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Abstract 

To improve the robustness in multimodal 
input interpretation, this paper presents a new 
salience driven approach. This approach is 
based on the observation that, during 
multimodal conversation, information from 
deictic gestures (e.g., point or circle) on a 
graphical display can signal a part of the 
physical world (i.e., representation of the 
domain and task) of the application which is 
salient during the communication.  This salient 
part of the physical world will prime what 
users tend to communicate in speech and in 
turn can be used to constrain hypotheses for 
spoken language understanding, thus 
improving overall input interpretation. Our 
experimental results have indicated the 
potential of this approach in reducing word 
error rate and improving concept identification 
in multimodal conversation.  

1 Introduction  

Multimodal conversational systems promote more 
natural and effective human machine communication 
by allowing users to interact with systems through 
multiple modalities such as speech and gesture 
(Cohen et al., 1996; Johnston et al., 2002; Pieraccini 
et al., 2004). Despite recent advances, interpreting 
what users communicate to the system is still a 
significant challenge due to insufficient recognition 
(e.g., speech recognition) and understanding (e.g., 
language understanding) performance. Significant 
improvement in the robustness of multimodal 
interpretation is crucial if multimodal systems are to 
be effective and practical for real world applications.  

Previous studies have shown that, in multimodal 
conversation, multiple modalities tend to complement 
each other (Cassell et al. 1994). Fusing two or more 
modalities can be an effective means of reducing 
recognition uncertainties, for example, through 
mutual disambiguation (Oviatt 1999). For 
semantically-rich modalities such as speech and pen-
based gesture, mutual disambiguation usually 
happens at the fusion stage where partial semantic 
representations from individual modalities are 
disambiguated and combined into an overall 
interpretation (Johnston 1998, Chai et al., 2004a). 
One problem is that some critical but low probability 
information from individual modalities (e.g., 
recognized alternatives with low probabilities) may 
never reach the fusion stage. Therefore, this paper 
addresses how to use information from one modality 
(e.g., deictic gesture) to directly influence the 
semantic processing of another modality (e.g., spoken 
language understanding) even before the fusion stage.  

In particular we present a new salience driven 
approach that uses gesture to influence spoken 
language understanding. This approach is based on 
the observation that, during multimodal conversation, 
information from deictic gestures (e.g., point or 
circle) on a graphical interface can signal a part of the 
physical world (i.e., representation of the domain and 
task) of the application which is salient during the 
communication.  This salient part of the physical 
world will prime what users tend to communicate in 
speech and thus in turn can be used to constrain 
hypotheses for spoken language understanding. In 
particular, this approach incorporates a notion of 
salience from deictic gestures into language models 
for spoken language processing. Our experimental 
results indicate the potential of this approach in 
reducing word error rate and improving concept 
identification from spoken utterances. 
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In the following sections, we first introduce the 
current architecture for multimodal interpretation. 
Then we describe our salience driven approach and 
present empirical results.  

2 

3 

Input Interpretation 

Input interpretation is the identification of semantic 
meanings in user inputs. In multimodal conversation, 
user inputs can come from multiple channels (e.g., 
speech and gesture). Thus, most work on input 
interpretation is based on semantic fusion that 
includes individual recognizers and a sequential 
integration processes as shown in Figure 1.  In this 
approach, a system first creates possible partial 
meaning representations from recognized hypotheses 
(e.g., N-best lists) independently of other modalities. 
For example, suppose a user says “what is the price 
of this painting” and at the same time points to a 
position on the screen. The partial meaning 
representations from the speech input and the gesture 
input are shown in (a-b) in Figure 1. The system uses 
the partial meaning representations to disambiguate 
each other and combines compatible partial 
representations together into an overall semantic 
representation as in Figure1(c).  

In this architecture, the partial semantic 
representations from individual modalities are crucial 
for mutual disambiguation during multimodal fusion. 
The quality of partial semantic representations 
depends on how individual modalities are processed. 
For example, if the speech input is recognized as 
“what is the prize of this pant”, then the partial 
representation from the speech input will not be 
created in the first place. Without a candidate partial 
representation, it is not likely for multimodal fusion 
to reach an overall meaning of the input given this 
late fusion architecture. 

Thus, a problem with the semantics-based fusion 
approach is that information from multiple modalities 
is only used during the fusion stage to disambiguate 
or combine partial semantic representations. This late 
use of information from other sources in the 
pipelined process can cause the loss of some low 
probability information (e.g., recognized alternatives 
with low probabilities which did not make it to the N-
best list) which could be very crucial in terms of the 
overall interpretation.  It is desirable to use 
information from multiple sources at an earlier stage 
before partial representations are created from 
individual modalities. For example, in ((Bangalore 
and Johnston 2000), a finite-state approach was 
applied to tightly couple multimodal language 
processing (e.g., gesture and speech) and speech 
recognition to improve recognition hypotheses. To 
further address this issue, in this paper, we present a 
salience driven approach that particularly applies 
gesture information (e.g., pen-based deictic gestures) 
to robust spoken language understanding before 
multimodal fusion.  

Related Work on Salience Modeling 

We first give a brief overview on the notion of 
salience and how salience modeling is applied in 
earlier work on natural language and multimodal 
language processing.  

Linguistic salience describes the accessibility of 
entities in a speaker/hearer’s memory and its 
implication in language production and 
interpretation. Many theories on linguistic salience 
have been developed, including how the salience of 
entities affects the form of referring expressions as in 
the Givenness Hierarchy (Gundel et al., 1993) and 
the local coherence of discourse as in the Centering 
Theory (Grosz et al., 1995). Salience modeling is 
used for both language generation and language 
interpretation; the latter is more relevant to our work. 
Most salience-based interpretation has focused on 
reference resolution for both linguistic referring 
expressions (e.g., pronouns) (Lappin and Leass 1995) 
and multimodal expressions (Hul et al. 1995; 
Eisenstein and Christoudias 2004).  

Speech Input Gesture Input

Speech 
Recognition

Language
Understanding

Gesture
Recognizer

Multimodal
Fusion

Semantic Representation

Gesture
Understanding

Semantic Representation Semantic Representation

What is the price of this painting Point to a position on the screen

Intent: Ask
Type: Painting
Aspect: Price

Type: Painting
Id: P23

Intent: Ask
Type: Painting
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Type: Wall
Id: W1

(a) (b)

(c)

 
Figure 1: Semantics-based multimodal interpretation 

Visual salience considers an object salient when 
it attracts a user’s visual attention more than others. 
The cause of such attention depends on many factors 
including user intention, familiarity, and physical 
characteristics of objects. For example, an object may 
be salient when it has some properties the others do 
not have, such as it is the only one that is highlighted, 
or the only one of a certain size, category, or color 
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(Landragin et al., 2001). Visual salience can also be 
useful in input interpretation, for example, for 
multimodal reference resolution (Kehler 2000) and 
cross-modal coreference interpretation (Byron et al., 
2005).  

We believe that salience modeling should go 
beyond reference resolution. Our view is that the 
salience not only affects the use of referring 
expressions (and thus is useful for interpreting 
referring expressions), but also influences the 
linguistic context of the referring expressions. The 
spoken utterances that contain these expressions tend 
to describe information relating to the salient objects 
(e.g., properties or actions). Therefore, our goal in 
this paper is to take salience modeling a step further 
from reference resolution, towards overall language 
understanding.  

4 

4.1 

A Salience Driven Approach 

The new salience driven approach is based on the 
cognitive theory of Conversation Implicature (Grice 
1975) and earlier empirical findings of user speech 
and gesture behavior in multimodal conversation 
(Oviatt 1999). The theory of Conversation 
Implicature (Grice 1975) states that speakers tend to 
make their contribution as informative as is required 
(for the current purpose of communication) and not 
make their contribution more informative than is 
required. In the context of multimodal conversation 
that involves speech and pen-based gesture, this 
theory indicates that users most likely will not make 
any unnecessary deictic gestures unless those 
gestures help in communicating users’ intention. This 
is especially true since gestures usually take an extra 
effort from a user. When a pen-based gesture is 
intentionally delivered by a user, the information 
conveyed is often a crucial component in 
interpretation (Chai et al., 2005).  

Speech 
Recognition

Language
Understanding

Physical world representation

salient

e1 e2 e3 ……….

P(e)

discourse

Speech
Gesture

Gesture 
Recognition

Gesture
Understanding

Multimodal    Fusion

Semantic  Representation

Figure 2: The salience driven approach: the salience 
distribution calculated from gesture is used to tailor 
language models for spoken language understanding  

Speech and gesture also tend to complement each 
other. For example, when a speech utterance is 
accompanied by a deictic gesture (e.g., point or 
circle) on a graphical display, the speech input tends 
to issue commands or inquiries about properties of 
objects, and the deictic gestures tend to indicate the 
objects of interest. In addition, as shown in (Oviatt 
1999), the deictic gestures often occur before spoken 
utterances. Our previous work (Chai et al., 2004b) 
also showed that 85% of time gestures occurred 
before corresponding speech units. Therefore, 
gestures can be used as an earlier indicator to 
anticipate the content of communication in the 
subsequent spoken utterances.  

Overview 
The general idea of the salience based approach is 
shown in Figure 2. For each application domain, 
there is a physical world representation that captures 
domain knowledge (details are described later). A 
deictic gesture can activate several objects on the 
graphical display. This activation will signal a 
distribution of objects that are salient. The salient 
objects are mapped to the physical world 
representation to indicate a salient part of 
representation that includes relevant properties or 
tasks related to the salient objects. This salient part of 
the physical world is likely to be the potential content 
of the spoken communication, and thus can be used 
to tailor language models for spoken language 
understanding. This process is shown in the middle 
shaded box of Figure 2. It bridges gesture 
understanding and language understanding at a stage 
before multimodal fusion. Note that the use of 
gesture information can be applied at different stages: 
during speech recognition to generate hypotheses or 
post processing of recognized hypotheses before 
language understanding. In this paper, we focus on 
the latter.    

The physical world representation includes the 
following components:  
• Domain Model. This component captures the 
relevant knowledge about the domain including 
domain objects, properties of the objects, relations 
between objects, and task models related to objects. 
Previous studies have shown that domain knowledge 
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can be used to improve spoken language 
understanding (Wai et al, 2001).  Currently, we apply 
a frame-based representation where a frame 
represents an object (or a type of object) in the 
domain and frame elements represent attributes and 
tasks related to the objects. Each frame element is 
associated with a semantic tag which indicates the 
semantic content of that element. In the future, the 
domain model might also include knowledge about 
the interface, for example, visual properties and 
spatial relations between objects on the interface. 

w1 wn…… ……

Time

t2 t3 tn

)(eP
nt)|(

3tgeP

)( 3tntα

)( 2tntα

)( 1tntα

wi wi+1

t1

)|(
2tgeP)|(

1tgeP

Figure 3: Salience modeling: the salience distribution 
at time tn is calculated by a joint effect of gestures 
that happen before tn.  

• Domain Grammar. This component specifies 
grammar and vocabularies used to process language 
inputs. There are two types of representation. The 
first type is a semantics-based context free grammar 
where each non-terminal symbol represents a 
semantic tag (indicating semantic information such as 
the semantic type of an object, etc). Each word (i.e., 
the terminal symbol) in the lexicon relates to one or 
more semantic tags. Some of these semantic tags are 
directly linked to the frame elements in the domain 
model since they represent certain properties or tasks. 
This grammar was manually developed.  

4.2 

The second type of representation is based on 
annotated user spoken utterances. The data are 
annotated in terms of relevant semantic information 
(i.e., using semantic tags) in the utterance and the 
intended objects of interest (which are directly linked 
to the domain model). Based on the annotated data, 
N-grams can be learned to represent the dependency 
of language in our domain.  

Based on the physical world representation, our 
approach supports the following operations:  
Salience modeling. This operation calculates a 
salience distribution of entities in the physical world. 
In our current investigation, we limit the scope of 
entities to a closed set of objects from our physical 
world representation since the system has knowledge 
about those objects. These entities could have 
different salience values depending on whether they 
are visible on the graphical display, gestured by a 
user, or mentioned in the prior conversation. In this 
paper, we focus on the salience modeling using 
gesture information only.  
Salience driven language understanding. This 
operation maps the salience distribution to the 
physical world representation and uses the salient 
world to influence spoken language understanding. 
Note that, in this paper, we are not concerned with 
acoustic models for speech recognition, but rather we 
are interested in the use of the salience distribution to 
prime language models and facilitate language 
understanding. 

Salience Modeling 

We use a vector e
r to represent entities in the physical 

world representation. For each entity e ek
r

∈ , we use 
to represent its salience value at time tn.  For 

all the entities, we use P

)( kt eP
n

)(e
nt
v  to represent a salience 

distribution at time tn. Figure 3 shows a sequence of 
words with corresponding gestures that occur at t1, t2, 
and t3. As shown in Figure 3, the salience distribution 
at any given time tn is influenced by a joint effect 
from this sequence of gestures that happen before tn 
etc. Depending on its time of occurrence, each 
gesture may have a different impact on the salience 
distribution at time tn. Note that although each 
gesture may have a short duration, here we only 
consider the beginning time of a gesture. Therefore, 
for an entity ek, its salience value at time tn is 
computed as follows: 
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In Equation (1), m (m ≥ 1) is the number of 
gestures that have occurred before tn. The different 
impact of a gesture g  at time ti that contributes to 
the salience distribution at time tn is represented as 
the weight 

it

)(
in tt gα in Equation (1). Currently, we 

calculate the weight depending on the temporal 
distance as follows:  

)(]
2000

)(
exp[)( in

in
tt tt

tt
g

in
≥

−−
=α             (2) 

Equation (2) indicates that at a given time tn 
(measured in milliseconds), the closer a gesture (at ti) 
is to the time tn, the higher impact this gesture has on 
the salience distribution (Chai et al., 2004b).  

It is worth mentioning that a deictic gesture on the 
graphic display (e.g., pointing and circling) could 
have ambiguous interpretation by itself. For example, 
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given an interface, a point or a circle on the screen 
could result in selection of different entities with 
different probabilities. Therefore, in Equation (1), 

is the selection probability which indicates 
the likelihood of selecting an entity e given a gesture 
at time ti. This selection probability is calculated by a 
function of the distance between the location of the 
entity and the focus point of the recognized gesture 
on the display (Chai et al., 2004a). A normalization 
factor is incorporated to ensure that the summation of 
selection probabilities over all possible entities adds 
up to one.  

( | )
it

P e g

When no gesture is involved in a given input, the 
salience distribution at any given time is a uniform 
distribution. If one or more gestures are involved, 
then Equation (1) is used to calculate the salience 
distribution.  

4.3 

P W

Salience Driven Spoken Language 
Understanding 

The salience distribution of entities identified based 
on the gesture information (as described above) is 
used to constrain hypotheses for language 
understanding. More specifically, for each onset of a 
spoken word at time t (i.e., the beginning time stamp 
of a spoken word), the salience distribution at t can 
be calculated based on a sequence of gestures that 
happen before t by Equation (1). This salience 
distribution can then be used to prime language 
models for spoken language processing.   

Language Modeling 
We first give a brief background of language 
modeling. Given an observed speech utterance O, the 
goal of speech recognition is to find a sequence of 
words W* so that W P , 
where P(O|W) is the acoustic model and P(W) is the 
language model. In traditional speech recognition 
systems, the acoustic model provides the probability 
of observing the acoustic features given hypothesized 
word sequences and the language model provides the 
probability of a sequence of words. The language 
model is computed as follows: 

* arg max ( | ) ( )O W=

)|()...|()|()()( 1
12131211
−= n

n
n wwPwwwPwwPwPwP          

Using the Markov assumption, the language model 
can be approximated by a bigram model as in: 

∏
=

−=
n

i
ii

n wwPwP
1
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To improve the speech understanding results for 
spoken language interfaces, many systems have 

applied a loosely-integrated approach which 
decouples the language model from the acoustic 
model (Zue et al., 1991, Harper et al., 2000). This 
allows the development of powerful language models 
independent of the acoustic model, for example, 
utilizing topics of the utterances (Gildea and 
Hofmann 1999), syntactic or semantic labels 
(Heeman 1999), and linguistic structures (Chelba and 
Jelinek 2000, Wang and Harper 2002). Recently, we 
have seen work on language understanding based on 
environment (Schuler 2003) and language modeling 
using visual context (Roy and Mukherjee 2005). Our 
salience driven approach is inspired by this earlier 
work. Here, we do not address the acoustic model of 
speech recognition, but rather incorporate the 
salience distribution for language modeling. In 
particular, our focus is on investigating the effect of 
incorporating additional information from other 
modalities (e.g., gesture) with traditional language 
models.   

Primed Language Model 
The calculated salience distribution is used to prime 
the language model. More specifically, we use a 
class-based bigram model from (Brown et al, 1992):  

)|()|()|( 11 −− = iiiiii ccPcwPwwP                 (3) 
In Equation (3), ci is the class of the word wi, 

which could be a syntactic class or a semantic class. 
is the class transition probability, which 

reflects the grammatical formation of utterances. 
is the word class probability which 

measures the probability of seeing a word wi given a 
class ci. The class-based N-gram model can make 
better use of limited training data by clustering words 
into classes. A number of researchers have shown 
that the class-based N-gram model can successfully 
improve the performance of speech recognition 
(Jelinek 1990, Heeman 1999, Kneser and Ney 1993, 
Samuelsson and Reichl, 1999). 

)|( 1−ii ccP

)|( ii cwP

In our approach, the “class” used in the class-
based bigram model comes from combined semantic 
and functional classes designed for our domain. For 
example, “this” is tagged as Demonstrative, and 
“price” is tagged as AttrPrice. As shown in Equation 
(3), there are two types of parameter estimation. In 
terms of the class transition probability, as in earlier 
work, we directly use the annotated data. In terms of 
the word class distribution, we incorporate the notion 
of salience. We use the salience distribution to 
dynamically adjust the world class probability 

 as follows: )|( ii cwP
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               (4) User  
index 

# of  
Inputs 

# inputs 
w/o gesture 

Baseline 
WER 

1 21 0 0.287 
2 31 0 0.335 
3 27 0 0.399 
4 10 0 0.680 
5 8 1 0.200 
6 36 0 0.387 
7 18 0 0.250 
8 25 1 0.278 
9 23 0 0.482 
10 11 0 0.117 
11 16 3 0.255 

Table 1: Related information about the evaluation 
data: user type, the number of turns per user, and the 
baseline word recognition rate.  

In Equation (4), P  is the salience value for an 
entity  at time ti (the onset of the spoken word wi), 
which can be calculated by Equation (1).  Equation 
(4) indicates that only information associated with the 
salient entities is used to estimate the word class 
distribution. In other words, the word class 
probability favors the salient physical world as 
indicated by the salience distribution

)( kt e
i

ke

)(eP
it
v . More 

specifically, at time  ti, given a semantic class ci, the 
choice of word “wi” is dependent on the salient 
physical world at the moment, which is represented 
as the salience distribution )(eP

it
v at time ti. For all wi, 

the summation of this word class probability is equal 
to one. Furthermore, given an entity ,  
and  are not dependent on time ti, but rather 
on the domain and the use of language expressions. 
Therefore they can be estimated based on the training 
data that are annotated in terms of semantic 
information and the intended objects of interest (as 
discussed in Section 4.1). Since the annotated data is 
very limited, the sparse data can become a problem 
for the maximum likelihood estimation. Therefore, a 
smoothing technique based on the Katz backoff 
model (Katz, 1987) is applied. For example, to 
calculate , if a word wi has one or more 
occurrences in the training data associated with the 
class ci and the entity , then its count is discounted 
by a fraction in the maximum likelihood estimation. 
If wi does not occur, then this approach backs off to 
the domain grammar and redistributes the remaining 
probability mass uniformly among words in the 
lexicon that are linked with class ci and entity e . 
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Evaluation 

We evaluated the salience model during post 
processing recognized hypotheses. Given possible 
hypotheses from a speech recognizer, we use the 
salience-based language model to identify the most 
likely sequence of words. The salience distribution 
based on gesture was used to favor words that are 
consistent with the attention indicated by gestures. 

The data collected from our previous user studies 
were used in our evaluation (Chai et al., 2004b). In 
these studies, users interacted with our multimodal 
interface using both speech and deictic gestures to 
find information about real estate properties. In 
particular, each user was asked to accomplish five 

tasks. Each of these tasks required the user to retrieve 
different types of information from our interface. For 
example, one task was to find the least expensive 
house in the most populated town. The data were 
recorded from eleven subjects including five non-
native speakers and six native speakers. Each user’s 
voice was individually trained before the study. Table 
1 shows the relevant information about the data such 
as the total number of inputs (or turns) from each 
subject, the number of speech alone inputs without 
any gesture, and the baseline recognition results 
without using salience-based post processing in terms 
of the word error rate (WER).  In total, we have 
collected 226 user inputs with an average of eight 
words per spoken utterance1. As shown in Table 1, 
the majority of inputs consisted of both speech and 
gesture. Since currently we only use gesture 
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Figure 5: Comparison of the baseline and the result 
from post-processing in terms of WER  

 
1 The difference between the number of user inputs reported 
here and that in (Chai et al., 2004b) was caused by the situa-
tion where one intended user input (which was the unit for 
counting in our previous work) was split into a couple turns 
(which constitute the new counts here).  
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information in salience modeling, our approach will 
not affect speech only inputs.  

To train the salience-based model, we applied the 
leave-one-out approach. The data from each user was 
held out as the testing data and the remaining users 
were used as the training data to acquire relevant 
probability estimations in Equation (3) and (4).  

Figure 5 shows the comparison results between 
the baseline and the salience-based model in terms of 
word error rate (WER). The word error rate as a 
result of salience-based post processing is 
significantly better than that from the baseline 
recognizer (t = 4.75, p < 0.001). The average WER 
reduction is about 12%.   

We further evaluated how the salience based 
model affects the final understanding results. This is 
because an improvement in WER may not directly 
lead to an improvement in understanding. We applied 
our semantic grammar on a sequence of words 
resulting from both the baseline and the salience-
based post-processing to identify key concepts. In 
total, there were 686 concepts from the transcribed 
speech utterances. Table 2 shows the evaluation 
results. Precision measures the percentage of correctly 
identified concepts out of the total number of 
concepts identified based on a sequence of words. 
Recall measures the percentage of correctly identified 
concepts out of the total number of intended concepts 
from user’s utterance. F-measurement combines 
precision and recall together as follows: 

1,
RecallPrecision

RecallPrecision)1(
2

2
=

+

××+
= β

β
β whereF .  

Table 2 shows that, on average, the concept 
identification based on the word sequence resulting 
from the salience-based approach performs better 
than the baseline in terms of both precision and 
recall. Figure 6 provides two examples to show the 
difference between the baseline recognition and the 
salience-based post processing.   

The evaluation reported here is only an initial step 
based on a limited domain. The small scale in the 
number of objects and the vocabulary size can only 
demonstrate the potential of the salience-based 
approach to a limited degree.  To further understand 
the advantages and issues of this approach, we are 
currently working on a more complex domain with 
richer concepts and relations, as well as larger 
vocabularies.  

It is worth mentioning that the goal of this work is 
to explore whether salience modeling based on other 
modalities (e.g., gesture) can be used to prime 
traditional language models to facilitate spoken 

language processing. The salience driven approach 
based on additional modalities can be combined with 
more sophisticated language modeling (e.g., better 
parameter estimation) in the future.  

Example 1:
Transcription: What is the population of this town
Baseline recognition: What is the publisher of this time
Salience-based processing: what is the population of this town

Example 2:
Transcription: How much is this gray house
Baseline recognition: How much is this great house
Salience-based processing: How much is this gray house

Figure 6: Examples of utterances with baseline recogni-
tion and improved recognition from the salience-based 
processing.  

User # Baseline Salience-based 

Precision 80.3% 84.6% 

Recall 75.7% 83.8% 

F-measure 77.9% 84.2% 

Table2. Overall concept identification comparison 
between the baseline and the salience driven model. 

6 Conclusion and Future Work 

This paper presents a new salience driven approach 
to robust input interpretation in multimodal 
conversational systems. This approach takes 
advantage of rich information from multiple 
modalities. Information from deictic gestures is used 
to identify a part of the physical world that is salient 
at a given point of communication. This salient part 
of the physical world is then used to prime language 
models for spoken language understanding. Our 
experimental results have shown the potential of this 
approach in reducing word error rate and improving 
concept identification from spoken utterances in our 
application. Although currently we have only 
investigated the use of gesture information in salience 
modeling, the salience driven approach can be 
extended to include other modalities (e.g., eye gaze) 
and information (e.g., conversation context). Our 
future work will specifically investigate how to 
combine information from multiple sources in 
salience modeling and how to apply the salience 
models in different early stages of processing.  
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