal or ver-
tical) towards the target choosing the shortest path
which avoids hazards known by the scout (the A*
algorithm is used for this). Initially scouts have no
knowledge of the objects in the world; they gain this
knowledge by stepping into objects or by receiving
information from the mother-ship.

This is an instance of the talking god model dis-
cussed previously. The scout is the listener agent
(A1), and the mother-ship the talker (A0). The
scouts action policy π1 is fixed (as described above),
but we need to learn the message policy µ01.

Rewards are associated with the results of phys-
ical actions: a high positive reward (1000) is as-
signed to reaching the destination, a large negative
reward (-100) to stepping in a bomb, a medium neg-
ative reward (-10) to being blocked by a big tree, a
small negative reward to every step (-1). Further-
more, sending a message has a small negative re-
ward proportional to the number of attributes men-
tioned in the message (-2 per attribute, to discourage
the talker from sending useless information). The
message ∅ is given zero cost; this is done in order to

200 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
250

300

350

400

450

500

550

600

650

Training Cycles

R
ew

ar
d

optimal properties
all properties
TYPE only

Figure 3: Simple Game Learning Results

State Best Action Learnt
(and possible sentence realisation)

{ TREE-BIG-LEFT } ∅
-SILENCE-

{ BOMB-BIG-FRONT } BOMB-FRONT
There is a bomb in front of you

{ TREE-SMALL-LEFT, TREE-BIG-RIGHT
TREE-BIG-RIGHT } There is a big tree to your right
{ BOMB-BIG-FRONT,
BOMB-SMALL-LEFT, TREE-BIG-RIGHT
TREE-BIG-RIGHT, There is a big tree to your right
TREE-SMALL-BACK }

Table 1: Examples of learnt actions.

learn when not to talk.

Learning is done as follows. We designed five
maps of 11 × 11 cells, each with approximately 15
bombs and 20 trees of varying sizes placed in strate-
gic locations to make the scouts task difficult (one
of these maps is depicted in Figure 2; an A* path
without any knowledge and one with full knowl-
edge of the board are shown as dotted and dashed ar-
rows respectively). A training epoch consists of ran-
domly drawing one of these maps and running a sin-
gle game until completion. The SARSA algorithm
is used to learn the message policy, with ε = 0.1
and γ = 0.9. The states sW and s1 are encoded
to represent the location of objects surrounding the
scout, relative to its direction (i.e. objects directly in
front of the agent always receive the same location
value). To speed up training, we only consider the 8
cells adjacent to the agent.

Figure 3 shows the results of these experiments.
For comparison, we note that completing the game

295

with a uniformly random talking policy results in an
average reward of less than −3000 meaning that on
average more than 30 scouts die before the target is
reached. The dashed line indicates the reward ob-
tained during training for a policy which does not
use the size attribute, but only type and location.
This policy effectively learns that both bombs and
trees in front of the agent are to be communicated,
resulting in an average reward of approximately 400,
and reducing the average number of deaths to less
than 2. The solid line represents the results obtained
by a policy that is forced to use all attributes. De-
spite the increase in communication cost, this pol-
icy can distinguish between small and large trees,
and so it increases the overall reward two-fold. Fi-
nally, the dotted line represents the results obtained
by a policy that can choose whether to use or not the
size attribute. This policy proves to be even more
effective than the previous one; this means that it
has learnt to use the size attribute only when it is
necessary. Some optimal (state,action) pairs learnt
for this policy are shown in Table 1. The first three
show correctly learnt optimal actions. The last is an
example of a wrongly learnt action, due to the state
being rare.

These are encouraging results, since they demon-
strate in practice how optimal policies may be learnt
for message planning. However, it should be clear
form this example that, as we increase the number
of types, attributes and values, this approach will be-
come unfeasible. This is discussed in the next sec-
tion.

4 Back-Off Policies

One of the main problems when using RL in prac-
tical settings (and, more generally, using MDPs) is
the exponential growth of the state space, and con-
sequently of the learning time required. In our case,
if there are M attributes, and each attribute pi has
N(pi) values, then there are S =

∏M
i=1 N(pi) pos-

sible sub-domains, and up to 2S states in the state
space. This exponential growth, unless addressed,
will render MDP learning unfeasible.

NL domains are usually rich with structure, some
of it which is known a priori. This is the case in
text generation of descriptions for computer games,
where we have many sources of information about

the objects of discourse (i.e. world ontology, dy-
namics, etc.) We propose to tackle the problem of
state dimensionality explosion by using this struc-
ture explicitly in the design of hierarchical policies.

We do so by borrowing the back-off smoothing
idea from language models. This idea can be stated
as: train a set of probability models, ordered by their
specificity, and make predictions using the most spe-
cific model possible, but only if there is enough
training data to support its prediction; otherwise,
back-off to the next less-specific model available.

Formally, let us assume that for every state
s we can construct a sequence of K embedded
partial representations of increasing complexity,
(s[1], . . . , s[k], . . . , s[K]). Let us denote π̂[k] a se-
quence of policies operating at each of the partial
representation levels respectively, and let each of
these policies have a confidence measurement ck(s)
indicating the quality of the prediction at each state.
Since k indicates increasingly complex, we require
that ck(s) ≥ ck′(s) if k < k′. Then, the most spe-
cific policy we can use at state s can be written as:

k∗s := arg max
k

{k · sign (ck(s)− θ)} (1)

A back-off policy can be implemented by choosing,
at every state s the most specific policy available:

π(s) = π̂[k∗
s](s[k∗

s]) (2)

We can use a standard off-policy learning algo-
rithm (such as Q-learning or SARSA) to learn all the
policies simultaneously. At every step, we draw an
action using (2) and update all policies with the ob-
tained reward1. Initially, the learning will be driven
by high-level (simple) policies. More complex poli-
cies will kick-in progressively for those states that
are encountered more often.

In order to implement back-off policies for our
setting, we need to define a confidence function ck.
A simple confidence measure is the number of times
the state s[k] has been previously encountered. This
measure grows on average very quickly for small k
states and slowly for high k states. Nevertheless, re-
occurring similar states will have high visit counts

1An alternative view of back-off policies is to consider that a
single complete policy is being learnt, but that actions are being
drawn from regularised versions of this policy, where the regu-
larisation is a back-off model on the features. We show this in
Appendix I

296

0 1000 2000 3000 4000 5000
500

550

600

650

700

750

800

850

training epochs

A
ve

ra
ge

 T
ot

al
 R

ew
ar

d
(1

00
 R

un
s)

Full State, without noise objects
Full State, with 40 noise objects
Simple State, without noise objects
Simple State, with 40 noise objects
Back−Off with 40 noise objects

Figure 4: Back-Off Policy Simulation Results.

for all k values. This is exactly the kind of behav-
iour we require.

Furthermore, we need to choose a set of repre-
sentations of increasing complexity. For example,
in the case of n-gram models it is natural to choose
as representations sequences of preceding words of
increasing size. There are many choices open to us
in our application domain. A natural choice is to or-
der attribute types by their importance to the task.
For example, at the simplest level of representation
objects can be represented only by their type, at a
second level by the type and colour, and at a third
level by all the attributes. This same technique could
be used to exploit ontologies and other sources of
knowledge. Another way to create levels of repre-
sentation of increasing detail is to consider different
perceptual windows. For example, at the simplest
level the agent can consider only objects directly in
front of it, since these are generally the most im-
portant when navigating. At a second level we may
consider also what is to the left and right of us, and
finally consider all surrounding cells. This could be
pursued even further by considering regions of in-
creasing size.

4.1 Simulation Results

We present here a series of experiments based on
the previous game setting, but further simplified to
pinpoint the effect of dimensionality explosion, and
how back-off policies can be used to mitigate it.

We modify the simple game of Section 3 as fol-
lows. First, we add a new object type, stone, and a

new property Colour := {red, green}. We let all trees
be green and big and all bombs red and small, and
furthermore we fix their location (i.e. we use one
map instead of five). Finally we change the world
behaviour so that an agent that steps into a bomb re-
ceives the negative reward but does not die, it contin-
ues until it reaches the target. All these changes are
done to reduce the variability of our learning base-
line.

At every game we generate 40 stones of random
location, size and colour. Stepping on stones has no
physical effect to the scout and it generates the same
reward as moving into an empty cell, but this is un-
known to the talker and will need to be learnt. These
stones are used as noise objects, which increase the
size of the state space. When there are no noise ob-
jects, the number of possible states is 38 ≈ 6.5K
(the actual number of states will be much smaller
since there is a single maze). Noise objects can take
2 × 2 = 4 possible forms, so the total number of
states with noise objects is (3 + 4)8 ≈ 6M . Even
with such a simplistic example we can see how dras-
tic the state dimensionality problem is. Despite the
fact that the noise objects do not affect the reward
structure of our simple game, reinforcement learn-
ing will be drastically slowed down by them.

Simulation results2 are shown in Figure 4. First
let us look at the results obtained using the full state
representation used in Section 3 (noted Full State).
Solid and dotted lines represent runs obtained with
and without noise objects. First note that learning
without noise objects (dotted circles) occurs mostly
within the first few epochs and settles after 250
epochs. When noise objects are added (solid cir-
cles) learning greatly slows down, taking over 5K
epochs. This is a typical illustration of the effect that
the number of states has on the speed of learning.

An obvious way to limit the number of states is
to eliminate features. For comparison, we learned
a simple representation policy with states encod-
ing only the type of the object directly in front of
the agent, ignoring its colour and all other locations
(noted Simple State). Without noise, the performance
(dotted triangles) is only slightly worse than that of
the original policy. However, when noise objects

2Every 200 training epochs we run 100 validation epochs
with ε = 0. Only the average validation rewards are plotted.

297

are added (solid triangles) the training is no longer
slowed down. In fact, with noise objects this policy
outperforms the original policy up to epoch 1000:
the performance lost in the representation is made
up by the speed of learning.

We set up a back-off policy with K = 3 as fol-
lows. We use the Simple representation at k = 1,
plus a second level of representation where we rep-
resent the colour as well as the type of the object in
front of the agent, and finally the Full representation
as the third level. As the ck function we use state
visit counts as discussed above and we set θ = 10.
Before reaching the full policy (level 3), this policy
should progressively learn to avoid bombs and trees
directly in front (level 1), then (level 2) not avoid
small trees directly in front. We plot the perfor-
mance of this back-off policy (stars) in Figure 4. We
see that it attains very quickly the performance of
the simple policy (in less than 200 epochs), but the
continues to increase in performance settling within
500 epochs with a performance superior to that of
the full state representation, and very close to that of
the policies operating in the noiseless world.

Despite the small scale of this study, our results
clearly suggest that back-off policies can be used
effectively to control state dimensionality explosion
when we have strong prior knowledge of the struc-
ture of the state space. Furthermore (and this may be
very important in real applications such as game de-
velopment) we find that back-off policies produce a
natural to feel to the errors incurred while learning,
since policies develop progressively in their com-
plexity.

5 Conclusion

We have developed a formalism to learn interac-
tively the most informative message content given
the state of the listener and the world. We formalised
this problem as a MDP and shown how RL may be
used to learn message policies even when the envi-
ronment dynamics are unknown. Finally, we have
shown the importance of tackling the problem of
state dimensionality explosion, and we have pro-
posed one method to do so which exploits explicit
a priori ontological knowledge of the task.

References
R. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and V. Zue.

1997. Survey of the State of the Art in Human Lan-
guage Technology. Cambridge University Press.

T. G. Dietterich. 2000. Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13:227–
303.

J. Henderson, O. Lemon, and K. Georgila. 2005. Hybrid
reinforcement/supervised learning for dialogue poli-
cies from communicator data. In 4th IJCAI Workshop
on Knowledge and Reasoning in Practical Dialogue
Systems.

S. Singh, D. Litmanand, M. Kearns, and M. Walker.
2002. Optimizing dialogue management with re-
inforcement learning: Experiments with the njfun
system. Journal of Artificial Intelligence Research,
16:105–133.

R. S. Sutton and A. G. Barto. 1998. Reinforcement
Learning. MIT Press.

K. van Deemter and E. Krahmer. (to appear). Graphs and
booleans. In Computing Meaning, volume 3 of Stud-
ies in Linguistics and Philosophy. Kluwer Academic
Publishers.

J. D. Williams, P. Poupart, and S. Young. 2005. Fac-
tored partially observable markov decision processes
for dialogue management. In 4th IJCAI Workshop on
Knowledge and Reasoning in Practical Dialogue Sys-
tems.

6 Appendix I

We show here that the expected reward for a partial
policy πk after an action a, noted Qπk(s, a), can be
obtained from the expected reward of the full pol-
icy Qπ(s, a) and the conditional state probabilities
P (s|s[k]). We may use this to compute the expected
risk of any partial policy Rπk(s) from the full policy.

Let Tk(s) :=
{
s′ ∈ S | s′[k] = s[k]

}
be the sub-

set of full states which map to the same value of s.
Given a state distribution P (s) we can define distri-
butions over partial states:

P (s[k], s[j]) =
∑

s′∈Tk(s)∩Tj(s)

P (s′) . (3)

Since
∑

s′∈Tk(s) P (s′|s[k]) = 1, we have
P (A|s[k]) =

∑
s′∈Tk(s) P (A|s′)P (s′|s[k]), and so:

Qπk(s, a) =
∑

s′∈Tk(s)

P (s′|s[k])Q
π(s′, a) . (4)

298

