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Abstract 

We describe the error handling architect-
ture underlying the RavenClaw dialog 
management framework. The architecture 
provides a robust basis for current and fu-
ture research in error detection and recov-
ery. Several objectives were pursued in its 
development: task-independence, ease-of-
use, adaptability and scalability. We de-
scribe the key aspects of architectural de-
sign which confer these properties, and 
discuss the deployment of this architect-
ture in a number of spoken dialog systems 
spanning several domains and interaction 
types. Finally, we outline current research 
projects supported by this architecture. 

1 Introduction 

Over the last decade, improvements in speech rec-
ognition and other component technologies have 
paved the way for the emergence of complex task-
oriented spoken dialog systems. While traditionally 
the research community has focused on building 
information-access and command-and-control 
systems, recent efforts aim towards building more 
sophisticated language-enabled agents, such as 
personal assistants, interactive tutors, open-domain 
question answering systems, etc. At the other end 
of the complexity spectrum, simpler systems have 
already transitioned into day-to-day use and are 
becoming the norm in the phone-based customer-
service industry. 

Nevertheless, a number of problems remain in 
need of better solutions. One of the most important 
limitations in today’s spoken language interfaces is 

their lack of robustness when faced with under-
standing errors. This problem appears across all 
domains and interaction types, and stems primarily 
from the inherent unreliability of the speech recog-
nition process. The recognition difficulties are 
further exacerbated by the conditions under which 
these systems typically operate: spontaneous spe-
ech, large vocabularies and user populations, and 
large variability in input line quality. In these set-
tings, average word-error-rates of 20-30% (and up 
to 50% for non-native speakers) are quite common. 

Left unchecked, speech recognition errors can 
lead to two types of problems in a spoken dialog 
system: misunderstandings and non-understand-
ings. In a misunderstanding, the system obtains an 
incorrect semantic interpretation of the user’s turn. 
In the absence of robust mechanisms for assessing 
the reliability of the decoded inputs, the system 
will take the misunderstanding as fact and will act 
based on invalid information. In contrast, in a non-
understanding the system fails to obtain an inter-
pretation of the input altogether. Although no false 
information is incorporated in this case, the situa-
tion is not much better: without an appropriate set 
of recovery strategies and a mechanism for diag-
nosing the problem, the system’s follow-up options 
are limited and uninformed. In general, unless 
mitigated by accurate error awareness and robust 
recovery mechanisms, speech recognition errors 
exert a strong negative impact on the quality and 
ultimately on the success of the interactions (Sand-
ers et al, 2002). 

Two pathways towards increased robustness 
can be easily envisioned. One is to improve the 
accuracy of the speech recognition process. The 
second is to create mechanisms for detecting and 
gracefully handling potential errors at the conver-
sation level. Clearly, these two approaches do not 
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stand in opposition and a combined effort would 
lead to the best results. The error handling archi-
tecture we describe in this paper embodies the sec-
ond approach: it aims to provide the mechanisms 
for robust error handling at the dialog management 
level of a spoken dialog system. 

The idea of handling errors through conversa-
tion has already received a large amount of atten-
tion from the research community. On the theore-
tical side, several models of grounding in commu-
nication have been proposed (Clark and Schaefer, 
1989; Traum, 1998). While these models provide 
useful insights into the grounding process as it 
happens in human-human communication, they 
lack the decision-making aspects required to drive 
the interaction in a real-life spoken dialog system. 
In the Conversational Architectures project, Paek 
and Horvitz (2000) address this challenge by de-
veloping a computational implementation of the 
grounding process using Bayesian belief networks. 
However, questions still remain: the structure and 
parameters of the belief networks are handcrafted, 
as are the utilities for the various grounding ac-
tions; due to scalability and task-representation 
issues, it is not known yet how the proposed ap-
proach would transfer and scale to other domains.  

Three ingredients are required for robust error 
handling: (1) the ability to detect the errors, (2) a 
set of error recovery strategies, and (3) a 
mechanism for engaging these strategies at the 
appropriate time. For some of these issues, various 
solutions have emerged in the community. For 
instance, systems generally rely on recognition 
confidence scores to detect potential misunder-
standings (e.g. Krahmer et al., 1999; Walker et al., 
2000) and use explicit and implicit confirmation 
strategies for recovery. The decision to engage 
these strategies is typically based on comparing the 
confidence score against manually preset thresh-
olds (e.g. Kawahara and Komatani, 2000). For 
non-understandings, detection is less of a problem 
(systems know by definition when non-understand-
ings occur). Strategies such as asking the user to 
repeat or rephrase, providing help, are usually en-
gaged via simple heuristic rules. 

At the same time, a number of issues remain 
unsolved: can we endow systems with better error 
awareness by integrating existing confidence an-
notation schemes with correction detection mecha-
nisms? Can we diagnose the non-understanding 
errors on-line? What are the tradeoffs between the 

various non-understanding recovery strategies? 
Can we construct a richer set of such strategies? 
Can we build systems which automatically tune 
their error handling behaviors to the characteristics 
of the domains in which they operate? 

We have recently engaged in a research pro-
gram aimed at addressing such issues. More gener-
ally, our goal is to develop a task-independent, 
easy-to-use, adaptive and scalable approach for 
error handling in task-oriented spoken dialog sys-
tems. As a first step in this program, we have 
developed a modular error handling architecture, 
within the larger confines of the RavenClaw dialog 
management framework (Bohus and Rudnicky, 
2003). The proposed architecture provides the in-
frastructure for our current and future research on 
error handling. In this paper we describe the pro-
posed architecture and discuss the key aspects of 
architectural design which confer the desired prop-
erties. Subsequently, we discuss the deployment of 
this architecture in a number of spoken dialog sys-
tems which operate across different domains and 
interaction types, and we outline current research 
projects supported by the proposed architecture. 

2 RavenClaw Dialog Management 

We begin with a brief overview of the RavenClaw 
dialog management framework, as it provides the 
larger context for the error handling architecture.  

RavenClaw is a dialog management framework 
for task-oriented spoken dialog systems. To date, it 
has been used to construct a large number of sys-
tems spanning multiple domains and interaction 
types (Bohus and Rudnicky, 2003): information 
access (RoomLine, the Let’s Go Bus Information 
System), guidance through procedures (LARRI), 
command-and-control (TeamTalk), taskable agents 
(Vera). Together with these systems, RavenClaw 
provides the larger context as well as a test-bed for 
evaluating the proposed error handling architec-
ture. More generally, RavenClaw provides a robust 
basis for research in various other aspects of dialog 
management, such as learning at the task and dis-
course levels, multi-participant dialog, timing and 
turn-taking, etc. 

A key characteristic of the RavenClaw frame-
work is the separation it enforces between the do-
main-specific and domain-independent aspects of 
dialog control. The domain-specific dialog control 
logic is described by a Dialog Task Specification, 
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essentially a hierarchical dialog plan provided by 
the system author. A fixed, domain-independent 
Dialog Engine manages the conversation by exe-
cuting the given Dialog Task Specification. In the 
process, the Dialog Engine also contributes a set of 
domain-independent conversational skills, such as 
error handling (discussed extensively in Section 4), 
timing and turn-taking, etc. The system authoring 
effort is therefore minimized and focused entirely 
on the domain-specific aspects of dialog control. 

2.1 The Dialog Task Specification 

A Dialog Task Specification consists of a tree of 
dialog agents, where each agent manages a sub-
part of the interaction. Figure 1 illustrates a portion 
of the dialog task specification from RoomLine, a 
spoken dialog system which can assist users in 
making conference room reservations. The root 
node subsumes several children: Welcome, which 
produces an introductory prompt, GetQuery which 
obtains the time and room constraints from the 
user, DoQuery which performs the database query, 
and DiscussResults which handles the follow-up 
negotiation dialog. Going one level deeper in the 
tree, GetQuery contains GetDate which requests the 
date for the reservation, GetStartTime and GetEnd-
Time which request the times, and so on. This type 
of hierarchical task representation has a number of 
advantages: it scales up gracefully, it can be 
dynamically extended at runtime, and it implicitly 
captures a notion of context in dialog.  

The agents located at the leaves of the tree are 
called basic dialog agents, and each of them im-
plements an atomic dialog action (dialog move). 
There are four types of basic dialog agents: Inform 
– conveys information to the user (e.g. Welcome), 
Request – asks a question and expects an answer 
(e.g. GetDate), Expect – expects information with-
out explicitly asking for it, and EXecute – imple-
ments a domain specific operation (e.g. DoQuery). 
The agents located at non-terminal positions in the 
tree are called dialog agencies (e.g. RoomLine, 
GetQuery). Their role is to plan for and control the 
execution of their sub-agents. For each agent in the 
tree, the system author may specify preconditions, 
completion criteria, effects and triggers; various 
other functional aspects of the dialog agents (e.g. 
state-specific language models for request-agents, 
help-prompts) are controlled through parameters. 

The information the system acquires and ma-
nipulates in conversation is captured in concepts, 
associated with various agents in the tree (e.g. date, 
start_time). Each concept maintains a history of 
previous values, information about current candi-
date hypotheses and their associated confidence 
scores, information about when the concept was 
last updated, as well as an extended set of flags 
which describe whether or not the concept has 
been conveyed to the user, whether or not the con-
cept has been grounded, etc. This rich representa-
tion provides the necessary support for concept-
level error handling. 

Dialog Stack 

Dialog Engine 

Dialog Task 
Specification 

Expectation Agenda 

start_time: [start_time] [time] 
date: [date] 
start_time: [start_time] [time] 
end_time: [end_time] [time] 
date: [date] 
start_time: [start_time] [time] 
end_time: [end_time] [time] 
location: [location] 
network: [with_network]->true,  
                [without_network]->false 
… … … 

System: For when do you need the room? 
User:  let’s try two to four p.m. 
Parse:  [time](two) [end_time](to four pm) 

User Input 

RoomLine 

GetQuery 

GetStartTime 

date 

end_time start_time 

RoomLine 

I: Welcome GetQuery 

R: GetDate 

Start-Over 

R: GetStartTime R: GetEndTime 

DiscussResults X: DoQuery 

Figure 1: RavenClaw architecture 
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2.2 The Dialog Engine 

The Dialog Engine is the core domain-independent 
component which manages the interaction by exe-
cuting a given Dialog Task Specification. The con-
trol algorithms are centered on two data-structures: 
a dialog stack, which captures the dialog structure 
at runtime, and an expectation agenda, which cap-
tures the system’s expectations for the user input at 
each turn in the dialog. The dialog is controlled by 
interleaving Execution Phases with Input Phases. 

During an Execution Phase, dialog agents from 
the tree are placed on, and executed from the dia-
log stack. At the beginning of the dialog, the root 
agent is placed on the stack. Subsequently, the en-
gine repeatedly takes the agent on the top of the 
stack and executes it. When dialog agencies are 
executed, they typically schedule one of their sub-
agents for execution by placing it on the stack. The 
dialog stack will therefore track the nested struc-
ture of the dialog at runtime. Ultimately, the execu-
tion of the basic dialog agents on the leaves of the 
tree generates the system’s responses and actions. 

During an Input Phase, the system assembles 
the expectation agenda, which captures what the 
system expects to hear from the user in a given 
turn. The agenda subsequently mediates the trans-
fer of semantic information from the user’s input 
into the various concepts in the task tree. For the 
interested reader, these mechanisms are described 
in more detail in (Bohus and Rudnicky, 2003) 

Additionally, the Dialog Engine automatically 
provides a number of conversational strategies, 
such as the ability to handle various requests for 
help, repeating the last utterance, suspending and 
resuming the dialog, starting over, reestablishing 
the context, etc. These strategies are implemented 
as library dialog agencies. Their corresponding 
sub-trees are automatically added to the Dialog 
Task Specification provided by the system author 
(e.g. the Start-Over agency in Figure 1.) The auto-
matic availability of these strategies lessens devel-
opment efforts and ensures a certain uniformity of 
behavior both within and across tasks. 

3 The Error Handling Architecture 

The error handling architecture in the RavenClaw 
dialog management framework subsumes two 
main components: (1) a set of error handling 
strategies (e.g. explicit and implicit confirmation, 

asking the user to repeat, etc.) and (2) an error 
handling process which engages these strategies. 

The error handling strategies are implemented 
as library dialog agents. The decision process 
which engages these strategies is part of the Dialog 
Engine. This design, in which both the strategies 
and the decision process are decoupled from the 
dialog task, as well as from each other, provides a 
number of advantages. First, it ensures that the er-
ror handling mechanisms are reusable across dif-
ferent dialog systems. Second, the approach 
guarantees a certain uniformity and consistency in 
error handling behaviors both within and across 
systems. Third, as new error handling strategies are 
developed, they can be easily plugged into any ex-
isting system. Last, but not least, the approach sig-
nificantly lessens the system authoring effort by 
allowing developers to focus exclusively on de-
scribing the dialog control logic. 

The responsibility for handling potential under-
standing errors1 is delegated to the Error Handling 
Process which runs in the Dialog Engine (see Fig-
ure 2). At each system turn, this process collects 
evidence and makes a decision with respect to en-
gaging any of the error handling strategies. When 
necessary, it will insert an error handling strategy 
on the dialog stack (e.g. the ExplicitConfirm 
(start_time) strategy in Figure 2), thus modifying 
on-the-fly the task originally specified by the sys-
tem author. The strategy executes and, once com-
pleted, it is removed from the stack and the dialog 
resumes from where it was left off. 
                                                           
1 Note that the proposed framework aims to handle 
understanding errors. The corresponding strategies are generic 
and can be applied in any domain. Treatment of domain or 
task-specific errors (e.g. database access error, etc) still needs 
to be implemented as part of the dialog task specification.  

Error Handling 
Strategies 

Error Handling  
Process 

Explicit  
Confirm 

RoomLine 

GetQuery 

GetStartTime 

ExplicitConfirm 
(start_time) 

Dialog Stack 

Evidence 

Figure 2: Error Handling – Block Diagram 
 

Dialog Task Specification 
 
Dialog Engine 
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3.1 Error Handling Strategies 

The error handling strategies can be divided into 
two groups: strategies for handling potential mis-
understandings and strategies for handling non-
understandings. 

For handling potential misunderstandings, three 
strategies are currently available: Explicit Confir-
mation, Implicit Confirmation and Rejection. 

For non-understandings, a larger number of er-
ror recovery strategies are currently available: 
AskRepeat – the system asks the user to repeat; 
AskRephrase – the system asks the user to re-
phrase; Reprompt – the system repeats the previous 
prompt; DetailedReprompt – the system repeats a 
more verbose version of the previous prompt, 
Notify – the system simply notifies the user that a 
non-understanding has occurred; Yield – the sys-
tem remains silent, and thus implicitly notifies the 
user that a non-understanding has occurred; 
MoveOn – the system tries to advance the task by 
giving up on the current question and moving on 
with an alternative dialog plan (note that this strat-
egy is only available at certain points in the dia-
log); YouCanSay – the system gives an example of 
what the user could say at this point in the dialog; 
FullHelp – the system provides a longer help mes-
sage which includes an explanation of the current 
state of the system, as well as what the user could 
say at this point. An in-depth analysis of these 
strategies and their relative tradeoffs is available in 
(Bohus and Rudnicky, 2005a). Several sample 
dialogs illustrating these strategies are available 
on-line (RoomLine, 2003).  

3.2 Error Handling Process 

The error handling decision process is imple-
mented in a distributed fashion, as a collection of 
local decision processes. The Dialog Engine auto-
matically associates a local error handling process 
with each concept, and with each request agent in 
the dialog task tree, as illustrated in Figure 3. The 
error handling processes running on individual 
concepts are in charge of recovering from misun-
derstandings on those concepts. The error handling 
processes running on individual request agents are 
in charge or recovering from non-understandings 
on the corresponding requests.  

At every system turn, each concept- and 
request-agent error handling process computes and 
forwards its decision to a gating mechanism, which 
queues up the actions (if necessary) and executes 
them one at a time. For instance, in the example in 
Figure 3, the error handling decision process for 
the start_time concept decides to engage an explicit 
confirmation on that concept, while the other deci-
sion processes do not take any action. In this case 
the gating mechanism creates a new instance of an 
explicit confirmation agency, passes it the pointer 
to the concept to be confirmed (start_time), and 
places it on the dialog stack. On completion, the 
strategy updates the confidence score of the con-
firmed hypothesis in light of the user response, and 
the dialog resumes from where it was left off.  

The specific implementation of the local deci-
sion processes constitutes an active research issue. 
Currently, they are modeled as Markov Decision 
Processes (MDP). The error handling processes 
running on individual concepts (concept-MDPs in 

end_time 

date 

start_time 

Explicit Confirm 

No Action 

Figure 3: A Distributed Error Handling Process 
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Figure 3) are partially-observable MDPs, with 3 
underlying hidden states: correct, incorrect and 
empty. The belief state is constructed at each time 
step from the confidence score of the top-hypothe-
sis for the concept. For instance, if the top 
hypothesis for the start_time concept is 10 a.m. with 
confidence 0.76, then the belief state for the 
POMDP corresponding to this concept is: 
{P(correct)=0.76, P(incorrect)=0.24, P(empty)=0}. 
The action-space for these models contains the 
three error recovery strategies for handling poten-
tial misunderstandings, and no-action. The third 
ingredient in the model is the policy.  A policy de-
fines which action the system should take in each 
state, and is indirectly described by specifying the 
utility of each strategy in each state. Currently, a 
number of predefined policies (e.g. always-
explicit-confirm, pessimistic, and optimistic) are 
available in the framework. Alternatively, system 
authors can specify and use their own policies. 

The error handling processes running on re-
quest agents (request-MDPs in Figure 3) are in 
charge of handling non-understandings on those 
requests. Currently, two types of models are avail-
able for this purpose. The simplest model has three 
states: non-understanding, understanding and 
inactive. A second model also includes information 
about the number of consecutive non-understand-
ings that have already happened. In the future, we 
plan to identify more features which carry useful 
information about the likelihood of success of in-
dividual recovery strategies and use them to create 
more complex models. The action-space is defined 
by the set of non-understanding recovery strategies 
presented in the previous subsection, and no-
action. Similar to the concept-MDPs, a number of 
default policies are available; alternatively, system 
authors can specify their own policy for engaging 
the strategies. 

While the MDP implementation allows us to 
encode various expert-designed policies, our ulti-
mate goal is to learn such policies from collected 
data using reinforcement learning. Reinforcement 
learning has been previously used to derive dialog 
control policies in systems operating with small 
tasks (Scheffler and Young, 2002; Singh et al, 
2000). The approaches proposed to date suffer 
however from one important shortcoming, which 
has so far prevented their use in large, practical 
spoken dialog systems. The problem is lack of 
scalability: the size of the state space grows very 

fast with the size of the dialog task, and this ren-
ders the approach unfeasible in complex domains. 
A second important limitation of reinforcement 
learning techniques proposed to date is that the 
learned policies cannot be reused across tasks. For 
each new system, a new MDP has to be con-
structed, new data has to be collected, and a new 
training phase is necessary. This requires a signifi-
cant amount of expertise and effort from the sys-
tem author. 

We believe that the error handling architecture 
we have described addresses these issues in several 
ways. The central idea behind the distributed na-
ture of the approach is to keep the learning prob-
lem tractable by leveraging independence relation-
ships between different parts of the dialog. First, 
the state and action-spaces can be maintained rela-
tively small since we are only focusing on making 
error handling decisions (as opposed to other dia-
log control decisions). A more complex task 
translates into a larger number of MDP instantia-
tions rather than a more complex model structure. 
Second, both the model structure and parameters 
(i.e. the transition probabilities) can be tied across 
models: for instance the MDP for grounding the 
start_time concept can be identical to the one for 
grounding the end_time concept; all models for 
grounding Yes/No concepts could be tied together, 
etc. Model tying has the potential to greatly im-
prove scalability since data is polled together and 
the total number of model parameters to be learned 
grows sub-linearly with the size of the task. Third, 
since the individual MDPs are decoupled from the 
actual system task, the policies learned in a par-
ticular system can potentially be reused in other 
systems (e.g. we expect that grounding yes/no con-
cepts functions similarly at different locations in 
the dialog, and across domains). Last but not least, 
the approach can easily accommodate dynamic 
task generation. In traditional reinforcement 
learning approaches the state and action-spaces of 
the underlying MDP are task-specific. The task 
therefore has to be fixed, known in advance: for 
instance the slots that the system queries the user 
about (in a slot-filling system) are fixed. In con-
trast, in the RavenClaw architecture, the dialog 
task tree (e.g. the dialog plan) can be dynamically 
expanded at runtime with new questions and con-
cepts, and the corresponding request- and concept-
MDPs are automatically created by the Dialog En-
gine. 
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4 Deployment and Current Research 

While a quantitative evaluation of design charac-
teristics such as task-independence, scalability, and 
ease-of-use is hard to perform, a first-order empiri-
cal evaluation of the proposed error handling ar-
chitecture can be accomplished by using it in 
different systems and monitoring the system au-
thoring process and the system’s operation.  

To date, the architecture has been successfully 
deployed in three different spoken dialog systems. 
A first system, RoomLine (2003), is a phone-based 
mixed-initiative system that assists users in making 
conference room reservations on campus. A sec-
ond system, the Let’s Go! Bus Information System 
(Raux et al, 2005), provides information about bus 
routes and schedules in the greater Pittsburgh area 
(the system is available to the larger public). Fi-
nally, Vera is a phone-based taskable agent that 
can be instructed to deliver messages to a third 
party, make wake-up calls, etc. Vera actually con-
sists of two dialog systems, one which handles in-
coming requests (Vera In) and one which performs 
message delivery (Vera Out). In each of these sys-
tems, the authoring effort with respect to error 
handling consisted of: (1) specifying which models 
and policies should be used for the concepts and 
request-agents in the dialog task tree, and (2) 
writing the language generation prompts for ex-
plicit and implicit confirmations for each concept.  

Even though the first two systems operate in 
similar domains (information access), they have 
very different user populations: students and fac-
ulty on campus in the first case versus the entire 

Pittsburgh community in the second case. As a 
result, the two systems were configured with dif-
ferent error handling strategies and policies (see 
Table 1). RoomLine uses explicit and implicit con-
firmations with an optimistic policy to handle po-
tential misunderstandings. In contrast, the Let’s Go 
Public Bus Information System always uses ex-
plicit confirmations, in an effort to increase robust-
ness (at the expense of potentially longer dialogs). 
For non-understandings, RoomLine uses the full 
set of non-understanding recovery strategies pre-
sented in section 3.1. The Let’s Go Bus Informa-
tion system uses the YouCanSay and FullHelp 
strategies. Additionally a new GoToAQuieterPlace 
strategy was developed for this system (and is now 
available for use into any other RavenClaw-based 
system). This last strategy asks the user to move to 
a quieter place, and was prompted by the observa-
tion that a large number of users were calling the 
system from noisy environments. 

While the first two systems were developed by 
authors who had good knowledge of the Raven-
Claw dialog management framework, the third sys-
tem, Vera, was developed as part of a class project, 
by a team of six students who had no prior experi-
ence with RavenClaw. Modulo an initial lack of 
documentation, no major problems were encoun-
tered in configuring the system for automatic error 
handling. Overall, the proposed error handling ar-
chitecture adapted easily and provided the desired 
functionality in each of these domains: while new 
strategies and recovery policies were developed for 
some of the systems, no structural changes were 
required in the error handling architecture. 

Table 1: Spoken dialog systems using the RavenClaw error handling architecture 

 RoomLine Let’s Go Public Vera In / Out 
Domain room reservations bus route information task-able agent 
Initiative type mixed system mixed / mixed 
Task size: #agents ; #concepts 110 ; 25 57 ; 19 29 ; 4 / 31 ; 13 
Strategies for misunderstandings explicit and implicit explicit explicit and implicit / 

explicit only 
Policy for misunderstandings optimistic always-explicit optimistic /  

always-explicit 
Strategies for non-understandings all strategies 

(see Section 3.1) 
go-to-quieter-place, 
you-can-say, help 

all strategies /  
repeat prompt 

Policy for non-understandings choose-random author-specified  
heuristic policy 

choose-random /  
always-repeat-prompt 

Sessions collected so far 1393 2836 72 / 131 
Avg. task success rate 75% 52% (unknown) 
% Misunderstandings 17% 28% (unknown) 
% Non-understandings 13% 27% (unknown) 
% turns when strategies engage 41% 53% 36% / 44% 
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5 Conclusion and Future Work 

We have described the error handling architecture 
underlying the RavenClaw dialog management 
framework. Its design is modular: the error han-
dling strategies as well as the mechanisms for en-
gaging them are decoupled from the actual dialog 
task specification. This significantly lessens the 
development effort: system authors focus exclu-
sively on the domain-specific dialog control logic, 
and the error handling behaviors are generated 
transparently by the error handling process running 
in the core dialog engine. Furthermore, we have 
argued that the distributed nature of the error han-
dling process leads to good scalability properties 
and facilitates the reuse of policies within and 
across systems and domains.  

The proposed architecture represents only the 
first (but an essential step) in our larger research 
program in error handling. Together with the sys-
tems described above, it sets the stage for a number 
of current and future planned investigations in er-
ror detection and recovery. For instance, we have 
recently conducted an extensive investigation of 
non-understanding errors and the ten recovery 
strategies currently available in the RavenClaw 
framework. The results of that study fall beyond 
the scope of this paper and are presented separately 
in (Bohus and Rudnicky, 2005a). In another pro-
ject supported by this architecture, we have devel-
oped a model for updating system beliefs over 
concept values in light of initial recognition confi-
dence scores and subsequent user responses to 
system actions. Initially, our confirmation strate-
gies used simple heuristics to update the system’s 
confidence score for a concept in light of the user 
response to the verification question. We have 
showed that a machine learning based approach 
which integrates confidence information with cor-
rection detection information can be used to con-
struct significantly more accurate system beliefs 
(Bohus and Rudnicky, 2005b). Our next efforts 
will focus on using reinforcement learning to 
automatically derive the error recovery policies. 
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