
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 201–208, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Training Neural Network Language Models

On Very Large Corpora ∗

Holger Schwenk and Jean-Luc Gauvain
LIMSI-CNRS

BP 133, 91436 Orsay cedex, FRANCE
schwenk,gauvain@limsi.fr

Abstract

During the last years there has been grow-
ing interest in using neural networks for
language modeling. In contrast to the well
known back-offn-gram language models,
the neural network approach attempts to
overcome the data sparseness problem by
performing the estimation in a continuous
space. This type of language model was
mostly used for tasks for which only a
very limited amount of in-domain training
data is available.

In this paper we present new algorithms to
train a neural network language model on
very large text corpora. This makes pos-
sible the use of the approach in domains
where several hundreds of millions words
of texts are available. The neural network
language model is evaluated in a state-of-
the-art real-time continuous speech recog-
nizer for French Broadcast News. Word
error reductions of 0.5% absolute are re-
ported using only a very limited amount
of additional processing time.

1 Introduction

Language models play an important role in many
applications like character and speech recognition,
machine translation and information retrieval. Sev-
eral approaches have been developed during the last

∗This work was partially financed by the European Commis-
sion under the FP6 Integrated Project TC-STAR.

decades liken-gram back-off word models (Katz,
1987), class models (Brown et al., 1992), structured
language models (Chelba and Jelinek, 2000) or max-
imum entropy language models (Rosenfeld, 1996).
To the best of our knowledge word and classn-gram
back-off language models are still the dominant ap-
proach, at least in applications like large vocabulary
continuous speech recognition or statistical machine
translation. In many publications it has been re-
ported that modified Kneser-Ney smoothing (Chen
and Goodman, 1999) achieves the best results. All
the reference back-off language models (LM) de-
scribed in this paper are build with this technique,
using the SRI LM toolkit (Stolcke, 2002).

The field of natural language processing has re-
cently seen some changes by the introduction of new
statistical techniques that are motivated by success-
ful approaches from the machine learning commu-
nity, in particular continuous space LMs using neu-
ral networks (Bengio and Ducharme, 2001; Bengio
et al., 2003; Schwenk and Gauvain, 2002; Schwenk
and Gauvain, 2004; Emami and Jelinek, 2004), Ran-
dom Forest LMs (Xu and Jelinek, 2004) and Ran-
dom cluster LMs (Emami and Jelinek, 2005). Usu-
ally new approaches are first verified on small tasks
using a limited amount of LM training data. For
instance, experiments have been performed using
the Brown corpus (1.1M words), parts of the Wall-
street journal corpus (19M words) or transcriptions
of acoustic training data (up to 22M words). It is
much more challenging to compare the new statis-
tical techniques to carefully optimized back-off LM
trained on large amounts of data (several hundred
millions words). Training may be difficult and very

201

time consuming and the algorithms used with sev-
eral tens of millions examples may be impracticable
for larger amounts. Training back-off LMs on large
amounts of data is not a problem, as long as power-
ful machines with enough memory are available in
order to calculate the word statistics. Practice has
also shown that back-off LMs seem to perform very
well when large amounts of training data are avail-
able and it is not clear that the above mentioned new
approaches are still of benefit in this situation.

In this paper we compare the neural network
language model ton-gram model with modified
Kneser-Ney smoothing using LM training corpora
of up to 600M words. New algorithms are pre-
sented to effectively train the neural network on such
amounts of data and the necessary capacity is ana-
lyzed. The LMs are evaluated in a real-time state-
of-the-art speech recognizer for French Broadcast
News. Word error reductions of up to 0.5% abso-
lute are reported.

2 Architecture of the neural network LM

The basic idea of the neural network LM is to project
the word indices onto a continuous space and to use
a probability estimator operating on this space (Ben-
gio and Ducharme, 2001; Bengio et al., 2003). Since
the resulting probability functions are smooth func-
tions of the word representation, better generaliza-
tion to unknownn-grams can be expected. A neural
network can be used to simultaneously learn the pro-
jection of the words onto the continuous space and
to estimate then-gram probabilities. This is still a
n-gram approach, but the LM posterior probabilities
are ”interpolated” for any possible context of length
n-1 instead of backing-off to shorter contexts.

The architecture of the neural networkn-gram
LM is shown in Figure 1. A standard fully-
connected multi-layer perceptron is used. The
inputs to the neural network are the indices of
the n−1 previous words in the vocabularyhj =
wj−n+1, ..., wj−2, wj−1 and the outputs are the pos-
terior probabilities ofall words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N] (1)

whereN is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., thei-th word
of the vocabulary is coded by setting thei-th ele-
ment of the vector to 1 and all the other elements to

projection
layer hidden

layer

output
layerinput

projections
shared

continuous
representation: representation:

indices in wordlist

LM probabilitiesdiscrete
for all words

probability estimation

Neural Network

N

wj−1 P

H

N

P (wj=1|hj)
wj−n+1

wj−n+2

P (wj=i|hj)

P (wj=N|hj)

P dimensional vectors

ck

oiM

Vdj

p1 =

pN =

pi =

Figure 1: Architecture of the neural network
language model. hj denotes the context
wj−n+1, ..., wj−1. P is the size of one projec-
tion and H and N is the size of the hidden and
output layer respectively. When shortlists are used
the size of the output layer is much smaller then the
size of the vocabulary.

0. Thei-th line of theN ×P dimensional projection
matrix corresponds to the continuous representation
of thei-th word. Let us denoteck these projections,
dj the hidden layer activities,oi the outputs,pi their
softmax normalization, andmjl, bj , vij andki the
hidden and output layer weights and the correspond-
ing biases. Using these notations the neural network
performs the following operations:

dj = tanh

(∑
l

mjl cl + bj

)
(2)

oi =
∑
j

vij dj + ki (3)

pi = eoi /
N∑

k=1

eok (4)

The value of the output neuronpi corresponds di-
rectly to the probabilityP (wj = i|hj). Training is
performed with the standard back-propagation algo-
rithm minimizing the following error function:

E =
N∑

i=1

ti log pi + β(
∑
jl

m2
jl +

∑
ij

v2
ij) (5)

whereti denotes the desired output, i.e., the proba-
bility should be 1.0 for the next word in the training

202

sentence and 0.0 for all the other ones. The first part
of this equation is the cross-entropy between the out-
put and the target probability distributions, and the
second part is a regularization term that aims to pre-
vent the neural network from overfitting the training
data (weight decay). The parameterβ has to be de-
termined experimentally.

It can be shown that the outputs of a neural net-
work trained in this manner converge to the posterior
probabilities. Therefore, the neural network directly
minimizes the perplexity on the training data. Note
also that the gradient is back-propagated through the
projection-layer, which means that the neural net-
work learns the projection of the words onto the con-
tinuous space that is best for the probability estima-
tion task. The complexity to calculate one probabil-
ity with this basic version of the neural network LM
is quite high:

O = (n− 1)× P ×H + H + H ×N + N (6)

whereP is the size of one projection andH andN is
the size of the hidden and output layer respectively.
Usual values aren=4,P=50 to 200,H=400 to 1000
andN=40k to 200k. The complexity is dominated
by the large size of the output layer. In this paper the
improvements described in (Schwenk, 2004) have
been used:

1. Lattice rescoring: speech recognition is done
with a standard back-off LM and a word lattice
is generated. The neural network LM is then
used to rescore the lattice.

2. Shortlists: the neural network is only used to
predict the LM probabilities of a subset of the
whole vocabulary.

3. Regrouping: all LM probabilities needed for
one lattice are collected and sorted. By these
means all LM probability requests with the
same contextht lead to only one forward pass
through the neural network.

4. Block mode: several examples are propagated
at once through the neural network, allowing
the use of faster matrix/matrix operations.

5. CPU optimization: machine specific BLAS
libraries are used for fast matrix and vector op-
erations.

The idea behind shortlists is to use the neural
network only to predict thes most frequent words,
s � |V |, reducing by these means drastically the
complexity. All words of the word list are still con-
sidered at the input of the neural network. The LM
probabilities of words in the shortlist (̂PN) are cal-
culated by the neural network and the LM probabil-
ities of the remaining words (̂PB) are obtained from
a standard4-gram back-off LM:

P̂ (wt|ht) =

{
P̂N (wt|ht)PS(ht) if wt ∈ shortlist
P̂B(wt|ht) else

(7)

PS(ht) =
∑

w∈shortlist(ht)

P̂B(w|ht) (8)

It can be considered that the neural network redis-
tributes the probability mass of all the words in the
shortlist. This probability mass is precalculated and
stored in the data structures of the back-off LM. A
back-off technique is used if the probability mass for
a requested input context is not directly available.

Normally, the output of a speech recognition sys-
tem is the most likely word sequence given the
acoustic signal, but it is often advantageous to pre-
serve more information for subsequent processing
steps. This is usually done by generating a lattice,
a graph of possible solutions where each arc cor-
responds to a hypothesized word with its acoustic
and language model scores. In the context of this
work LIMSI’s standard large vocabulary continuous
speech recognition decoder is used to generate lat-
tices using an-gram back-off LM. These lattices are
then processed by a separate tool and all the LM
probabilities on the arcs are replaced by those calcu-
lated by the neural network LM. During this lattice
rescoring LM probabilities with the same contextht

are often requested several times on potentially dif-
ferent nodes in the lattice. Collecting and regrouping
all these calls prevents multiple forward passes since
all LM predictions for the same context are immedi-
ately available at the output.

Further improvements can be obtained by prop-
agating several examples at once though the net-
work, also known as bunch mode (Bilmes et al.,
1997; Schwenk, 2004). In comparison to equation 2
and 3, this results in using matrix/matrix instead of
matrix/vector operations which can be aggressively
optimized on current CPU architectures. The Intel

203

Math Kernel Library was used.1 Bunch mode is also
used for training the neural network. Training of a
typical network with a hidden layer with 500 nodes
and a shortlist of length 2000 (about 1M parameters)
take less than one hour for one epoch through four
million examples on a standard PC.

3 Application to Speech Recognition

In this paper the neural network LM is evaluated
in a real-time speech recognizer for French Broad-
cast News. This is a very challenging task since
the incorporation of the neural network LM into
the speech recognizer must be very effective due
to the time constraints. The speech recognizer it-
self runs in 0.95xRT2 and the neural network in less
than 0.05xRT. The compute platform is an Intel Pen-
tium 4 extreme (3.2GHz, 4GB RAM) running Fe-
dora Core 2 with hyper-threading.

The acoustic model uses tied-state position-
dependent triphones trained on about 190 hours of
Broadcast News data. The speech features consist
of 39 cepstral parameters derived from a Mel fre-
quency spectrum estimated on the 0-8kHz band (or
0-3.8kHz for telephone data) every 10ms. These
cepstral coefficients are normalized on a segment
cluster basis using cepstral mean removal and vari-
ance normalization. The feature vectors are linearly
transformed (MLLT) to better fit the diagonal co-
variance Gaussians used for acoustic modeling.

Decoding is performed in two passes. The first
fast pass generates an initial hypothesis, followed
by acoustic model adaptation (CMLLR and MLLR)
and a second decode pass using the adapted mod-
els. Each pass generates a word lattice which is ex-
panded with a 4-gram LM. The best solution is then
extracted using pronunciation probabilities and con-
sensus decoding. Both passes use very tight prun-
ing thresholds, especially for the first pass, and fast
Gaussian computation based on Gaussian short lists.
For the final decoding pass, the acoustic models
include 23k position-dependent triphones with 12k
tied states, obtained using a divisive decision tree
based clustering algorithm with a 35 base phone set.

1http://www.intel.com/software/products/mkl/
2In speech recognition, processing time is measured in mul-

tiples of the length of the speech signal, the real time factor
xRT. For a speech signal of 2h, a processing time of 0.5xRT
corresponds to 1h of calculation.

The system is described in more detail in (Gauvain
et al., 2005).

The neural network LM is used in the last pass
to rescore the lattices. A short-list of length 8192
was used in order to fulfill the constraints on the pro-
cessing time (the complexity of the neural network
to calculate a LM probability is almost linear with
the length of the short-list). This gives a coverage of
about 85% when rescoring the lattices, i.e. the per-
centage of LM requests that are actually performed
by the neural network.

3.1 Language model training data

The following resources have been used for lan-
guage modeling:

• Transcriptions of the acoustic training data
(4.0M words)

• Commercial transcriptions (88.5M words)

• Newspaper texts (508M words)

• WEB data (13.6M words)

First a language model was built for each cor-
pus using modified Kneser-Ney smoothing as imple-
mented in the SRI LM toolkit (Stolcke, 2002). The
individual LMs were then interpolated and merged
together. An EM procedure was used to determine
the coefficients that minimize the perplexity on the
development data. Table 1 summarizes the charac-
teristics of the individual text corpora.

corpus #words Perpl. Coeffs.

Acoustic transcr. 4M 107.4 0.43
Commercial transcr. 88.5M 137.8 0.14

Newspaper texts 508M 103.0 0.35
WEB texts 13.6M 136.7 0.08

All interpolated 614M 70.2 -

Table 1: Characteristics of the text corpora (number
of words, perplexity on the development corpus and
interpolation coefficients)

Although the detailed transcriptions of the audio
data represent only a small fraction of the available
data, they get an interpolation coefficient of 0.43.
This shows clearly that they are the most appropriate
text source for the task. The commercial transcripts,

204

the newspaper and WEB texts reflect less well the
speaking style of broadcast news, but this is to some
extent counterbalanced by the large amount of data.
One could say that these texts are helpful to learn
the general grammar of the language. The word list
includes 65301 words and the OOV rate is 0.95% on
a development set of 158k words.

3.2 Training on in-domain data only

Following the above discussion, it seems natural to
first train a neural network LM on the transcrip-
tions of the acoustic data only. The architecture
of the neural network is as follows: a continuous
word representation of dimension 50, one hidden
layer with 500 neurons and an output layer limited
to the 8192 most frequent words. This results in
3.2M parameters for the continuous representation
of the words and about 4.2M parameters for the sec-
ond part of the neural network that estimates the
probabilities. The network is trained using standard
stochastic back-propagation.3 The learning rate was
set to0.005 with an exponential decay and the regu-
larization term is weighted with0.00003. Note that
fast training of neural networks with more than 4M
parameters on 4M examples is already a challenge.
The same fast algorithms as described in (Schwenk,
2004) were used. Apparent convergence is obtained
after about 40 epochs though the training data, each
one taking 2h40 on standard PC equipped with two
Intel Xeon 2.8GHz CPUs.

The neural network LM alone achieves a perplex-
ity of 103.0 which is only a 4% relative reduction
with respect to the back-off LM (107.4, see Table 1).
If this neural network LM is interpolated with the
back-off LM trained on the whole training set the
perplexity decreases from 70.2 to 67.6. Despite this
small improvements in perplexity a notable word er-
ror reduction was obtained from 14.24% to 14.02%,
with the lattice rescoring taking less than 0.05xRT.
In the following sections, it is shown that larger im-
provements can be obtained by training the neural
network on more data.

3.3 Adding selected data

Training the neural network LM with stochastic
back-propagation on all the available text corpora

3The weights are updated after each example.

would take quite a long time. The estimated time
for one training epoch with the 88M words of com-
mercial transcriptions is 58h, and more than 12 days
if all the 508M words of newspaper texts were used.
This is of course not very practicable. One solution
to this problem is to select a subset of the data that
seems to be most useful for the task. This was done
by selecting six month of the commercial transcrip-
tions that minimize the perplexity on the develop-
ment set. This gives a total of 22M words and the
training time is about 14h per epoch.

One can ask if the capacity of the neural network
should be augmented in order to deal with the in-
creased number of examples. Experiments with hid-
den layer sizes from 400 to 1000 neurons have been
performed (see Table 2).

size 400 500 600 1000∗

Tr. time 11h20 13h50 16h15 11+16h
Px alone 100.5 100.1 99.5 94.5
interpol. 68.3 68.3 68.2 68.0

Werr 13.99% 13.97% 13.96% 13.92%
∗ Interpolation of networks with 400 and 600

hidden units.

Table 2: Performance for a neural network LM and
training time per epoch as a function of the size of
the hidden layer (fixed 6 months subset of commer-
cial transcripts).

Although there is a small decrease in perplexity
and word error when increasing the dimension of the
hidden layer, this is at the expense of a higher pro-
cessing time. The training and recognition time are
in fact almost linear to the size of the hidden layer.
An alternative approach to augment the capacity of
the neural network is to modify the dimension of the
continuous representation of the words (in the range
50 to 150). The idea behind this is that the proba-
bility estimation may be easier in a higher dimen-
sional space (instead of augmenting the capacity of
the non-linear probability estimator itself). This is
similar in spirit to the theory behind support vector
machines (Vapnik, 1998).

Increasing the dimension of the projection layer
has several advantages as can be seen from the Fig-
ure 2. First, the perplexity and word error rates
are lower than those obtained when the size of the

205

 90

 95

 100

 105

 110

 115

 120

 0 10 20 30 40 50

Pe
rp

le
xi

ty

Epochs

dim 50
dim 60
dim 70

dim 100
dim 120
dim 150

Figure 2: Perplexity in function of the size of the
continuous word representation (500 hidden units,
fixed 6 months subset of commercial transcripts).

hidden layer is increased. Second, convergence is
faster: the best result is obtained after about 15
epochs while up to 40 are needed with large hidden
layers. Finally, increasing the size of the continu-
ous word representation has only a small effect on
the training and recognition complexity of the neu-
ral network4 since most of the calculation is done
to propagate and learn the connections between the
hidden and the output layer (see equation 6). The
best result was obtained with a 120 dimensional
continuous word representation. The perplexity is
67.9 after interpolation with the back-off LM and
the word error rate is 13.88%.

3.4 Training on all available data

In this section an algorithm is proposed for training
the neural network on arbitrary large training cor-
pora. The basic idea is quite simple: instead of
performing several epochs over the whole training
data, a different small random subset is used at each
epoch. This procedure has several advantages:

• There is no limit on the amount of training data,

• After some epochs, it is likely that all the train-
ing examples have been seen at least once,

• Changing the examples after each epoch adds
noise to the training procedure. This potentially
increases the generalization performance.

This algorithm is summarized in figure 4. The
parameters of this algorithm are the size of the ran-
dom subsets that are used at each epoch. We chose

414h20 forP=120 andH=500.

 80

 85

 90

 95

 100

 105

 110

 115

 120

 0 5 10 15 20 25 30 35 40 45 50

Pe
rp

le
xi

ty

Epochs

6 month fix
1% resampled
5% resampled

10% resampled
20% resampled

Figure 3: Perplexity when resampling different ran-
dom subsets of the commercial transcriptions. (word
representation of dimension 120, 500 hidden units)

to always use the full corpus of transcriptions of the
acoustic data since this is the most appropriate data
for the task. Experiments with different random sub-
sets of the commercial transcriptions and the news-
paper texts have been performed (see Figure 3 and
5). In all cases the same neural network architecture
was used, i.e a 120 dimensional continuous word
representation and 500 hidden units. Some experi-
ments with larger hidden units showed basically the
same convergence behavior. The learning rate was
again set to0.005, but with a slower exponential de-
cay.

First of all it can be seen from Figure 3 that the
results are better when using random subsets instead
of a fixed selection of 6 months, although each ran-
dom subset is actually smaller (for instance a total of
12.5M examples for a subset of 10%). Best results
were obtained when taking 10% of the commercial

+ Train network for one epoch

Repeat

Select training data:
− Use all acoustic transcriptions (4M words)
− Extract random subset of examples
 from the large corpora
− Shuffle data

 (performing weight updates after each example)
+ Test performance on development data

Until convergence

Figure 4: Training algorithm for large corpora

206

Back-off LM Neural Network LM

Training data [#words] 600M 4M 22M 92.5M∗ 600M∗

Training time [h/epoch] - 2h40 14h 9h40 12h 3× 12h
Perplexity (NN LM alone) - 103.0 97.5 84.0 80.0 76.5

Perplexity (interpolated LMs) 70.2 67.6 67.9 66.7 66.5 65.9
Word error rate (interpolated LMs) 14.24% 14.02% 13.88% 13.81% 13.75% 13.61%

∗ By resampling different random parts at the beginning of each epoch.

Table 3: Comparison of the back-off and the neural network LM using different amounts of training data.
The perplexities are given for the neural network LM alone and interpolated with the back-off LM trained
on all the data. The last column corresponds to three interpolated neural network LMs.

transcriptions. The perplexity is 66.7 after interpo-
lation with the back-off LM and the word error rate
is 13.81% (see summary in Table 3). Larger sub-
sets of the commercial transcriptions lead to slower
training, but don’t give better results.

Encouraged by these results, we also included the
508M words of newspaper texts in the training data.
The size of the random subsets were chosen in order
to use between 4 and 9M words of each corpus. Fig-
ure 5 summarizes the results. There seems to be no
obvious benefit from resampling large subsets of the
individual corpora. We choose to resample 10% of
the commercial transcriptions and 1% of the news-
paper texts.

 80

 85

 90

 95

 100

 105

 110

 0 5 10 15 20 25 30 35 40 45 50

Pe
rp

le
xi

ty

Epochs

6 month transcription fix
10% transcriptions

5% transcr + 1% journal
5% transcr + 2% journal

10% transcr + 1% journal
10% transcr + 2% journal

Figure 5: Perplexity when resampling different ran-
dom subsets of the commercial transcriptions and
the newspaper texts.

Table 3 summarizes the results of the different
neural network LMs. It can be clearly seen that the
perplexity of the neural network LM alone decreases
significantly with the amount of training data used.
The perplexity after interpolation with the back-off
LM changes only by a small amount, but there is a
notable improvement in word error rate. This is an-

other experimental evidence that the perplexity of a
LM is not directly related to the word error rate.

The best neural network LM achieves a word er-
ror reduction of 0.5% absolute with respect to the
carefully tuned back-off LM (14.24%→ 13.75%).
The additional processing time needed to rescore the
lattices is less than 0.05xRT. This is a significant im-
provement, in particular for a fast real-time continu-
ous speech recognition system. When more process-
ing time is available a word error rate of 13.61% can
be achieved by interpolating three neural networks
together (in 0.14xRT).

3.5 Using a better speech recognizer

The experimental results have also been validated
using a second speech recognizer running in about
7xRT. This systems differs from the real-time recog-
nizer by a larger 200k word-list, additional acoustic
model adaptation passes and less pruning. Details
are described in (Gauvain et al., 2005). The word er-
ror rate of the reference system using a back-off LM
is 10.74%. This can be reduced to 10.51% using a
neural network LM trained on the fine transcriptions
only and to 10.20% when the neural network LM
is trained on all data using the described resampling
approach. Lattice rescoring takes about 0.2xRT.

4 Conclusions and future work

Neural network language models are becoming a
serious alternative to the widely used back-off lan-
guage models. Consistent improvements in perplex-
ity and word error rate have been reported (Bengio
et al., 2003; Schwenk and Gauvain, 2004; Schwenk
and Gauvain, 2005; Emami and Jelinek, 2004). In
these works, the amount of training data was how-

207

ever limited to a maximum of 20M words due to the
high complexity of the training algorithm.

In this paper new techniques have been described
to train neural network language models on large
amounts of text corpora (up to 600M words). The
evaluation with a state-of-the-art speech recognition
system for French Broadcast News showed a signif-
icant word error reduction of 0.5% absolute. The
neural network LMs is incorporated into the speech
recognizer by rescoring lattices. This is done in less
than 0.05xRT.

Several extensions of the learning algorithm it-
self are promising. We are in particular interested
in smarter ways to select different subsets from the
large corpus at each epoch (instead of a random
choice). One possibility would be to use active
learning, i.e. focusing on examples that are most
useful to decrease the perplexity. One could also
imagine to associate a probability to each training
example and to use these probabilities to weight the
random sampling. These probabilities would be up-
dated after each epoch. This is similar to boosting
techniques (Freund, 1995) which build sequentially
classifiers that focus on examples wrongly classified
by the preceding one.

5 Acknowledgment

The authors would like to thank Yoshua Bengio for
fruitful discussions and helpful comments. The au-
thors would like to recognize the contributions of
G. Adda, M. Adda and L. Lamel for their involve-
ment in the development of the speech recognition
systems on top of which this work is based.

References

Yoshua Bengio and Rejean Ducharme. 2001. A neural
probabilistic language model. InNIPS, volume 13.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model.Journal of Machine Learning Research,
3(2):1137–1155.

Jeff Bilmes, Krste Asanovic, Chee whye Chin, and Jim
Demmel. 1997. Using phipac to speed error back-
propagation learning. InICASSP, pages V:4153–
4156.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza,
Jenifer C. Lai, and Robert L. Mercer. 1992. Class-

based n-gram models of natural language.Computa-
tional Linguistics, 18(4):467–470.

Ciprian Chelba and Frederick Jelinek. 2000. Structured
language modeling.Computer Speech & Language,
13(4):283–332.

Stanley F. Chen and Joshua T. Goodman. 1999. An
empirical study of smoothing techniques for language
modeling.Computer Speech & Language, 13(4):359–
394.

Ahmad Emami and Frederick Jelinek. 2004. Exact train-
ing of a neural syntactic language model. InICASSP,
pages I:245–248.

Ahmad Emami and Frederick Jelinek. 2005. Random
clusterings for language modeling. InICASSP, pages
I:581–584.

Yoav Freund. 1995. Boosting a weak learning al-
gorithm by majority. Information and Computation,
121(2):256–285.

Jean-Luc Gauvain, Gilles Adda, Martine Adda-Decker,
Alexandre Allauzen, Veronique Gendner, Lori Lamel,
and Holger Schwenk. 2005. Where are we in tran-
scribing BN french? InEurospeech.

Slava M. Katz. 1987. Estimation of probabilities from
sparse data for the language model component of
a speech recognizer.IEEE Transactions on ASSP,
35(3):400–401.

Ronald Rosenfeld. 1996. A maximum entropy approach
to adaptive statistical language modeling.Computer
Speech & Language, 10(3):187–228.

Holger Schwenk and Jean-Luc Gauvain. 2002. Connec-
tionist language modeling for large vocabulary contin-
uous speech recognition. InICASSP, pages I: 765–
768.

Holger Schwenk and Jean-Luc Gauvain. 2004. Neu-
ral network language models for conversational speech
recognition. InICSLP, pages 1215–1218.

Holger Schwenk and Jean-Luc Gauvain. 2005. Build-
ing continuous space language models for transcribing
european languages. InEurospeech.

Holger Schwenk. 2004. Efficient training of large neu-
ral networks for language modeling. InIJCNN, pages
3059–3062.

Andreas Stolcke. 2002. SRILM - an extensible language
modeling toolkit. InICSLP, pages II: 901–904.

Vladimir Vapnik. 1998. Statistical Learning Theory.
Wiley, New York.

Peng Xu and Frederick Jelinek. 2004. Random forest in
language modeling. InEMNLP, pages 325–332.

208

