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Abstract

This paper presents a novel approach to
combining different word alignments. We
view word alignment as a pattern classifi-
cation problem, where alignment combi-
nation is treated as a classifier ensemble,
and alignment links are adorned with lin-
guistic features. A neural network model
is used to learn word alignments from the
individual alignment systems. We show
that our alignment combination approach
yields a significant 20-34% relative er-
ror reduction over the best-known align-
ment combination technique on English-
Spanish and English-Chinese data.

t@umiacs.umd.edu

free translations, and a high percentage of function
words (about 50% of the tokens in most texts).

This paper presents a novel approach to align-
ment combinationNeurAlign that treats each align-
ment system as a black box and merges their outputs.
We view word alignment as a pattern classification
problem and treat alignment combination a$essi-
fier ensembléHansen and Salamon, 1990; Wolpert,
1992). The ensemble-based approach was devel-
oped to select the best features of different learning
algorithms, including those that may not produce a
globally optimal solution (Minsky, 1991).

We use neural networks to implement the
classifier-ensemble approach, as these have previ-
ously been shown to be effective for combining clas-

sifiers (Hansen and Salamon, 1990). Neural nets
with 2 or more layers and non-linear activation func-
tions are capable of learning any function of the
_ feature space with arbitrarily small error. Neural
Parallel texts are a valuable resource in natural lan-,. 1ove been shown to be effective with (1) high-

guage processing and essential for projecting knO\Néﬂmensional input vectors, (2) relatively sparse data,

edge from one language onto another. Word-level,y 3y sy data with high within-class variability,
alignment is a critical component of a wide range o Il of which apply to the word alignment problem.
NLP applications, such as construction of bilingua

lexicons (Melamed, 2000), word sense disambigua- The rest of the paper is organized as follows: In
tion (Diab and Resnik, 2002), projection of languag&ection 2, we describe previous work on improv-
resources (Yarowsky et al., 2001), and statistical mang word alignments and use of classifier ensembles
chine translation. Although word-level aligners tendn NLP. Section 3 gives a brief overview of neu-
to perform well when there sufficientraining data, ral networks. In Section 4, we present a new ap-
the quality decreases as the size of training data deroach,NeurAlign that learns how to combine indi-
creases. Even with large amounts of training datajdual word alignment systems. Section 5 describes
statistical aligners have been shown to be susceptiur experimental design and the results on English-
ble to mis-aligning phrasal constructions (Dorr et al.Spanish and English-Chinese. We demonstrate that
2002) due to many-to-many correspondences, maxeurAlign yields significant improvements over the
phological language distinctions, paraphrased arigest-known alignment combination technique.

1 Introduction
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of one input layer, one or more hidden layers, and
one output layer. The external input is presented to
the input layer, propagated forward through the hid-
den layers and creates the output vector in the output
layer. Each unit in the network computes its output
with respect to its net inputet; = 3_; w;;a;, where
j represents all units in the previous layer that are
connected to the unit The output of unit is com-
puted by passing the net input through a non-linear
Figure 1: Multilayer Perceptron Overview ~ activation functionf, i.e.a; = f(net;).

The most commonly used non-linear activation
2 Related Work functions are the log sigmoid functiofi(z) =
1 or hyperbolic tangent sigmoid function

. . . . , I+e=®
Previous algorithms for improving word alignments (z) = 1—e2®

have attempted to incorporate additional knowledgore suitable for binary classification problems.

into their modeling. For example, Liu (2005) uses The critical question is the computation of
a log-linear combination of linguistic features. Ad'weights associated with the links connecting the
ditional linguistic knowledge can be in the form of o ,rons. In this paper, we use the resilient back-
part-of-speech tags. (Toutanova et al., 2002) or dgzohagation (RPROP) algorithm (Riedmiller and
pendency relations (Cherry and Lin, 2003). Othepan '1993), which is based on the gradient descent

approaches to improving alignment have combinegethqd, hut converges faster and generalizes better.
alignment models, e.g., using a log-linear combina-

tion (Och and Ney, 2003) or mutually independent NeurAlign Approach

association clues (Tiedemann, 2003). .
A simpler approach was developed by Ayan ewe propose a new approadiieurAlign that learns
how to combine individual word alignment sys-

al. (2004), where word alignment outputs are com- We treat h ali ¢ svst lassi
bined using a linear combination of feature weight ems. We treal each alighment system as a classi-
ler and transform the combination problem into a

assigned to the individual aligners. Our method i assifier ensemble problem. Before describing the

more general in that it uses a neural network mod eurAlian approach. we first introduce some termi
that is capable of learning nonlinear functions. gn app T
nology used in the description below.

Classifier ensembles are used in several NLP ap- Lot E — e e, andF — f £. be two
= €1,...,6¢ = J1y---5Js

plications. Some NLP applications for classifier en- : . :
. . . ~.sentences in two different languages. An alignment

sembles are POS tagging (Brill and Wu, 1998; Ab:. . . .
nk (i, j) corresponds to a translational equivalence

ney etal., 1999), PP attachment (Abney et al., 1999, .
. . . : etween wordse; and f;. Let A, be an align-
word sense disambiguation (Florian and Yarowsky:
. . ment between sentencésand F', where each el-
2002), and parsing (Henderson and Brill, 2000). . . S
L ) : .ementa € A is an alignment link(z,j). Let
The work reported in this paper is the first appli- )
: b . A = {A;,..., A} be a set of alignments between
cation of classifier ensembles to the word-alignme .
. andF'. We refer to the true alignment &5 where
problem. We use a different methodology to COM= - cha € Tis of the form(i, j). A neighborhood
bine classifiers that is based atacked general- J)- 9

ization (Wolpert, 1992), i.e., learning an additionalOf an alignment link(i, j)—denoted byN (i, j)—
S . consists of 8 possible alignment links i & 3 win-
model on the outputs of individual classifiers.

dow with (4, 7) in the center of the window. Each
element of N (7, j) is called aneighboring linkof
(i.5).

A multi-layer perceptron (MLP) is a feed-forward Our goal is to combine the information in
neural network that consists of several units (neud,,..., A; such that the resulting alignment is
rons) that are connected to each other by weightedioser toT". A straightforward solution is to take the
links. As illustrated in Figure 1, an MLP consistsintersection or union of the individual alignments, or

The latter has been shown to be

3 Neural Networks
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perform a majority voting for each possible align- Itis also possible to use variants, or combinations,

ment link (¢, 7). Here, we use an additional modelof these features to reduce feature space.

to learn how to combine outputs df, ..., A;. Figure 2 shows an example of how we transform
We decompose the task of combining word alignthe outputs of 2 alignment systemé,; and A,, for

ments into two steps: (1) Extract features; and (2)n alignment link(¢, j) into data with some of the

Learn a classifier from the transformed data. We ddeatures above. We use -1 and 1 to represent the

scribe each of these two steps in turn. absence and existence of a link, respectively. The

neighboring links are presented in row-by-row order.
4.1 Extracting Features

Given sentence& and F', we create a (potential) fo f fiu Featuresfor thealignment link (i ,j)
alignment instancéi, j) for all possible word com- & pos(@) . pos(fy Noun, Prep
binations. A crucial component of building a classia, ¢ [x | x e Modifier
. . ) outputs of aligners 1 (for Ay, -1 (for A,)
fier is the selection of features to represent the da e, X _

. . . neighbors (A,) -1,-1,-1,1,-1,-1,-1, 1
The simplest approach is to treat each alignmer t1 f f1 [ neighbors(ay TR
system output as a separate feature upon which o ———1 [\dgmos(a0A) (1L 111111
build a classifier. However, when only a few align‘A X | [tota neignvors 2 (for Ay), 3 (for Ay)
ment systems are combined, this feature space is |2 o fertility(e) 2(for Ay, 1 (for A,)
sufficient to distinguish between instances. One i ] X fertility(f;) 1 (for A,), O (for A)
the strategies in the classification literature is to sup- . .
ply the input data to the set of features as well. ~ Figure 2: An Example of Transforming Alignments

While combining word alignments, we use twolnto Classification Data

types of features to describe each instafcg): For each sentence pait = ei,...,e; andF =
(1) linguistic features and (2) alignment featuresfi,..., fs, we generatg x ¢ instances to represent

Linguistic features include POS tags of both wordghe sentence pair in the classification data.

(e; and f;) and a dependency relation for one of Supervised learning requires the correct output,

the words ¢;). We generate POS tags using thavhich here is the true alignmefft If an alignment

MXPOST tagger (Ratnaparkhi, 1996) for EnglisHink (z, j) is an element of’, then we set the correct

and Chinese, and Connexor for Spanish. Depeputput to 1, and te-1, otherwise.

dency relations are produced using a version of the i i

Collins parser (Collins, 1997) that has been adapteé}:i2 Learning A Classifier

for building dependencies. Once we transform the alignments into a set of in-
Alignment features consist of features that are exstances with several features, the remaining task is to

tracted from the outputs of individual alignment syslearn a classifier from this data. In the case of word

tems. For each alignment, € A, the following are alignment combination, there are important issues to

some of the alignment features that can be used &@nsider for choosing an appropriate classifier. First,
describe an instande, ;): there is a very limited amount of manually annotated

data. This may give rise to poor generalizations be-
cause it is very likely that unseen data include lots
of cases that are not observed in the training data.
Second, the distribution of the data according to
the classes is skewed. In a preliminary study on an
English-Spanish data set, we found out that only 4%
of the all word pairs are aligned to each other by hu-
mans, among a possible 158K word pairs. More-
over, only 60% of those aligned word pairs were

1. Whether(i, j) is an element ofi;, or not

2. Translation probability p(f;le;) computed
over A;t

3. Fertility of (i.e., number of words ift’ that are
aligned to)e; in A;,

4. Fertility of (i.e., number of words ift’ that are
aligned to)f; in Ay,

5. For each neighbotr,y) € N(i,j), whether

(z,y) € Ay or not (8 features in total) -
; . _ The translation probabilities can be borrowed from the ex-
6. For each nelghbo(r:c,y) < N(Z’j)’ transla isting systems, if available. Otherwise, they can be generated

tion probabilityp(f,|e.) computed overly (8  from the outputs of individual alignment systems using likeli-
features in total) hood estimates.
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o ° Adj [ Adv | Comp | Det | Noun | Prep| Verb
CToun ) Ad | 18] - - 82| 40| 96| 66
/ Adv - 8 - - 50 67 75

Comp - - 12 - 46 37 96

E
N
—— G
Feature Classification Neural Net|| | [Det - - - 10 60 100 -
Extraction Data Leaning || | [Noun | 42| 77| 100| 94 23| 98| 84
! S [ Prep - - 93 70 22| 100
oupu H [Verb 42 - - 100 66 78 43
Orpus .
P Table 1. Error Rates according to POS Tags for

GIZA++ (E-t0-S) (in percentages
Figure 3: NeurAlign—Alignment Combination ( )(inp ges)

Using All Data At Once
also aligned by the individual alignment systems 4
that were tested.

Finally, given the distribution of the data, it is dif- Data l NN
: 4 ) o NN, .
ficult to find the right features to distinguish betweer Partitioning Comblnaion
instances. Thus, itis prudent to use as many featur \
as possible and let the learning algorithm filter ou Output
the redundant features.

Below, we describe how neural nets are use
different levels to build a good classifier.

d gﬂ'gure 4: NeurAlign—Alignment Combination
with Partitioning

4.2.1 NeurAlign;: Learning All At Once distribution of errors according to POS tags in both
Figure 3 illustrates how we combine align-languages. We examined the cases in which the in-
ments using all the training data at the same timdividual alignment and the manual annotation were
(NeurAlign,). First, the outputs of individual align- different—a total of 3,348 instances, where 1,320 of
ments systems and the original corpus (enrichdéiose are misclassified by GIZA+¥(to-5).2 We
with additional linguistic features) are passed to thgse a standard measure of error, i.e., the percentage
feature extraction module. This module transformef misclassified instances out of the total number of
the alignment problem into a classification probleninstances. Table 1 shows error rates (by percentage)
by generating a training instance for every pair oiccording to POS tags for GIZA+#to-S).3
words between the sentences in the original corpus. Table 1 shows that the error rate is relatively low
Each instance is represented by a set of features (de-cases where both words have the same POS tag.
scribed in Section 4.1). The new training data i€xcept for verbs, the lowest error rate is obtained
passed to a neural net learner, which outputs wheth@hen both words have the same POS tag (the er-
an alignment link exists for each training instance. ror rates on the diagonal). On the other hand, the
) , error rates are high in several other cases, as much
4.2.2 NeurAlign,: Multiple Neural Networks as 100%, e.g., when the Spanish word is a deter-
The use of multiple neural networks (NeurAlign miner or a prepositiof.. This suggests that dividing
enables the decomposition of a complex problerhe training data according to POS tag, and training
into smaller problems.Local expertsare learned neural networks on each subset separately might be
for each smaller problem and these are then mergasktter than training on the entire data at once.
Following Tumer and Ghosh (1996), we apply spa- Figyre 4 illustrates the combination approach

tial partitioning of training instances using proxim-yith neural nets after partitioning the data into dis-
ity of patterns in the input space to reduce the com-

plexity of the tasks assigned to individual classifiers. ?For this analysis, we ignored the cases where both systems

We conducted a preliminary analvsis on 100 ranQroduced an output of -1 (i.e., the words are n_ot aligned).
P y y 30nly POS pairs that occurred at least 10 times are shown.

domly selected English-_Spanish sentence pairs from “The same analysis was done for the other direction and re-
a mixed corpus (UN + Bible + FBIS) to observe thesulted in similar distribution of error rates.
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joint subsets (NeurAligs). Similar to NeurAlign, 2. A set of 491 English-Chinese sentence pairs
the outputs of individual alignment systems, as well  (nearly 13K words on each side) from 2002
as the original corpus, are passed to the feature ex- NIST MT evaluation test set.

traction module. Then the training data is split into

disjoint subsets using a subset of the available fedVe computed precision, recall and error rate on the
tures for partitioning. We learn different neural netentire set of sentence pairs for each data set.

for each partition, and then merge the outputs of the To evaluate NeurAlign, we used GIZA++ in both
individual nets. The advantage of this is that it redirections (-to-F' and F-to-E, where F is either
sults in different generalizations for each partitiorChinese () or Spanish §)) as input and aefined
and that it uses different subsets of the feature spagignmentapproach (Och and Ney, 2000) that uses
for each net. a heuristic combination method callggow-diag-
final (Koehn et al.,, 2003) for comparison. (We
henceforth refer to the refined-alignment approach
This section describes our experimental design, i&s “RA.")

cluding evaluation metrics, data, and settings. For the English-Spanish experiments, GIZA++
was trained on 48K sentence pairs from a mixed
corpus (UN + Bible + FBIS), with nearly 1.2M of
Let A be the set of alignment links for a set of senwords on each side, using 10 iterations of Model 1,
tences. We také' to be the set of sure alignments jterations of HMM, and 5 iterations of Model 4.
links and P be the set of probable alignment linksFor the English-Chinese experiments, we used 107K
(in the gold standard) for the same set of sentencasentence pairs from FBIS corpus (nearly 4.1M En-
Precision fr), recall (Rc) and alignment error rate glish and 3.3M Chinese words) to train GIZA++, us-

5 Experiments and Results

5.1 Evaluation Metrics

(AER) are defined as follows: ing 5 iterations of Model 1, 5 iterations of HMM, 3
|AN P AN S| iterations of Model 3, and 3 iterations of Model 4.
Pr = Re =
A 15 5.3 Neural Network Settings
A ANP :
ABR—1- ANSIFIAOR | |
Al +15] In our experiments, we used a multi-layer percep-

A manually aligned corpus is used as our gold stafon (MLP) consisting of 1 input layer, 1 hidden
dard. For English-Spanish data, the manual annotiyer, and 1 output layer. The hidden layer consists
tion is done by a bilingual English-Spanish speakePf 10 units, and the output layer consists of 1 unit.
Every link in the English-Spanish gold standard i@ll units in the hidden layer are fully connected to
considered a sure alignment link (i.&.,= S). the units in the input layer, and the output unit is

For English-Chinese, we used 2002 NIST mTfully connected to all the units in the hidden layer.
evaluation test set. Each sentence pair was align¥¥e used hyperbolic tangent sigmoid function as the
by two native Chinese speakers, who are fluent ictivation function for both layers.

English. Each alignment link appearing in both an- One of the potential pitfalls is overfitting as the
notations was considered a sure link, and links agpumber of iterations increases. To address this, we
pearing in only one set were judged as probable. Thesed theearly stopping with validation sehethod.
annotators were not aware of the specifics of our apa our experiments, we held out (randomly selected)
proach. 1/4 of the training set as the validation set.

Neural nets are sensitive to the initial weights. To
overcome this, we performed 5 runs of learning for
We evaluated NeurAlignand NeurAlign, using 5- each training set. The final output for each training
fold cross validation on two data sets: is obtained by a majority voting over 5 runs.

1. A set of 199 English-Spanish sentence pairs— _ _ _
The number of alignment links varies over each fold.

(nearly 5K WOI’QS on each side) from a mlXedTherefore, we chose to evaluate all data at once instead of eval-
corpus (UN + Bible + FBIS). uating on each fold and then averaging.

5.2 Evaluation Data and Settings
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5.4 Results Alignments | Pr Rc | AER

E-to-S 87.0| 67.0| 243
This section describes the experiments on English- S-to-E 880|675 236
Spanish and English-Chinese data for testing the 'S;’iséiec“on gg-é gi-g ggg
effects of feature selection, training on the en- RA 838 744 210

tire data (NeurAlign) or on the partitioned data
(NeurAlign,), using two input alignments: GIZA++
(E-to-F) and GIZA++ (F-to-E). We used the fol-
lowing additional features, as well as the outputs
individual aligners, for an instandg, j) (set of fea-
tures 2—7 below are generated separately for ea
input alignmentAy,):

Table 2: Results for GIZA++ Alignments and Their
Simple Combinations

0ttne neighboring links as the feature set gave slightly
E(’not significantly) better results than RA. Using POS
(Jfgs, dependency relations, and neighboring links
also resulted in better performance than RA but the
1. posk;,posF;,relE;: POS tags and depen-difference was not statistically significant.

dency relation foe; and f;. When we used fertilities along with the POS tags
2. neigh(i,j): 8 features indicating whether aand dependency relations, the AER was 20.0%—a

neighboring link exists imMy. significant relative error reduction of 5.7% over RA.
3. fertE;, fertF;: 2 features indicating the fer- Adding the neighboring links to the previous feature

tility of e; and f; in A. set resulted in an AER of 17.6%—a significant rela-
4. NC(i,j): Total number of existing links in tive error reduction of 17% over RA.

N(i,j)in Ag. Interestingly, when we removed POS tags and de-
5. TP(i,7): Translation probabilityp(fjle;) in  pendency relations from this feature set, there was

Ag. no significant change in the AER, which indicates

6. NghTP(i,j): 8 features indicating the trans-that the improvement is mainly due to the neighbor-
lation probabilityp( f,|e,) for each(z,y) € ing links. This supports our initial claim about the

N(i,7)in Ag. clustering of alignment links, i.e., when there is an
7. AvTP(i,j). Average translation probability alignment link, usually there is another link in its
of the neighbors ofi, j) in Ag. neighborhood. Finally, we tested the effects of using

We performed statistical significance tests usinganslation probabilities as part of the feature set, and
two-tailed paired t-tests. Unless otherwise indifound out that using translation probabilities did no
cated, the differences between NeurAlign and othdtelter than the case where they were not used. We
alignment systems, as well as the differences amomg!ieve this happens because the translation proba-
NeurAlign variations themselves, were statisticallPllity p(fjlei) has a unique value for each pairef

significant within the 95% confidence interval. ~ and fj; therefore it is not useful to distinguish be-
tween alignment links with the same words.
5.4.1 Results for English-Spanish

Table 2 summarizes the precision, recall angeature Selection for Training on Partitioned
alignment error rate values for each of our tw ata: NeurAI_igng In order to train on_partitioned_
alignment system inputs plus the three alternativ%ata (NeurAlign), we_r_lee.ded to eSta.lb.“Sh appropri-
alignment-combination approaches. Note that thate features for partitioning the training data. Ta-
best performing aligner among these is the R le 4 presents the evaluation results for NeurAlign
method, with an AER of 21.2%. (We include this i.e., no partitioning) and NeurAlignwith different

in subsequent tables for ease of comparison.) features for partitioning (English P_OS tag, Spapi;h
POS tag, and POS tags on both sides). For training

Feature Selection for Training All Data At Once: on each partition, the feature space included POS
NeurAlign; Table 3 presents the results of traintags (e.g., Spanish POS tag in the case where parti-
ing neural nets using the entire data (NeurAlign tioning is based on English POS tag only), depen-
with different subsets of the feature space. When waency relations, neighborhood features, and fertili-
used POS tags and the dependency relation as feéi@s. We observed that partitioning based on POS
tures, NeurAlign performs worse than RA. Using tags on one side reduced the AER to 17.4% and
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Features Pr Rc AER Features Pr Rc AER
posE;, poskE;, rel 90.6 | 67.7| 225 relEB;, fertE;, fertF;, | 91.9 | 73.0 | 18.6
neigh(i,7) 91.3| 69.5] 21.1 TP(i,5), AvTP(3, j),

posE;, posE;, rel E;, 91.7| 70.2 | 20.5 NghTP(i,j)

neigh(i, j) neigh(i, 7) 90.3| 74.0| 18.7
posE;, posEy, rel E;, 914 | 71.1| 20.0 relE;, fertE;, fertF;, | 91.6 | 76.0 | 16.9
fertE;, fertF; neigh(i,j), NC(i,j)

posE;, posE;, rel E;, 89.5| 76.3| 17.6 relE;, fertE;, fertF;, | 91.4| 76.1| 16.9
neigh(i, ), NC(i, 7) neigh(i, j), NC(i, j),

fertE;, fertF; TP(i,j), AvTP(i, j)

neigg(i,j),fﬁ\iC(i,j) 89.7 | 75.7| 17.9 [RA [838] 744 21.2 |
ﬁi??gif}gﬁ%fmm, 9001 7571 179 Table 5: Combination with Neural Networks:
fertE;, fertFy, NeurAlign, (Partitioned According to POS tags)
neigh(i, j), NC(i, j),

TP(i, j), AvT'P(i, j)

TRA (838 744 212 | duction o_verE-to_—S._Qompared to RA, NeurAlign
also achieved significantly better results over RA:
relative improvements of 9.3% in precision, 2.2% in
recall, and 20.3% in AER.

Table 3: Combination with Neural Networks:
NeurAlign (All-Data-At-Once)

17.1%, respectively. Using POS tags looih sides 5.4.2 Results for English-Chinese

A - _ _ _
reduced the error rate to 16.9%—a significant rel The results of the input alignments to NeurAlign,

aive error reductlgn of 5'6/‘_’ 0,"‘” no_ pqr-tltlonlng.l_e_, GlZA++ alignments in two different directions,
All four methods yielded statistically significant er-

ror reductions over RA—we will examine the fourth
method in more detail below.

NeurAligm (i.e., no partitioning) and variations of
NeurAlign, with different features for partitioning
(English POS tag, Chinese POS tag, and POS tags

Alignment Pr | Rc | AER on both sides) are shown in Table 6. For compar-
NeurAlign, 89.7| 75.7] 17.9 sion, we also include the results for RA in the table.
mgﬂm:gg PZ??‘ gié ;g-g g‘l‘ For brevity, we include only the features resulting
NeurAlign, Pz;osEJi,post} 91.6 76.0| 16.9 in the best configurations from the English-Spanish
[RA [838] 74.4] 212 | experiments, i.e., POS tags, dependency relations,

Table 4: Effects of Feature Selection for Partitioning?ord fertilities, and neighborhood links (the features
in the third row of Table 5). The ground truth used

Once we determined that partitioning by POS tagduring the training phase consisted of all the align-
on both sides brought about the biggest gain, we ranent links with equal weight.
NeurAlign, using this partitioning, but with differ-

ent feature sets. Table 5 shows the results of this | Alignments Pr | Rc | AER

iment. Using dependency relations, word fer- ¢ 041683 307
experiment. g dep ncy , _ Cto-E 66.0 | 69.8 | 32.2
tilities and translation probabilities (both for the link NeurAlign; 850 714 222
in question and the neighboring links) yielded a sig- | NeurAlign[posE: 85.7| 746 | 20.0
nificantly lower AER (18.6%)—a relative error re- mgam:gg Posgj ] gg-; ;ig ig-?

. osl;, posk’; . . .

duction of 12.3% over RA. When the feature set 1P Lo

[RA [61.9] 82.6 | 29.7 |
Table 6: Results on English-Chinese Data

consisted of dependency relations, word fertilities,
and neighborhood links, the AER was reduced to
16.9%—a 20.3% relative error reduction over RA. Without any partitioning, NeurAlign achieves an
We also tested the effects of adding translation proladlignment error rate of 22.2%—a significant relative
abilities to this feature set, but as in the case ddrror reduction of 25.3% over RA. Partitioning the
NeurAlign;, this did not improve the alignments.  data according to POS tags results in significantly
In the best case, NeurAlignachieved substan- better results over no partitioning. When the data is
tial and significant reductions in AER over the in-partitioned according to both POS tags, NeurAlign
put alignment systems: a 28.4% relative error rereduces AER to 19.7%—a significant relative error
duction overS-to-FE and a 30.5% relative error re- reduction of 33.7% over RA. Compared to the input
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