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ABSTRACT
This paper describes the scalability and portability of a Belief
Network (BN)-based mixed initiative dialog model across
application domains. The Belief Networks (BNs) are used to
automatically govern the transitions between a system-initiative
and a user-initiative dialog model, in order to produce mixed-
initiative interactions. We have migrated our dialog model from
a simpler domain of foreign exchange to a more complex
domain of air travel information service.  The adapted processes
include: (i) automatic selection of specified concepts in the
user’s query, for the purpose of informational goal inference; (ii)
automatic detection of missing / spurious concepts based on
backward inference using the BN.  We have also enhanced our
dialog model with the capability of discourse context
inheritance.  To ease portability across domains, which often
implies the lack of training data for the new domain, we have
developed a set of principles for hand-assigning BN
probabilities, based on the “degree of belief” in the
relationships between concepts and goals.  Application of our
model to the ATIS data gave promising results.

1. INTRODUCTION
Spoken dialog systems demonstrate a high degree of usability in
many restricted domains, and dialog modeling in such systems
plays an important role in assisting users to achieve their goals.
The system-initiative dialog model assumes complete control in
guiding the user through an interaction towards task completion.
This model often attains high task completion rates, but the user
is bound by many constraints throughout the interaction.
Conversely, the user-initiative model offers maximum flexibility
to the user in determining the preferred course of interaction.
However this model often has lower task completion rates
relative to the system-initiative model, especially when the
user’s request falls beyond the system's competence level. To
strike a balance between these two models, the mixed-initiative
dialog model allows both the user and the system to influence
the course of interaction.  It is possible to handcraft a
sophisticated mixed-initiative dialog flow, but the task is
expensive, and may become intractable for complex application
domains.

  
We strive to reduce handcrafting in the design of mixed-

initiative dialogs. We propose to use Belief Networks (BN) to
automatically govern the transitions between a system-initiative
and a user-initiative dialog model, in order to produce mixed-
initiative interactions.  Previous work includes the use of
semantic interpretation rules for natural language understanding,
where the rules are learnt by decision trees known as Semantic
Classification Trees (SCTs) [6]. Moreover, there is also
previous effort that explores the use of machine learning
techniques to automatically determine the optimal dialog
strategy. A dialog system can be described as a sequential
decision process that has states and actions. An optimal strategy
can be obtained by reinforcement learning [7, 8].  While the
system is interacting with users, it can explore the state space
and thus learn different actions.

Our BN framework was previously used for natural
language understanding [1,2].  We have extended this model for
dialog modeling, and demonstrated feasibility in the CU
FOREX (foreign exchange) [3,4] system, whose domain has
low complexity.  This work explores the scalability and
portability of our BN-based dialog model to a more complex
application.  We have chosen the ATIS (Air Travel Information
Service) domain due to data availability.1

2. BELIEF NETWORKS FOR MIXED-
INITIATIVE DIALOG MODELING −−−−
THE CU FOREX DOAMIN

We have devised an approach that utilizes BNs for mixed-
initiative dialog modeling, and demonstrated its feasibility in
the CU FOREX domain.  Details can be found in [4].  We
provide a brief description here for the sake of continuity.

CU FOREX is a bilingual (English and Cantonese)
conversational hotline that supports inquiries regarding foreign
exchange.  The domain is relatively simple, and can be
characterized by two query types (or informational goals –
Exchange Rate or Interest Rate); and five domain-specific
concepts (a CURRENCY pair, TIME DURATION, EXCHANGE RATE
and INTEREST RATE).  Our approach involves two processes:

2.1 Informational Goal Inference
A BN is trained for each informational goal.  Each BN receives
as input the concepts that are related to its corresponding goal.
In CU FOREX, there are two BNs, each with five input
concepts. The pre-defined BN topology shown in Figure 1
(without dotted arrow) incorporates the simplifying assumption
that all concepts are dependent only on the goal, but are
independent of one another.  This topology can be enhanced by
                                                                
1 The ATIS data can be licensed from the Linguistic Data

Consortium (www.ldc.upenn.edu).



learning the inter-concept dependencies from training data
according to the Minimum Description Length (MDL) principle
[2]. The resultant topology is illustrated in Figure 1.

Figure 1. The predefined topology of our BNs is enhanced by
the linkage (dotted arrow) learnt to capture dependencies
among concepts. The arrows of the acyclic graph are drawn
from cause to effect.

Given an input query, each trained BN will make a binary
decision (using pre-set threshold of 0.5)2 regarding the presence
or absence of its corresponding informational goal, based on the
presence or absence of its input concepts in the query.  The
decisions across all BNs are combined to identify the
informational goal of the input query.  We labeled the query to
a goal if the corresponding BN votes positive with the
maximum aposteriori probability.  Alternatively, we may label
the query with all goals for which the BNs vote positive.
Should all BNs vote negative, the query is rejected as out-of-
domain (OOD).

2.2 Detection of Missing / Spurious
Concepts
Automatic detection of missing or spurious concepts is
achieved by backward inference in the BN.  Given an identified
goal from the previous process, the goal node of the
corresponding BN is instantiated (i.e. P(Gi) set to 1), and
backward inference updates the probability of each concept
P(Ci).  Comparison between P(Ci)  and a pre-set threshold θ
(=0.5) determines whether the concept should be present or
absent; and further comparison with the actual occurrence(s)
determines whether the concept is missing or spurious. In this
way, domain-specific constraints for database access is captured
and enforced in the BN, i.e. an Exchange Rate inquiry
requires a currency pair, and an Interest Rate inquiry requires
specifications of the currency and the duration.  A missing
concept will cause the dialog model to automatically trigger a
system prompt.  A spurious concept will cause automatically
trigger a request for clarification.

Table 1 provides an illustrative example from the CU
FOREX domain.   The first process infers that the query “Can I
have the interest rate of the yen?” has the informational goal of
Interest Rate.  The second process of backward inference
indicates that the concept <DURATION> should be present, but is
absent from the query.  Hence <DURATION> is a missing concept
and the dialog model prompts for the information.

                                                                
2  We choose threshold at 0.5 since P(G=1|C)+P(G=0|C)=1

Table 1. This table steps through our dialog modeling process.
The input query is “Can I have the interest rate of the yen”.
Process 1 (informational goal inference) identifies that this is an
interest rate inquiry.  Process 2 performs backward inference to
compute the concept probabilities. Thresholding with θ=0.5
indicates whether the concept should be present or absent.
Comparison between this binary decision and the actual
occurrence detects that the concept <DURATION> is missing.
Hence the dialog model prompts for the missing information.

Query:  Can I have the interest rate of the yen?
Process 1:  Informational Goal Inference
BN for Interest Rate
P(Goal = Interest Rate | Query) = 0.801  goal present
BN for Exchange Rate
P(Goal = Exchange Rate | Query) = 0.156  goal absent
Hence, inferred goal is Interest Rate.

Process 2:  Detection of Missing / Spurious Concepts
Concept Cj P(Cj) Binary

Decision
for Cj

Actual
Occurrence
of Cj

CURRENCY1 0.91 present present
CURRENCY2 0.058 absent absent
DURATION 0.77 present absent
EXCHANGE_RATE 0.011 absent absent
INTEREST RATE 0.867 present present
Response:  How long would you like to deposit?

3. MIGRATION TO THE ATIS DOMAIN
Our experiments are based on the training and test sets of the
Air Travel Information Service (ATIS) domain. ATIS is a
common task in the ARPA (Advanced Research Projects
Agency) Speech and Language Program in the US. We used the
Class A (context-independent) as well as Class D (context-
dependent) queries of the ATIS-3 corpus. The disjoint training
and test sets consist of 2820, 773 (1993 test), 732 (1994 test)
transcribed utterances respectively.  Each utterance is
accompanied with its corresponding SQL query for retrieving
the relevant information.

We derive the informational goal for each utterance from
the main attribute label of its SQL query. Inspection of the
Class A training data reveals that out of the 32 query types (or
informational goals, e.g. flight identification, fare identification,
etc.), only 11 have ten or more occurrences. These 11 goals
cover over 95% of the training set, and 94.7% of the testing set
(1993 test).  Consequently, we have developed 11 BNs to
capture the domain-specific constraints for each informational
goal. Also, with the reference to the attribute labels identified as
key semantic concepts from the SQL query, we have designed
our semantic tags for labeling the input utterance. We have a
total of 60 hand-designed semantic tags, where both syntactic
(e.g. <PREPOSITION> <SUPERLATIVE>) and semantic concepts
(e.g. <DAY_NAME>, <FLIGHT_NUMBER>) are present. Hence,
ATIS presents increased domain complexity, which is
characterized by 11 query types and total 60 domain-specific
concepts.

− represents goal node
− represents concept node

Interest Rates

CURR1
CURR2 DURATION EX_RATE

IN_RATE



4. SCALABILITY OF A BN-BASED
DIALOG MODEL

4.1 Informational Goal Inference
There is a total of 60 hand-designed3 semantic concepts in the
ATIS domain. In order to constrain computation time for goal
inference, we have limited the number of semantic concepts (N)
that are indicative of each goal Gj.  The parameter N (=20) has
been selected using the Information Gain criterion to optimize
on overall goal identification accuracy on the Class A training
utterances [1].

We have also refined the pre-defined topology using
Minimum Description Length (MDL) principle to model
concept dependencies. Example of the BN is shown in Figure 2.
Their inclusion brought performance improvements in goal
identification [2].

Figure 2. Topology of the BNs for the informational goal
Flight_ID.

Consequently, each BN has a classification-based network
topology – there are N (=20) input concept nodes (e.g. airline,
flight_number, etc.) and a single output node.  To avoid the use
of sparsely trained BNs, we have developed 11 BNs to capture
the domain-specific constraints for each informational goal
using Class A training data. The remaining goals are then
treated as out-of-domain.

A trained BN is then used to infer the presence / absence
of its corresponding informational goal, based on the input
concepts. According to the topology shown in Figure 1, the
learnt network is divided into sub-networks: {Flight_ID,
CITY_1, CITY_2}, {Flight_ID, AIRLINE, CLASS}, {Flight_ID,
TIME}, etc. The updated joint probabilities are iteratively
computed according to the Equation (1) by each sub-network,
the aposteriori probability P*(Gi) is computed by the
marginalization of the updated joint probability P*(Gi,C). P*(Gi)
is then compared to a threshold (θ) to make the binary decision.

where P*(C) is instantiated according the presence or absence
of the concepts; P(Gi,C) is the joint probability obtained from
training and P*(Gi,C) is the updated joint probability

The binary decisions across all BNs are combined to
identify the informational goal of the input query.  We may
label the query to a goal if the corresponding BN votes positive
with the highest aposteriori probability. Alternatively, we may
label the query with all the goals for which the BNs votes
positive. Should all BNs vote negative, the input query is
rejected as out-of-domain (OOD).

                                                                
3 We have included the concepts/attributes needed for database

access, as well as others that play a syntactic role for natural
language understanding.

4.2 Detection of Missing / Spurious
Concepts
Having inferred the informational goal of the query, the
corresponding node (goal node) is instantiated, and we perform
backward inference to test the networks' confidence in each
input concept. In this way, we can test for cases of spurious and
missing concepts, and generate the appropriate systems
response.

When the goal node is instantiated for backward inference,
the joint probability of P(C, Gi) will be updated for each sub-
network by Equation 2:

where P*(G) is updated and instantiated to 1, P(C|Gi) is the
conditional probability obtained from training data and
P*(C,Gi) is the updated joint probability

By marginalization, we can get P(Cj). We have pre-set
threshold 0.5 for the CU FOREX domain to determine whether
the concept should be present or absent. However, when the
dialog modeling using single threshold scheme is applied to the
ATIS domain, we often obtained several missing / spurious
concepts for an input query. For example, consider the query.

Query: What type of aircraft is used in American airlines
flight number seventeen twenty three?

 Concepts: <WHAT> <TYPE> <AIRCRAFT> <AIRLINE_NAME>
<FLIGHT_NUMBER>

 Goal: Aircraft_Code

Our BN for AIRCRAFT_CODE performed backward
inference and the results in Table 2 using single threshold
scheme indicated that the concepts <ORIGIN> and
<DESTINATION> are missing, while <FLIGHT_NUMBER> is
spurious.  One reason is because in the training data, most
queries with the goal Aircraft_Code provided the city pair
instead of the flight number, but both serve equally well as an
additional specification for database access.  If our dialog
model followed through with these detected missing and
spurious concepts, it would prompt the user for the city of
origin, then the city of destination; and then clarify that the
flight number is spurious.  In order to avoid such redundancies,
we defined two thresholds for backward inferencing, as follows:

Hence concepts whose probabilities (from backward
inference) scores between θupper and θlower will not take effect in
response generation (i.e. prompting / clarification).  Concepts
whose scores exceed θupper, and also correspond to an SQL
attribute will be prompted if missing; and concepts whose
scores scant θlower, and correspond to an SQL attribute will be
clarified if spurious. By minimizing number of dialog turns
interacting with the users in the training data, we have
empirically adopted 0.7 and 0.2 for θupper and θlower respectively.
The double threshold scheme enables the dialog model to
prompt for missing concepts that are truly needed, and clarify
for spurious concepts that may confuse the query’s
interpretation.

 (1)

 (2)

<θupper and >=θlower  Cj is optional in the given Gi query
>=θupper  Cj  should be present in the given Gi query

P(Cj)
< θlower  Cj should be absent in the given Gi query
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Table 2. Aposteriori probabilities obtained from backward
inferencing using 0.5 as threshold for the query “What type of
aircraft is used in american airlines flight number seventeen
twenty three?”

Conceptj (Cj)
(Part of concepts)

P(Cj ) Binary
Decision
For Cj

Actual
Occurrence
for Cj

AIRCRAFT 1.000 present present

CITY_NAME1 0.645 present absent

CITY_NAME2 0.615 present absent
DAY_NAME 0.077 absent absent

FLIGHT_NUMBER 0.420 absent present

4.3 Context Inheritance
We attempt to test our framework using ATIS-3 Class A and D
queries.  As the Class D queries involve referencing discourse
context derived from previous dialog turns, we have enhanced
our BN-based dialog model with the capability of context
inheritance. Since the additional concepts may affect our goal
inference, we choose to invoke goal inference again (after
context inheritance) only if query was previously (prior to
context inheritance) classified as OOD.  Otherwise, the original
inferred goal of the query is maintained.  This is illustrated in
Table 3.  Context inheritance serves to fill in the concepts
detected missing from the original query.  This is illustrated in
Tables 4 and 5.

Table 3. Examples of ATIS dialogs produced by the BN-based
dialog model. It indicates that the OOD query is inferred again
as Flight_ID query after the inheritance of discourse context.

System What kind of flight information are you interested
in?

User I'd like to fly from miami to chicago on american
airlines. (Class A query)

System Goal Inference: Flight_ID (Concepts pass the
domain constraints)

User Which ones arrive around five p.m.?
(Class D)

System Goal Inference: Flight_ID. (System first infers this
query as OOD, but it retrieves the concepts from
the discourse context and infers again to get
Flight _ ID.)

Table 4. Examples of ATIS dialogs produced by the BN-based
dialog model with the capability of inheritance for the missing
concepts.

System What kind of flight information are you
interested in?

User Please list all the flights from Chicago to Kansas
city on June seventeenth. (Class A query)

System Goal Inference: Flight_ID (Concepts pass the
domain constraints)

User For this flight how much would a first class
fare cost.  (Class D)

System Goal Inference: Fare_ID. (The missing concepts
<CITY_NAME1> <CITY_NAME2> are automatically
retrieved from the discourse context.)

Table 5. Aposteriori probabilities obtained from backward
inferencing using double threshold scheme for the Class D
query “For this flight how much would a first class fare cost.”
in Table 4. It indicates that the cities of origin and destination
are missing.

Conceptj (Cj)
(Part of concepts)

P(Cj ) Decision
for Cj

Actual
Occurrence
for Cj

AIRPORT_NAME 0.0000 absent absent
CITY_NAME1 0.9629 present absent
CITY_NAME2 0.9629 present absent
CLASS_NAME 0.2716 optional present
FARE 0.8765 present present

We inherit discourse context for all the Class D queries.
Based on the training data, we have designed a few context
refresh rules to “undo” context inheritance for several query
types. For example, if the goal of the Class D query is
<Airline_Code>, it is obviously asking about an airline, hence
the concept <AIRLINE_NAME> will not be inherited.

5. PORTABILITY OF A BN-BASED
DIALOG MODEL

In addition to scalability, this work conducts a preliminary
examination of the portability of our BN-based dialog models
across different application domains.   Migration to a new
application often implies the lack of domain-specific data to
train our BN probabilities.  At this stage, BN probabilities can
be hand-assigned to reflect the "degree of belief" of the
knowledge domain expert.

5.1 General Principles for Probability
Assignment

For each informational goal, we have to identify the concepts
that are related to the goal. For example, the informational goal
Ground_Transportation is usually associated with the key
concepts of <AIRPORT_NAME> <CITY_NAME> and
<TRANSPORT_TYPE>. After the identification of all concepts for
the 11 goals, 23 key concepts (more details below) are extracted
from the total 60 concepts. Each of the 11 handcrafted BNs
hence receives as input of the identical set of 23 concepts.

13 semantic concepts (out of 23) (e.g. <CITY_NAME>,
<AIRPORT_NAME>, <AIRLINE_NAME>) correspond to the SQL
attributes for database access, while the reminding 10
correspond to syntactic/semantic concepts (e.g. <AIRCRAFT>,
<FARE>, <FROM>). For the sake of simplicity, we assumed
independence among concepts in the BN (pre-defined topology),
and we then hand-assigned the four probabilities for each of the
11 BNs, namely P(Cj=1|Gi=1), P(Cj=0|Gi=1), P(Cj=1|Gi=0),
P(Cj=0|Gi=0). We avoid assigning the probabilities of 1 or 0
since they are not supportive of probabilistic inference.  In the
following we describe the general principles for assigning
P(Cj=1|Gi=1) and P(Cj=1|Gi=0). The remaining P(Cj=0|Gi=1)
and P(Cj=0|Gi=0) can be derived by the complement of the
former two probabilities.



5.1.1 Probability Assignment for P(Cj=1|Gi=1)
We assign the probabilities of P(Cj=1|Gi=1) based on the
occurrence of the concept Cj with the corresponding Gi query as
shown in Table 6.

Case 1. Cj must occur given Gi
If we identify a concept that is mandatory for a query of goal Gi,
we will hand-assign a high probability  (0.95-0.99) for
P(Cj=1|Gi=1). For example, concept <FARE> (for words e.g.
fare, price, etc.) must occur in Fare_ID query.  (“what is the
first class fare from detroit to las vegas” and “show me the first
class and coach price").

Case 2. Cj often occurs given Gi
If the concept often occurs with the Gi query, then we will lower
the probabilities of P(Cj=1|Gi=1) to the range of 0.7-0.8. For
example, the Fare_ID query often comes with the concepts of
<CITY_ORIGIN> and <CITY_DESTINATION>.
Case 3. Cj may occur given Gi
This applies to the concepts that act as additional constraints for
database access. Examples are <TIME_VALUE>, <DAY_NAME>,
<PERIOD>specified in the user query.

Case 4. Cj seldom occurs given Gi
The occurrence of this kind of concepts in the user query is
infrequent. Example includes the concept <STOPS> which
specify the nonstop flight for the Fare_ID query.

Case 5. Cj never occurs given Gi
This kind of concepts usually provides negative evidence for
goal inference. Examples include the concept
<FLIGHT_NUMBER> in the Flight_ID query. The presence of
<FLIGHT_NUMBER> in the input query implies that the goal
Flight_ID  is unlikely, because the aposteriori probability for
the BN Flight_ID is lowered.

Table 6. Conditions for assigning the probabilities
P(Cj=1|Gi=1).

Condition Probability of P(Cj=1|Gi=1)
1. Cj must occur given GI 0.95 – 0.99
2. Cj often occur given Gi 0.7 – 0.8
3. Cj may occur given GI 0.4 – 0.6
4. Cj seldom occur given Gi 0.2 – 0.3
5. Cj must not occur given Gi 0.01 – 0.1

5.1.2 Probability Assignment for P(Cj=1|Gi=0)
For assignment the probabilities of P(Cj=1|Gi=0) for BNi, we
have to consider the occurrence of  the concepts for goals other
than Gi, i.e. for goal Gm (where m ranges between 1 and 11  but
is not equal to i). The scheme for assigning P(Cj=1|Gi=0), i.e.
probability of concept Cj being present while goal Gi is absent,
is shown in Table 7.

Case 1. Cj always occurs for goals other than Gi
Consider the relationship between the concept <CITY> and the
goal Aircraft_Code. Since <CITY> always occur for other
informational goals, (e.g. Flight_ID, Fare_ID, etc.), we assign
P(C<CITY>=1|G<Aircraft_Code>=0) in the range of 0.7-0.9.

Case 2. Cj sometimes occurs for goals other than Gi
Consider the relationship between the concept <CLASS> and the
goal Aircraft_Code. Since <CLASS> sometimes occurs in the
informational goals other than Aircraft_Code, and acts as the
additional constraints for database access, we assign
P(C<CLASS>=1|G<Aircraft_Code>=0) in the range of 0.2-0.5.

Case 3. Cj seldom occurs for goals other than Gi
This applies to the concepts that are strongly dependent on a
specific goal and hence seldom appear for other goals. For
example, the concept <TRANSPORTATION> usually accompanies
the goal Ground_Transportation only. Hence
P(C<TRANSPORTATION>=1|G<Ground_Transportation>=0)
is set closed to 0.

Table 7 Conditions for assigning the probabilities P(Cj=1|Gi=0)
Condition Probability of

P(Cj=1|Gi=0)
1. Cj always occurs for goals other than Gi 0.7 – 0.9
2. Cj sometimes occurs for goals other than Gi 0.2 – 0.5
3. Cj seldom occurs for goals other than Gi 0.01 – 0.1

5.2 Evaluation
BNs with hand-assigned probabilities achieved a goal
identification accuracy of 80.9% for the ATIS-3 1993 test set
(Class A and D sentences included). This compares to 84.6%
when they have been automatically trained on the training data.
The availability of training data for the BNs enhances
performance in goal identification. Queries whose goals are not
covered by our 11 BNs are treated as OOD, and are considered
to be identified correctly if there are classified as such.

We have compared the handcrafted probabilities with the
trained probabilities based on natural language understanding,
where the evaluation metric is the sentence error rate. A
sentence is considered correct only if the inferred goal and
extracted concepts in the generated semantic frame agrees with
those in the reference semantic frame (derived from the SQL in
the ATIS corpora). The goal identification accuracies and the
sentence error rates for the ATIS-3 1993 test set are
summarized in Table 8. When we compare the our results with
the NL understanding results from the 10 ATIS evaluation sites
shown in Table 9, our performance falls within a reasonable
range.

Table 8 Goal identification accuracies and the sentence error
rates of Class A and D queries of ATIS test 93 data for the
handcrafted probabilities and automatically trained probabilities
respectively.

Class
BNs

(handcrafted
probabilities)

BNs
(trained

probabilities)

A (448) 90.18% 91.74%

D (325) 68.31% 74.78%Goal ID
Accuracy

A+D  80.98%  84.61%

A (448) 12.05% 9.15%

D (325) 40.92% 33.85%
Sentence
Error
Rate A+D 24.19% 19.53%



Table 9 Benchmark NL  results from the  10 ATIS evaluation
sites [6].

Class Sentence Error Rate

A (448) 6.0 – 28.6%

D (325) 13.8 – 63.1%

A+D (773) 9.3 – 43.1%

We observed that our strategy for context inheritance may
be too aggressive, which leads to concept insertion errors in the
generated semantic frame.  This is illustrated in the example in
Table 10.

Table 10 The case frame for query 3 indicates our context
inheritance strategy may be too aggressive which leads to a
concept insertion error in the generated semantic frame.

Query 1: List flights from oakland to salt lake city before
six a m Thursday morning
(Our system generates a correct semantic frame.)

Query 2: List delta flights before six a m (Class D)
(Our system generates a correct semantic frame.)

Query 3: List all flights from twelve oh one a m until six a
m (Class D)
(Our system detects missing concepts of
<CITY_NAME>, which are inherited from
discourse)

Case Frame SQL Reference
Goal: Flight_ID Flight_ID

CITY_NAME = oakland CITY_NAME = oaklandConcepts:
CITY_NAME = salt lake
city
DEPARTURE_TIME =
twelve oh one a m until
six a m
AIRLINE_NAME = delta (a
concept insertion error)

CITY_NAME = salt lake city
DEPARTURE_TIME = >=1
&& <= 600

6. SUMMARY AND CONCLUSIONS
This paper describes the scalability and portability of the BN-
based dialog model as we migrate from the foreign exchange
domain (CU FOREX) to the relatively more complex air travel
domain (ATIS).  The complexity of an application domain is
characterized by the number of in-domain informational goals
and concepts.  The presence / absence of concepts are used to
infer the presence/absence of each goal, by means of the BN.
When a large number of in-domain concepts are available, we
used an information-theoretic criterion (Information Gain) to
automatically select the small set of concepts most indicative of
a goal, and do so for every in-domain goal.   Automatic
detection of missing / spurious concepts is achieved by
backward inference using the BN corresponding to the inferred
goal.  This detection procedure drives our mixed-initiative
dialog model – the system prompts the user for missing
concepts, and asks for clarification if spurious concepts are

detected.   For the simpler CU FOREX domain, detection of
missing / spurious concepts was based on a single probability
threshold.  However, scaling up to ATIS (which has many more
concepts) shows that some concepts need to be present, others
should be absent, but still others should be optional.  Hence we
need to use two levels of thresholding to decide if a concept
should be present, optional or absent in the query.  We have
also enhanced our BN-based dialog model with the capability
of context-inheritance, in order to handle the context-dependent
user queries in the ATIS domain.  Discourse context is inherited
for the Class D queries, and we invoke goal inference again
after context inheritance if a query was previously classified as
OOD.

As regards portability, migration to a new application
domain often implies the lack of domain-specific training data.
Hence we have proposed a set of general principles for
probability assignment to the BNs, as a reflection of our
“degree of belief” in the relationships between concepts and
goals.   We compared the goal identification performance, as
well as concept error rates between the use of hand-assigned
probabilities, and the probabilities trained from the ATIS
training set.  Results show that the hand-assigned probabilities
offer a decent starting performance to ease portability to a new
domain.  The system performance can be further improved if
data is available to train the probabilities.
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