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Abstract a document: G1K3 has the distribution of votes
(DOV) with sharp peaks around 1 and 14; in G2K3,
the distribution is peaked around 1, with a small
bump around 19; in G3K3, the distribution is sharply
skewed to the left, indicating that the majority of
votes went to the initial section of a document. What
is interesting about the DOV is that we could take
it as indicating a collective preference for what to
extract for a summary. A question is then, can we
somehow exploit the DOV in summarization? To
our knowledge, no prior work seems to exist that
addresses the question. The paper discusses how
we could do this under a Bayesian modeling frame-
work, where we explicitly represent and make use
of the DOV by way of Dirichlet posterior (Congdon,
Consider figure 1. What is shown there is the pro2003)?

portion of the times that sentences at particular lo- _ _

cations are judged as relevant to summarization, & Bayesian Model of Summaries

worthy of inclusion in a summary. Each panel showsice the business of extractive summarization, such
judgment results on 25 Japanese texts of a particulgg gne we are concerned with here, is about ranking
genre; columns (G1K3), editorials (G2K3) and newgentences according to how useful/important they
stories (G3K3). All the documents are from a siny,e g5 part of summary, we will consider here a par-
gle Japanese news paper, and judgments are eliciigd|ar ranking scheme based on the probability of a

will be given on the details of the data later (Secy g

tion 3.2), we can safely ignore them here. P(yl), 1)
Each panel has the horizontal axis representing lo- _

cation or order of sentence in a document, and tHéhere y denotes a given sentence, amd =

vertical axis the proportion of the times sentences &¢1: - - - » ) Stands for a DOV, an array of observed

particular locations are picked as relevant to summa0te counts for sentences in the textrefers to the

rization. Thus in G1K3, we see that the first sentencgfunt of votes for a sentence at the text initial posi-

(to appear in a document) gets voted for about 124N, v2 to that for a sentence occurring at the second

of the time, while the 26th sentence is voted for lesBlace, etc. _
than 2% of the time. Thus given a four sentence long text, if we have

Curiously enough, each of the panels exhibits three people in favor of a lead sentence, two in favor
distinct pattern in the way votes are spread across 'See Yu et al. (2004) and Cowans (2004) for its use in IR.

The paper presents a Bayesian model for
text summarization, which explicitly en-
codes and exploits information on how hu-
man judgments are distributed over the
text. Comparison is made against non
Bayesian summarizers, using test data
from Japanese news texts. It is found that
the Bayesian approach generally lever-
ages performance of a summarizer, at
times giving it a significant lead over non-
Bayesian models.

1 Introduction
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Figure 1: Genre-by-genre vote distribution

TN

of the second, one for the third, and none for the V>0 — Vi
fourth, then we would have = (3,2, 1,0).
Now suppose that each sentenge(i.e., a sen- Figure 2: A graphical view

tence at thé-th place in the order of appearance) is

associated with what we might call a prior prefer'aboutP(ei]v) to compute the expectationdsand a

ence factop;, representing how much a sentence aﬁrobability distributionP, and not;’s, anymore.
a particular position is favored as part of a summary \we know something abous, and this would

in general. Then the probability thatfinds itselfin  |.5ve usP. So what is it? In principle it could

asummary is given as: be any probability distribution. However largely
&(y:10:) P(0;), 2 for the sake of technical convc_anien_ce, we assume

it is one component of a multinomial distribution

where ¢ denotes some likelihood function, andknown as the Dirichlet distribution. In particular,

P(6;) a prior probability off;. we talk about Dirichlg|v), namely a Dirichlet

Since the DOV is something we could actuallyposterior off, given observations, wheref =
observe abouf;, we might as well coupl®; with  (0y,...,6;,...,6,),and> " 6; = 1 (6; > 0). (Re-
v by making a probability ob); conditioned orw. markably, if P(0) is a Dirichlet, so isP(0|v).) 6

Formally, this would be written as: here represents a vector of preference factors:for
sentences — which constitute the téxt.
P(yi0:) P (6; v)- (3) Accordingly, equation 4 could be rewritten as:

The problem, however, is that we know nothing
about what each; looks like, except that it should P(yilv) = /¢(yi]0)P(0 [v) d6. ()
somehow be informed by. A typical Bayesian so-
lution to this is to ‘erased; by marginalizing (sum-
ming) over it, which brings us to this:

An interesting way to look at the model is by way
of a graphical model (GM), which gives some in-
tuitive idea of what the model looks like. In a GM
Ply;lv) = 10:)P(6; |v) dbs. 4 perspective, our model is represented as a simple tri-

(vilv) /(b(y 6:)P (i lo) @ partite structure (figure 2), in which each node corre-

Note that equation 4 no longer talks about the probéponoIS to a variable (parameter), and arcs represent

bility of y; under a particulaf;; rather it talks about __“Since texts generally vary in length, we may seb a suf-
ficiently large number so that none of texts of interest may ex-

the expected pr(_)bability fay; with respect to a pref- ceed it in length. For texts shorter thapwe simply add empty
erence factor dictated by. All we need to know sentences to make them as longras
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dependencies among them:— y reads § depends and another on numerical integration. We start off
onz.” An arc linkage betweem andy; is meant to with a MAP based approach known as Bayesian In-
represent marginalization ovér formation Criterion or BIC.

Moreover, we will make use of a scale parame- For a given modet:, BIC seeks an analytical ap-
ter A\ > 1 to have some control over the shaperoximation for equation 4, which looks like the fol-
of the distribution, so we will be working with lowing:

Dirichlet(f|Av) rather than Dirichlg®@|v). Intu-
itively, we might take\ as representing a degree of
confidence we have in a set of empirical observa-
tions we callv, as increasing the value afhas the

In P(y;|m) = In ¢(y;|0, m) — glnN, 9)

effect of reducing variance over eaghin 6. wherek denotes the number of free parameters in
The expectation and variance of Dirict{y) are andN that of observationd? is a MAP estimate
given as follows® of @ underm, which isE|f]. It is interesting to note
. that BIC makes no reference to prior. Also worthy of
Elf;] = — (6) note is that a minus of BIC equals MDL (Minimum
v Description Length).
Varlts] = v;(vo - Uz’)’ (7y  Altematively, one might take a more straightfor-
vg(vo + 1) ward (and fully Bayesian) approach known as the
wherevy = Y "wv;. Therefore the variance of a Monte Carlo integration method (MacKay, 1998)
scaled Dirichlet is: (MC, hereafter) where the integral is approximated
| | by:
Var(f;| ] = M (8) Lo A
v5(Avg + 1) P(y;|v) ~ = Z b(yilz), (10)
See howA is stuck in the denominator. Another ob- J=1

vious fact about the scaling is that it does not aﬂ‘ecth q h o) randomly f h
the expectation, which remains the same. where we draw each sam randomly from the

. . . . (74),
To get a feel for the significance of, con- distribution P(8|v), andn is the number ofc")’s

sider figure 3; the left panel shows a histograni)o( CTQLI)ES\(/:\:;:.rengteec':r':;ié\gg)gwes an expectation of
Yi .

of 50,000 variates ofp; randomly drawn from I
Dirichlet(pr, pa|Ac1, Aca), With A = 1, and bothe; Furthermore,¢ could be any probabilistic func-

and ¢, set to 1. The graph shows only the part tion. Indeed any discriminative classifier (such as

but things are no different fgr,. (Thez-dimension ©4-5) Will do as long as it generates some kind of
represents a particular valye takes (which ranges Probability. Giveng, what remains to do is essen-
between 0 and 1) and thedimension records the tially training it on sa_m_ples bootstrapped (|._e., re-
number of the timep, takes that value.) We see thatSampled) from the training data baseddor- which
points are spread rather evenly over the probabilitff€ draw from Dirichled|v).” To be more spe-
space. Now the right panel shows what happens Gnmc, suppose that we h_qye a four sentence long text
you increase by a factor of 1,000 (which will give Nd an array of probabilities = (0.4,0.3,0.2,0.1)

you P(p1, p»|1000, 1000)); points take a bell shaped drawn from a Dirichlet distribution: which is to say,
form, concentrating in a small region around the ex/€ have a preference factor of 0.4 for the lead sen-
pectation ofp;. In the experiments section, we will tence, 0.3 for the second sentence, etc. Then we re-

return to the issue of and discuss how it affects sample with replacement lead sentences from train-

performance of summarization. ing data Wlt'h. the probability of 0.4, the sec_ond with

Let us turn to the question of how to find a solun€ Probability of 0.3, and so forth. Obviously, a
tion to the integral in equation 5. We will be con- “It is fairly straightforward to sample from a Dirichlet pos-
cerned here with two standard approaches to the igfior by resorting to a gamma distribution, which is what is

sue: one is based on MAP (maximum a posteriorﬁappening here. In case one is working with a distribution it is
- T ard to sample from, one would usually rely on Markov chain

3http:/iwww.cis.hut.filfahonkela/dippa/dippa.html Monte Carlo (MCMC) or variational methods to do the job.
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Figure 3: Histograms of random draws from Dirictijgt p2|Ac1, Ac2) with A = 1 (left panel), and\ =
1000 (right panel).

high preference factor causes the associated seng a slightly different set of samples each time we

tence to be chosen more often than those with a lomun the operation. To get a reasonable convergence

preference. in experiments, we took the procedure to 5,000 iter-
Thus given a textl' = (a,b,c,d) with # = ations and averaged over the results.

(0.4,0.3,0.2,0.1), we could end up with a data set Either with BIC or with MC, building a summa-

dominated by a few sentence types, sucli'as= rizer on it is a fairly straightforward matter. Given

(a,a,a,b), which we proceed to train a classifier ona documentd and a compression ratg what a

in place of T'. Intuitively, this amounts to induc- summarizer would do is simply rank sentenceg in

ing the classifier to attend to or focus on a particbased onP(y;|v) and pick anr portion of highest

ular region or area of a text, and dismiss the restanking sentences.

Note an interesting parallel to boosting (Freund and . . . .

Schapire, 1996) and the alternating decision tres WWOrking with Bayesian Summarist

(Freund and Mason, 1999). 3.1 C45

In MC, fc:r eacrtla dr?wn ftrrc])mtDl_n(_:hIegmtv), . In what follows, we will look at whether and how the
we geiﬁ.r?p € sen _?_n((:jez r(%m © trﬁlnln? ?a_us yesian approach, when applied for the C4.5 deci-
probabilities specified by*™, use them for irain- sion tree learner (Quinlan, 1993), leverages its per-

Ing a classifier, and run It ona test _d_ocumé@ formance on real world data. This means our model
find, for each sentence ity its probability of being now operates either by

a ‘pick’ (summary-worthy) sentence,i.&(y;|0*)),
which we average acro#ss. In experiments later 1 <& .
described, we apply the procedure for 20,000 runs P(yilv) ~ " Z ders (yilz), (11)
(meaning we run a classifier on each of 20,060 7=l
we draw), and average over them to find an estimatg by
for P(y;|v).

As for BIC, we generally operate along the lines |n P(y;lm) = In ¢c4.5(yi|é, m) — E InN, (12)
of MC, except that we bootstrap sentences using 2
only E[6], and the model complexity term, namely,with the likelihood function¢ filled out by C4.5.
—g In NV is dropped as it has no effect on rankingMoreover, we compare two versions of the classifier;
sentences. As with MC, we train a classifier on thene with BIC/MC and one without. We used Weka
bootstrapped samples and run it on a test documeithplementations of the algorithm (with default set-
Though we work with a set of fixed parameters, dings) in experiments described below (Witten and
bootstrapping based on them still fluctuates, produérank, 2000).
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While C4.5 here is configured to work in a bi-3.2 Test Data

nary (positive/negative) classification scheme, Wﬂere is how we created test data. We collected three

run itin a dlstrlbgtlonal mqqle, _and use a IC)art'CUI"’Irpools of texts from different genres, columns, edito-
class membership probability it produces, namel

¥ials and news stories, from a Japanese financial pa-

thekprobablllty of atﬁenten(:‘[e bemg ptOS';'VE}’ "e"t%er (Nihon Keizai Shinbunpublished in 1995, each
pick (summary-worthy) sentence, instead of a ca vith 25 articles. Then we asked 112 Japanese stu-

gory label dents to go over each article and identify 10% worth

Attributes for C4.5 are broadly intended to repreys santences they find most important in creating

SET“ sorfn_e aspecrt]s of a;en:cence '?] a document, f@ummary for that article. For each sentence, we
object of interest here. Thus for each sentences recorded how many of the subjects are in favor of

encoding involves reference to the following set Ofts inclusion in summary. On average, we had about
attributes or features. ‘LocSen’ gives a normalize even people working on each text. In the follow-
location of) in the text,ll.g., a_norr‘nallzed 1d|§tanceing, we say sentences are ‘positive’ if there are three
from th_e top of the text; likewise, LopPar 9VeS A4 more people who like to see them in a summary,
normalized Iocat.lor.1 of the paragrqph n Whm?mc' and ‘negative’ otherwise. For convenience, let us
curs, and "LocWithinPar’ records its normalized 10~ yhe corpus of columns G1K3, that of editorials

cation within a paragraph. Also included are a feso 3 anq that of news stories G3K3. Additional
length-related features such as the length of text angl ..« are found in table 1.

sentence. Furthermore we broughtin some language
specific feature which we call 'EndCue.’ It records4 Results and Discussion
the morphology of a linguistic element that engs
such as inflection, part of speech, etc. Tables 2 through 4 show how the Bayesian sum-
In addition, we make use of the weight featur@narist performs on G1K3, G2K3, and G3K3. The
(‘Weight’) for a record on the importance ¢fbased tables list results in precision at compression rates
on tfidf. Lety = wy,...,w,, for some wordw;. (r) of interest ) < r < 1). The figures thereof indi-
Then the weighiV (v) is given as: cate performance averaged over leave-one-out cross
validation folds. What this means is that you leave
W) = Z (1 + log(tf(w))) - log(N/df(w)). out one text for testing and use the rest for training,
w which you repeat for each one of the texts in the data.
Since we have 25 texts for each data set, this leads
Here ‘tf(w)’ denotes the frequency of word ina 5 3 25-fold cross validation. Precision is defined by
given document, ‘dfw)’ denotes the 'document fre- e ratio of hits (positive sentences) to the number
quency’ ofw, or the number of documents which ¢ sentences retrieved, i.e-percent of sentences in
contain an occurrence af. N represents the total e text6
number of documents. In each table, figures to the left of the verti-
Also among the features used here is ‘Pos,’ a fegy) jine indicate performance of summarizers with
ture intended to record the position or textual ordeg|c/Mc and those to the right that of summarizers
of ¢, given by how many sentences away it OCCUrg;ithout them. Parenthetical figures like ‘(5K)’ and
from the top of text, starting with 0. ‘(20K)’ indicate the number of iterations we took
While we do believe that the attributes discusseghem to: thus BIC(5K) refers to a summarizer based
above have a lot to do with the likelihood that a giveryn c4.5/BIC with scores averaged over 5,000 runs.
sentence becomes part of summary, we choose '®$E denotes a reference summarizer based on a reg-
to consider them parameters of the Bayesian modejfiar C4.5, which it involves no resampling of train-

just to keep it from getting unduly complex. Recalling data. LEAD refers to a summarizer which works
the graphical model in figure 2. -
- ®We do not use recall for a evaluation measure, as the num-

SAlthough one could reasonably argue for normalizingber of positive instances varies from text to text, and may indeed
W (¢) by sentence length, it is not entirely clear at the momengéxceed the length of a summary under a particular compression
whether it helps in the way of improving performance. rate.
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Table 1: N represents the number of sentences in G1K3 to G3K3. Sentences with three or more votes in
their favor are marked positive, that is, for each sentence marked positive, at least three people are in favor
of including it in a summary.

Genre N Positive > 3) Negative P/N Ratio

G1K3 426 67 359 0.187
G2K3 558 93 465 0.200
G3K3 440 76 364 0.210

Table 2: G1K3.\ = 5. Dashes indicate no meaningful results.

r | BIC(5K) MC (20K) | BSE LEAD
0.05| 0.4583  0.4583 | — 0.3333
0.10| 0.4167 04167 | — 0.3472
0.15| 0.3333  0.3472 | — 0.2604
0.20| 02757  0.2861 || — 0.2306
0.25| 02525  0.2772 | — 0.2233
0.30| 0.2368  0.2535 | —  0.2066

Table 3: G2K3.\ = 5.

r | BIC(5K) MC(20K) | BSE LEAD
0.05| 0.6000  0.5800 || 0.4200 0.5400
0.10| 0.4200  0.4200 || 0.3533 0.3933
0.15| 0.3427  0.3560 || 0.2980 0.3147
0.20| 03033  0.3213 || 0.2780 0.2767
0.25| 0.2993  0.2776 || 0.2421 0.2397
0.30| 0.2743  0.2750 || 0.2170 0.2054

Table 4: G3K3.\ = 5.

r | BIC(5K) MC (20K) | BSE LEAD
0.05| 0.9600  0.9600 || 0.8400 0.9600
0.10| 0.7600  0.7600 || 0.6800 0.7000
0.15| 0.6133  0.6000 | 0.5867 0.5133
0.20| 05233  0.5233 || 0.4967 0.4533
0.25| 0.4367  0.4367 | 0.3960 0.3840
0.30| 0.4033  0.4033 || 0.3640 0.3673

0 (411.0/65.0)

Figure 4: A non Bayesian C4.5 trained on G1K3.
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Figure 5: A Bayesian (MC) C4.5 trained on G1K3.

by selecting sentences from the top of the text. Itis Now Figure 5 shows what happens with the
generally considered a hard-to-beat approach in tigayesian model (MC), for the same data. There
summarization literature. we see a tree of a considerable complexity, with 24
Table 4 shows results for G3K3 (a news story doleaves and 18 split nodes.
main). There we find a significantly improvementto Let us now turn to the issues with As we might
performance of C4.5, whether it operates with BlGecall, ) influences the shape of a Dirichlet distri-
or MC. The effect is clearly visible across a wholepbution: a large value of\ causes the distribution
range of compression rates, and more so at smallgr have less variance and therefore to have a more
rates. acute peak around the expectation. What this means
Table 3 demonstrates that the Bayesian approaghthat increasing the value afmakes it more likely
is also effective for G2K3 (an editorial domain), out-to have us drawing samples closer to the expecta-
performing both BSE and LEAD by a large margin.tion. As a consequence, we would have the MC
Similarly, we find that our approach comfortablymodel acting more like the BIC model, which is
beats LEAD in G1K3 (a column domain). Note thebased on MAP estimates. That this is indeed the
dashes for BSE. What we mean by these, is that wease is demonstrated by table 5, which gives results
obtained no meaningful results for it, because wfpr the MC model on G1K3 to G3K3 at = 1. We
were unable to rank sentences based on predictiogse that the MC behaves less like the BIQat 1
by BSE. To get an idea of how this happens, let uthan at\ = 5 (table 2 through 4).
look at a decision tree BSE builds for G1K3, which  Of a particular interest in table 5 is G1K3, where
is shown in figure 4. What we have there is a decithe MC suffers a considerable degradation in per-
sion tree consisting of a single lealhus for what-  formance, compared to when it works with= 5.
ever sentence we feed to the tree, it throws back ti®2K3 and G3K3, again, witness some degradation
same membership probability, which is 65/411. Buin performance, though not as extensive as in G1K3.
then this would make a BSE based summarizer ultis interesting that at times the MC even works bet-

terly useless, as it reduces to generating a summagt with A = 1 than\ = 5 in G2K3 and G3KZ

by picking at random, a particular portion of téxt. ——
A to: 0.1466 ¢ = 0.05), 0.1453 ¢ = 0.1), 0.1508 ¢ = 0.15),

"This is not at all surprising as over 80% of sentences in 8.1530 ¢ = 0.2), 0.1534 ¢ = 0.25), and 0.1544« = 0.3).
non resampled text are negative for the most of the time. The results suggest that if one like to have some improve-
8lts expected performance (averaged oWt runs) comes ment, it is probably a good idea to skto a large value. But
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the CF view of summary: the idea of what consti-

Table 5: MC (20K).\A = 1.
tutes a good summary may vary from person to per-

r GlK3 G2K3 G3K3 son, and may well be influenced by particular inter-
0.05 0.3333 0.5400 0.9600 ests and concerns of people we elicit data from.
0.10 0.3333 0.3867 0.7800 Among some recent work with similar concerns,
0.15 0.2917 0.3960 0.5867 one notable is the Pyramid scheme (Nenkova and
0.20 0.2549 0.3373 0.5200 Passonneau, 2004) where one does not declare a
0.25 0.2480 0.2910 0.4347 particular human summary a absolute reference to
030 0.2594 0.2652 0.4100 compare summaries against, but rather makes every

one of multiple human summaries at hand bear on
evaluation; Rouge (Lin and Hovy, 2003) represents
All'in all, the Bayesian model proves more effec-another such effort. The Bayesian summarist rep-
tive in leveraging performance of the summarizer ofesents yet another, whereby one seeks a summary
a DOV exhibiting a complex, multiply peaked formmost typical of those created by humans.
as in G1K3 and G2K3, and less on a DOV which

has a simple, single-peak structure as in G3K3 (cf.
figure 1)10 References
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