A Server for Real-Time Event Tracking in News

Ralf D. Brown
Language Technologies Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890 USA
ralf@cs.cmu.edu

1. INTRODUCTION

As the flood of information continues to grow, it becomes
ever more necessary to extract just the portion of the flow
which is of interest to each user. The Topic Detection and
Tracking (TDT) project [1, 3, 6, 5] addressed and contin-
ues to address this need, but has been of necessity applied
in a batch-processing context on a static collection. What
is required for topic detection and tracking to be of utility
to end-users is a real-time system which operates on a live
stream of information. This paper describes the extension
and modification of a batch-oriented tracking system into a
real-time server for event detection, event tracking, docu-
ment summarization, and translation.

2. ARCHITECTURE

To allow sharing of resources such as the collection of
news stories between multiple users, a client-server architec-
ture is used. For added flexibility, not all functionality need
be implemented in the central server; in addition to user-
interface clients, several types of service-provider clients are
supported. Service-provider clients initially connect to the
server and authenticate themselves in the same manner as a
user would, but then send additional commands to identify
themselves as service providers and which service(s) they
provide. It is also possible for a service-provider client to
act as an interface to a news source such as a modem-based
newswire service, extracting stories from the news source
and adding them to a specified collection on the server.
Such external interface programs will likely be the primary
source of live data; the current prototype server by itself is
only capable of retrieving specified web pages, either once
on demand or at regular intervals.

For a multilingual context with high-volume news streams,
one needs more than simple alerting — the system must also
translate stories which are not in the user’s language and
generate summaries of sets of relevant stories. Since the
language(s) of the news streams that will be used is not
fixed before-hand, translation and summarization are han-

dled by external processes. The server can load and/or
establish network connections to one or more instances of
our multi-engine machine translation system® [2, 4] and will
invoke the proper instance when a client requests a trans-
lation from one language into another. Similarly, service-
provider clients provide summarization services for speci-
fied languages, with the server routing the summarization
request to the appropriate summarizer (or a very rudimen-
tary language-independent summarizer built into the server
if there is no service provider available for a particular lan-
guage). Tracking requests are processed not only by the
internal tracking engines, but are also passed to any exter-
nal clients which have registered as trackers.

Since having a network interface implies that the server
can be accessed from anywhere in the world, each user has
an account with an associated set of privileges that can,
for example, restrict a guest account to minimal read-only
access without the ability to view the list of users currently
logged in to the server.

Although the primary interaction between clients and the
server consists of synchronous request-response pairs, no-
tification of newly detected or tracked events occurs asyn-
chronously on a separate network connection. Using a sep-
arate connection permits the notification to be broadcast to
all interested clients even if a request-response interaction
is currently in progress with a particular client, and allows
a dedicated thread or process on the client side to mon-
itor the real-time notifications. The main notifications are
NEWEVENT, which indicates that some (unspecified) event dif-
fering from all other current news stories has occurred, and
TRACKED, which indicates that the story discusses an event
which was previously defined using one or more example
instances and optionally some counterexamples. Secondary
notifications are SHUTDOWN and passed-through requests for
tracking, summarization, or document clustering.

Because the live data stream continues 24 hours per day
but the client may not be logged in all the time, all notifica-
tions are permanently stored in a file, and clients may later
request retrieval of the notifications that were missed while
the client was not active. Thus, for example, a user can get
a listing of all “interesting” stories received overnight when
(s)he logs in each morning.

Figure 1 summarizes the various components of this dis-
tributed system. It shows the server communicating with

'The multi-engine translator currently supports translation
between English and French, Spanish, German, Mandarin
Chinese, Croatian, and Haitian Creole, with “toy” versions
of Korean and Slovenian also available.

multiple tracking, detection, summarization, clustering, and
translation servers (some on the same computer, some re-
mote), as well as a web crawler and newswire retrieval engine
for adding news stories to the server. Multiple users, each
with a separate client program, access the server simultane-
ously.

3. IMPLEMENTATION

The first hurdle in implementing the TDT server was
to create a real-time version of the topic tracking system.
The pre-existing system had been batch-oriented because
the definition of the TDT tracking task requires each event
to be processed as though it were the only event, generat-
ing a separate output file for each event. For efficiency, the
entire collection was loaded into memory and then multi-
ple tracking passes (one per event) made over the collection.
Fortunately, the individual tracking engines were structured
with separate decision procedures and control structures to
allow multi-engine combination, so only the control struc-
ture needed to be modified to create a tracking system which
operates incrementally as news stories are loaded into the in-
memory collection. To handle a live data stream — which,
unlike a static collection, is potentially unbounded — stories
which are too old to further affect the training phase of the
tracking engines are removed from the in-memory collection
after each addition of new stories.

Because the removal of documents from the in-memory
collection would make older stories inaccessible to clients
fairly quickly in a high-volume application, the documents
which are removed from memory are stored on disk to allow
retrieval by their document ID (which is provided in each
notification message). At this time, the permanent repos-
itory is not indexed for retrieval by document content or
metadata such as timestamp and language, but there is no
inherent obstacle to adding such indexing.

Once the incremental version of the tracker was opera-
tional, a network interface was added. The network pro-
tocol for the server uses plain-text commands and result
codes to facilitate debugging — one can simply “telnet” to
the server and start entering commands (a simple command-
line client which prompts for a command’s arguments was
also written). Commands to the server include user authen-
tication, enabling/disabling asynchronous alerts, adding and
removing documents from a collection, management of mul-
tiple collections, requests to track a particular event, lookup
of documents by date/time or boolean query, translation,
summarization, fetching of web pages, server statistics, and
registration as a tracker, summarizer, new-event detector,
or clustering engine.

The final step in producing the full system is the imple-
mentation and integration of various clients, which is cur-
rently in progress. A summarizer for English, Spanish, Man-
darin, and Japanese has been adapted into a service-provider
client for the TDT Server, as has a document-clustering pro-
gram. A user-interface client is near completion, and a new-
event detection client is planned. The central server is writ-
ten in C++, and the various clients are implemented in C,

C++, and Java.

4. REFERENCES

[1] J. Allan, J. G. Carbonell, G. Doddington, J. Yamron,
and Y. Yang. Topic Detection and Tracking Pilot

Study Final Report. In Proceedings of the DARPA
Broadcast News Transcription and Understranding
Workshop, Feb 1998.

R. D. Brown. Example-Based Machine Translation in
the PANGLOSS System. In Proceedings of the Sizteenth
International Conference on Computational Linguistics,
pages 169-174, Copenhagen, Denmark, 1996.
http://www.cs.cmu.edu/ "ralf/papers.html.

J. Carbonell, Y. Yang, J. Lafferty, R. D.Brown,

T. Pierce, and X. Liu. CMU report on TDT-2:
Segmentation, Detection and Tracking. In Proceedings
of the DARPA Broadcast News Workshop, pages
117-120, San Francisco, CA, 1999. Morgan Kaufmann
Publishers, Inc.

C. Hogan and R. E. Frederking. An Evaluation of the
Multi-engine M'T' Architecture. In Machine Translation
and the Information Soup: Proceedings of the Third
Conference of the Association for Machine Translation
in the Americas (AMTA ’98), volume 1529 of Lecture
Notes in Artificial Intelligence, pages 113-123.
Springer-Verlag, Berlin, October 1998.

Y. Yang, T. Ault, T. Pierce, and C. W. Lattimer.
Improving Text Categorization Methods for Event
Tracking. In Proceedings of ACM SIGIR Conference on
Research and Development in Information Retrieval,
2000.

Y. Yang, J. Carbonell, R. D. Brown, T. Pierce, B. T.
Archibald, and X. Liu. Learning Approaches for
Detecting and Tracking News Events. IFEE Intelligent
Systems, 14(4):32-43, July/August 1999. Special Issue
on Applications of Intelligent Information Retrieval.

Back—End Service Providers

English and .
German _ New-Event Newswire Other
Spanish) Service
Translator . Detector Receiver Provider
Summarizer
N E 4 7
N \"\ 7 / /}.
N e / 7
N \ / -
N 7 / e
N _J / i
N \ - 4 d
\\ \ \TDT Server Machine / s
N \ /7
. N A | ¥
Spanish Translator \:) g A Web Crawler
\\ Tracker | | Summ. //
N 7
N Ve
N Ve
W &
Chinese Summarizer g — ———%} T¢ — — — — . Document Clustering
~ A TDT Server [* g
7 N
4 N
7 S
il N
Tracking Engine ¥ Collection Mgmt \~\ Other Services
P X ' -
// I N
s I N
7 I \\
s ~
PR I ~
N
e I AN
rd ‘b »
User Interface Client 1 User Interface Client 2 Protocol Debugger

Figure 1: The Distributed TDT-Server Architecture

