Japanese Text Input System With Digits

—Can Japanese text be estimated only from consonants 7—

Kumiko TANAKA-Ishii

Yusuke INUTSUKA

Masato TAKEICHI

University of Tokyo
7-3-1 Hongo Bunkyoku Tokyo
+81-5841-7412, Japan
{kumiko, inu, takeichi}@Qipl.t.u-tokyo.ac.jp

ABSTRACT

We discuss a Japanese text input method for mobile
phones. Different from the current methods that are
based on kana kanji conversion system, our system asks
user only to input the sequence of digits that in fact
corresponds to the sequence of consonants, and then
convert it directly into the final kanji form.

After the examination on the number of candidates
for a sequence of digits, we explain our method of word
estimation based on Hidden Markov Model and describe
our implementation. Then we report the results of eval-
uation by comparing the number of needed keystrokes
to input various kinds of actual texts.

1 INTRODUCTION

As the mobile phones have come into wide use, various
internet services are now becoming available on these
phones. For example, we may look up train timetables,
or we may ask for the best Italian restaurant around the
place. This is usually done not by calling up somebody,
but by accessing a given home page on the phone, and
by typing in the needed text.

The problem here is that mobile phones are only
equipped with a small keypad of about 12 small but-
tons. Therefore, people are now making great efforts to
minimize the number of keystrokes to input text. This
is done not only from the services side (such as to use
pop up menu for selection), but also from the users’
side (such as to register the frequently used keywords as
shortcuts). Additionally, there is another trend that ap-
peared recently, that is, to adopt the new input method,
single-stroke-per-character method [9][10].

With the past text input method, users have to press
the keys multiple times to obtain a suitable character
(multiple-strokes-per-character method). For exam-
ple, to input “box”, user taps the sequence of “2266699”.
Here, 'b’ corresponds to the No.2 key assigned three
characters of “ABC”, so, “22” means the second char-
acter “B”. Similarly, tapping No.6 three times indi-
cates the third character of “MNO” and twice No.9 is
the second character of “WXYZ”. Rather, single-stroke-
per-character method proposes only to press “269” for
“box”, the first digits of the same successive numbers.
Off course this sequence does not only correspond to
the word “box” but also to, “any”, “cow”, “boy” etc.
So, the system picks all these possibilities, show them
to the user and the user chooses his target word. In
essence, single-stroke-per-character method tries to de-
crease keystrokes by increasing the ambiguity of input
and resolving it interactively.

In Japanese, single-stroke-per-character method cor-
responds to input digits that actually are consonants.
In the early 80’s, when the current kana kanji conver-
sion system was still not that established, the discussion
of Japanese input system only by consonants existed
in the context of desk-top computer applications [3][4].
Shortly after, the research extinguished without being
able to find any application. However, the recent spread
of mobile phones has once again brought this topic to
the fore.

In general, single-stroke-per-character method needs
less number of key strokes for input, but it should handle
far larger number of candidates compared with multiple-
strokes-per-character. Additionally, this problem of ex-
plosion of candidates is greater in Japanese, first be-
cause the Japanese language contains more homonyms
and second because the kana alphabet has twice as many
characters as the European alphabet.

Therefore, we first need to verify whether such sys-
tem could be put to use. After over-viewing the current
Japanese input method with digits, we will explore the
possibilities for the containment of this explosion of can-

didates.

2 INPUT WITH DIGITS

Before we go into our topic, let us briefly explain the
kana-kanji conversion system, that is used nowadays to
input Japanese text on desktop computers.

The final form of Japanese could be the mixture of
two sort of characters; kanji, the Chinese character,
kana, the phonetic alphabet character. We input such
a language as follows. First, the user inputs his target
word by the sequence of phonemes, using kana. Then,
the input system looks for the possible final forms that
correspond to the user input and show them to the user.
The input finishes when user selects his choice.

Currently. there are two major methods to do the
same with digits. In both methods, users input the se-
quence of kana by digits. It is the user’s responsibility
to convert kana into digits. Because a kana is composed
of a consonant and a vowel, each of them is attached a
digit as is shown in Table 1. The user may convert any
kana sequence into a unique sequence of digits with this
table. For example, “/3” (ha) corresponds to “61” and
“:” (ko) to LL25” .

The two input methods differ in how users input the
vowel (see Table 2!). The first method is called Pocket-
Bell method? (written as PB method in the followings).
The user inputs the digit sequence exactly as was ob-
tained from the Table 1. For example, to input “I£Z”
(reads hako, means box), user presses “6125” succes-
sively. This method has the priority that the user needs
only to input two digits per kana just as with the or-
dinary keyboard on desktop computers. However, the
user needs to move his fingers more than the following
second method.

The second method is called Kana method(with cap-
ital ’K’), the most popular input method among the
mobile phone users at the moment. Users tap conso-
nant digit the vowel digit times, just as in the multiple-
strokes-per-character method for European language. In
the case of “IZ 27, users tap once No.6 key, then five
times of No.2 key. This method has a priority that the
user could keep his finger at one place to input one kana.
However, he needs to make many key strokes, especially
when the word contains kana with the vowel of “e” (four
times) or “o” (five times). Because of this, the biggest
problem of users in this method is that they tend to

Here “*” is used to transfer “k” to “g”, that is similarly writ-
ten in kana alphabet. For example, with the vowel “0”, “Z” (ko)
is transformed into “Z” (go). For PB method, 1 is needed after
“¥” hecause there are several transformation of kana of this kind.
Also, “A”(n), the unique character in Japanese without vowel is
input by “03”.

2Pocket Bell is NTT’s trademark for pager.

Table 1: Digits corresponding to consonants and vowels

Consonants
0 1 2 3 4
Hw) | &) | k) | S(s) | = (1)
5 6 7 8 9
em) |1t | Fm) | CF) | 5@
Vowels
11213415
alijule
Table 2: How “lZIFA Z”(reads nihongo, means

Japanese) is input with digits

Iz (S h oy
PB method 52 65 03 25*%1
Kana method | 55 | 66666 | 000 | 22222%*
Our method 5 6 0 2%

mistype by pressing the same button too many times
than expected. Additional problem is that there is an
ambiguity of man-machine interaction when users want
to input the kana of the same consonant successively.
For example, “hihi” (6262), 6 twice and then 6 twice
again is exactly the same as four times of 6 (64) that
corresponds to “he”.

We could observe that what users want is a method
that allows text input with:

e less number of replacement of fingers, and
e less total number of keystrokes.

Our method asks user to input one stroke of the digit
that corresponds to the consonant of kana. In the case
of “I£Z7”, the user only needs to input the sequence
of “62” (corresponding to “hk”). This method has a
priority that user needs only one stroke per kana, and
he neither needs to move fingers for a kana. The number
of strokes by the user decreases to the half that of PB
method.

Instead, because such input sequence is more ambigu-
ous compared with the kana-based method, the system
needs to guess the actual user input among candidates
that have the same sequence of consonants. For ex-
ample, “62” not only corresponds to “I%Z7”, but also
to other completely different kana sequences such as “
5 <7 (reads huku), “ 137" (reads haka). Further, for
each of these kana sequences, there are several final
forms. For example, “5<” corresponds to, “lt” (means
dress), “ <7 (means to blow), “BX<” (means to wipe),
“f&” (means blessing), “Fll” (means vice) etc. Therefore,
the number of candidates is expected to be very nu-
merous compared with kana-based method. In the next
section, we examine some statistics and discuss whether
our input method could be put to use.

Table 3: Number of candidates for a digit sequence

Our Kana or PB
statistics method method
Base Average 241 1.39
line Max 167 43
Average by 31.61 4.76
frequency
Words Average 1.69 1.19
with Max 74 37
POS tag Average 5.47 1.65
frequency
Words of | Average 1.82 1.15
frequency | Max 32 10
more than | Average by 6.29 1.75
100 frequency

3 PROBLEM

Japanese corpus of Mainichi newspaper articles of gen-
eral news page (’94, 1.3 million word occurrences,
28Mbytes) contains 90 thousand different words. The
average length of words when transliterated in kana al-
phabet is 4.81. Because kana has 50 different characters,
50%8! = about 143 million different kana sequences can
be represented with the length of 4.81. Among 143 mil-
lion, only 90 thousand are used for the vocabulary of
Mainichi newspaper. Therefore, one kana sequence per
one word can be easily realized if we do not think about
homonyms.

On the other hand, our method only has 10 digits
(consonants). This can represent only 10*#= about
60 thousand different digit sequences. In this space,
we should assign 90 thousand words, that is larger than
the space size. Therefore, large number of words need to
share a digit sequence even if all different digit sequences
are used. Here already we have a hunch that the number
of word candidates for a sequence becomes very large.

To measure the number of candidates more precisely,
we took the statistics of the number of candidates given
a sequence of kana or digits that corresponds to a word.
The first line of Table 3 shows the average number of
candidates for an input in the case of our method and
by PB or Kana. We could already see that in our case,
the number of candidates amounts to more than 2 tak-
ing any word at random. The second line shows the
maximum number of candidates; our case is four times
as much as kana’s case. Additionally, we also calculated
the average number of candidates taking a word accord-
ing to the word frequency distribution®. Looking at this

3This is done by the following formula.
Z(num,ber of candidates)X(fregency)

z frequency

Note that sum is calculated for all possible kana/digit sequences.

line, we nearly feel that we should give up this problem.

One solution to handle this explosion of candidates
is to make the selection process into two stages rather
than one. After input, the user is first shown to choose
among possible kana sequences. For example, when he
inputs “62”, then the system first shows “/$7>”, “lL&”
(reads haki), “1Z<7,...; 7 1227 (reads hoko) and user
chooses his target as kana alphabet sequence. Then, the
user’s choice is passed to the second selection process,
the kana-kanji conversion system. Such solution is taken
by T9[8], or ZI[10].

However, we have a strong impression that such se-
lection process had better be unified if possible. The
largest reason for this is that twice of selection pro-
cess makes the man-machine interaction rather complex.
Additionally, the action of interactive candidate selec-
tion is slow because the user should look for his target
by scrolling the candidates back and forth*. Therefore,
the number of selection process had better be eliminated
as much as possible.

Consequently, we seek to implement our input method
within single stage of selection as is in the kana-kanji
conversion system. User inputs digit and our system
converts it into the final form directly. In this case,
we should do something with the number of candidates.
There are only two solutions: 1.decrease the whole num-
ber of candidates and 2. sort them in a preferred order.

In order to decrease the number of candidates, we
may use the part of speech tag in order to discriminate
words better. The 4th to 6th lines in Table 3 show the
same statistics for the whole words but discriminated
with part of speech tag. We could see that the values
decrease.

The naive criteria to sort candidates in a better order
is the frequency. Suppose that there are 32 candidates,
2 of them are frequently used but the rest 30 are hardly
used. Then if the system sorts the candidates in the
frequency order and shows that two as the best, then
the user need not handle the useless 30 candidates.

In order to see whether frequency could be used or
not, 7th to 9th rows in the Table 3 shows the same
statistics calculated only for the words that occurred
more frequently than 100. We could see that the number
of candidates decreases to better values. Therefore, we
could say that frequency information helps to show the
candidates in right order.

To conclude, we try to implement our Japanese input

4In Japanese, we also had character based input method named
T-code system, that is proved to be the far faster method to input
Japanese, compared with any kana-kanji conversion systems. A
T-code is two successive keys that corresponds to one character.
T-code users first memorize codes for all Japanese characters that
amounts to more than 5000. Although proved to be the fastest
input method, the load of memorizing T-code was too tough to
be accepted by most of the end-users.

Table 4: Various text input options

Name Input Unit Completion | Selection Stage | Current System

DW1 digit word no one -

DW2 digit word | no two T9[9], ZI[10]

DWC(C1 digit word yes one ours

DP1 digit phrase | no one ours

KWC1-PB kana(PB) word | yes one -

KP1-PB kana(PB) phrase | no one any mobile phone input system
KWC1-Kana | kana(Kana) | word | yes one PO-Box[5] (for Palms)
KP1-Kana kana(Kana) | phrase | no one any mobile phone input system

system that allows user to select the final target within
the single selection stage. In order to do this, we
make much use of the part of speech tag and word
frequency.

4 LANGUAGE MODEL

The input system needs to estimate the corresponding
word sequence from the input sequence of digits. We
adopt language model based on Hidden Markov Model
for this task.

Suppose that C denotes the user input sequence of
digits. Then the best sequence of words is defined as:

i (1)

W = arg max P(W|C)
Because C' is the same to all candidates, right hand side
of equation is:

W = arg max P(W). (2)

If we denote T as the sequence of part of speech tags,
then P(WW) can be rewritten as:

P(W)=Y_ P(W,T) (3)
T

without loosing any generality. We introduce two ap-

proximations:

P(wnlwl,n—lvtl,n) = P(wn|tn) (4)

P(tnlwl,n—latl,n—l) = P(t’nltn—l)- (5)
Here w; means the ith word of W, w;; denotes word
sequence from ith to jth of W. Then the right hand
side of the equation (3) is transformed into
PW) = " T plwilt) Ptisat:): (6)
T i=1
Such a word model for English is resumed by
Charniak[2] , and also in Japanese by Nagata [7] es-
pecially for morphological analyzer.
Overall, given a digit sequence, the system calculates
the above probability for all the possible candidates, and
then sorted shown to the user in that order.

5 IMPLEMENTATION

5.1 Input Options

There are other various options to input text other than
input by digit vs. kana (second column of Table 4). One
is the language unit. The choice are among a word, a
phrase or phrases (third column)®. Here, the longer the
unit is, the larger the system load because it should
look for the best target among combinatorially many
candidates.

We could also think of whether to adopt the com-
pletion (fourth column). When using the completion,
the system estimates and shows the best candidate not
waiting until the input to be as long as the unit. For
example, with DWC1, “f” (reads hako, means boz cor-
responds to “65”) is estimated and shown to the user
even when the user only taps “6”. This method is very
ambiguous at input. Such a input is proposed for Palm
text input systems and it is distributed as free-ware [5]
for kana-based input(7th row of Table 4).

Completion by phrase means to estimate the best next
word as well as completing the current word. Therefore,
the system might estimate “ #5137 (a box is) or “fiA
VIRIE” (a girl from a good familiy is, Japanese
idiomatic expression using the word bozx) after a single
input of “6”. In this case, the load on the system will
become very high because the search area for candidates
is very vast.

The fourth column of the table shows how many se-
lection stages are used until user to end the input. Our
choice is one, as is explained §3.

Here, our input system is mainly to input text with
the methods of DWC1 and DP1. However, we also im-
plemented other variations as in the list, so that all could
be compared against each other.

5.2 System

In general, given a digit sequence, the system looks up
all possible candidates using the dictionary (see §5.3)

5Character based input means no ambiguity at input.

that is initialized at boot time. Then it calculates the
probability (explained in §4) for candidates, sorts them
and shows them to the user.

If the user’s target word is contained in the system
results, then the user may choose the word using one of
the following commands:

e +n Select the first word of n-th candidate.

e m Show the next candidates.

When the input method is phrase-based, then the
system cut the input sequence and convert each piece
into words. For example, “ 421430316 ” could be words
such as “ Bl (4214, takeiti, name) %&£ (3031, sensei,
professor) IX 7 (6, ha), or “TN (4214, takeuti, another
name) BT 7 (30316, sinseihu, new government). In
this case, the system should estimate two parameters:
word border and the word itself.

The number of candidates in phrase based method
is large because of combinations. So, in order to de-
crease the calculation complexity, we adopted Nagata’s
Viterbi-like algorithm([7] to approximately obtain the
best candidate. From this best candidate, its first word
is replaced with the other possible words of the same
digit length. The resulting set is shown in the order of
the probability.

We could have chosen to form candidates out of the
second best, or the third best according to the formula
(6) and Nagata’s method. However, the second and the
third best could contain words of different border. This
forces users to make selection among words of different
length, that is rather confusing from user interface point
of view. Therefore, we took the above method to form
candidates, so that users may decide one parameter at a
time, first by adjusting word border and then choosing
the target word.

In order to allow users to adjust the word borders,
some more commands are prepared:

e s Shorten the word border of the first word

e 1 Extend the word border of the first word
These commands are to be implemented using the di-
rection key and special keys that is also equipped on
mobile phones.

Another problem that might occur is when the user’s
target was not found in the dictionary that is unknown
words. In this case, the user might need to input charac-
ter by character (see §5.3). If the user’s target is written
by kana or kata-kana, then user may do this by:

e h Transliterate first word with kana

e k Transliterate first word with kata-kana
Unknown words will be registered automatically into the
user dictionary. (However, for the evaluation section,
registration is not performed to measure the system per-
formance in the identical environment.)

For all input methods, human user can be replaced by
a routine that automatically inputs any given Japanese

text and counts how many keystrokes are needed for the
task. Candidates are formed and shown to the routine
using exactly the same statistical method of frequency
and part of speech tag based on HMM. All methods
use the same dictionary (described in the next section).
Therefore, the number of key strokes can be compared
fairly.

As for methods of completion, the timing to select the
candidates are not unique. For example, user might find
his target as the third best after the input of 2 digits, or
find his target as the best after the input of 3 digits. For
the automatic input, we decided that the target word is
chosen when it appears as the best candidate. Other-
wise, the next digit of the current word is tapped in to
filter out the irrelevant candidates. When input for the
word ends and the target does not appear as the best,
then the target is chosen from the non best.

5.3 Dictionary

The dictionary is constructed from Mainichi newspaper
corpus (described in the §3). First, we analyzed corpus
morphologically[6], then all words that occurred in the
corpus were shaped into a dictionary. One entry of the
dictionary contains the following elements:

e word transliterated in kana

e corresponding sequence in digits (only of conso-
nants)
word
part of speech tag

e frequency
The dictionary is added all characters in Japanese to
cope with the unknown words. In order to minimize
the size of the whole dictionary, we implemented the
dictionary using trie-based method [1].

6 EVALUATION

6.1 Output Example

We first show two small input examples each by DP1 and
DWCI1 in Figure 5. The example phrase is described at
the top four rows.

We see that a user inputs a digit by digit when using
DWCI1, and a phrase by digit when using DP1. Then
system estimates candidates (five candidates are shown
at a time in the example case. Some part of DWCI is
omitted for the sake of space). Then, the user inter-
actively chooses his target. The results could be seen
accumulated in front of the prompt > >’ as the input
proceeds. For DWC1, the effect of completion could be
seen for the words of “busy”, that the target appears
even when the input is not completed.

Table 5: Output example
RMEEZXOSBITLN,

Prof. Takeichi is always busy.
takeichisensei ha itsumo isogashii.
42143031 6 147 132%31

Japanese target text

Translation

Transliteration in roma-ji

Digit sequence (only consonants)

DWC1 DP1

>4 > 421430316

189 () LR (BT R (RrA) 1 ()
2. HiEL (vH7) 2. BN (# 7 0F) R (Tred) i ()
. 3. Gl (b7 AF) Gtk (Lreda) i ()
S A, W (XIAT) A (TrA) 1 ()
1. M (7%) B Rl (244 F) ek (ra) i ()
2. X (V¥) > +5

1. ek (kra) 1% ()

> 1 2. BA (P YY) 1 ()

1. @ (FhA) 3. i (v A) 13 ()

2. 5 (FAA) 4. mME (Fora) iE ()

5. W (LY v i ()

>4 > +1

1. VN (20 F) 1.0 (1)

2. ff&xHo (YRTv) 2.~ (™)

3. F— (F/AF) 3. i (7)

4. (#orvF) 4. % (&)

5. EXWLE (YR LY) 5. Uk ()

> m wifidE> +1

RiidekiE> 147
1. Lobh (1)

(more command filters out
words longer than

length 4. ,uw(/u)

1. W (&f/r/ 7) 3. B+

2. ft&Go (YXT)

3. F— (F/AF)

4. mN (25T uhhm zt> +1

5. Rili (#474F) Witidedrnob> 132*%31

> 45 1At (f YA 1)

®ili> 3 RiieAEvob> 41

1. &h (V) ik o bt L *

2. % (vv) 1., ()

2., ()

®ili> 0 3 J (J)

1. &h (V) ren

2. i (vv) u&llu’)L’Izru\ OHIC LS 42
WA EvobIL LY, > quit

Hili> 3

1 i (vvy)

. Jﬁ]’ (Erva)

K 1
1. %k (k)
2. Wil (yrtg)

Hili> +1
itk > 6
1.0 ()
2.~ (~)

;fé'\\iv‘c/\a> +1
Wi > 1

1L (17

2. KW (AAY D)
RitisE> 4

1. — (17)
2. b (Tv)

RitisEE> 7
1. Vob (1)
2. T (AT

109 (4)

2. 3 11\ (Hv7)

umri'/‘c'\-:f-tu\/>t> *
(system estimated the
target as No.2 candidate
when the input of the
word is not completed yet.)
1. B (1v7)
2. LW (A Y H A1)
3. CLL (A 2Iv)
CACUM (A Y H T v)
. MRS (VA TA)
HEvob> 42
FvobitLin> *

RO BIC LYY 41
CEIRNOBIC LY, > quit

6.2 Test Data for Automated Input

We prepared two kinds of texts for evaluation (Table 6).
The first kind is the Mainichi newspaper articles. For

Table 6: Test data

Newspaper Personal text
general | economics | e-mail | book
No. of 1752 1675 1744 | 1577
words
No.of diff. 771 652 528 330
words
No. sentences 61 53 72 59
No.unknown 1 24 22 67
words
No.unknown 1 24 22 67
diff. words 1 23 21 28
Avr.len. of 2.431 2.866 | 2.326 | 2.246
words(digits)

this first kind, two corpus is prepared, the one used for
building the dictionary, and the other articles of eco-
nomics domain not used to build the dictionary.

The second kind is from the completely different do-
main, that is user’s personal texts. Here also, we pre-
pared two texts, the third author’s e-mail corpus (of
1 year, about 150 thousand words) and his article of
text book of functional programming (about 90 thou-
sand words).

In order to eliminate the local bias of context, we
took a certain number of sentences randomly from all
over the place of each corpus, until the total number of
words amounts to more than 1500 words. Here, stops
(periods, commas) are also regarded as a kind of word.

The number of unknown words that occurred at in-
put are also shown in the table. This is not included in
the number of words(first line), nor to compute average
number of keystrokes in the following. Note that un-
known words occur not only because it is not registered
in the dictionary, but also because of the approximation
of search for candidates (see §5.2).

6.3 Kana vs. Digit

Table 7 shows the results for 6 methods for the test
data of economics articles. The table contains average
number of keystrokes needed for each action of input,
adjust word border (only for phrase based method) and
selection. For the selection, we assume that it needs n
strokes if the correct answer is shown as nth candidate.

SReaders might indicate that a stroke is not needed to choose
the best candidate, because the user could go on to tap the next
word directly without any explicit selection action.

As for the methods with completion, this is not true. Target is
estimated at every user action, therefore the user should explicitly
choose the target even when choosing the best candidate.

As for the methods without completion, the assumption is true.
However, without completion, user should indicate the timing to

Table 7: Average number of keystrokes per word needed
for each action to input newspaper articles of economics

input | adjust wrd || select
border

DWC(C1 2476 | - 1.802
KWC1-Kana || 6.204 | - 1.106
KWC1-PB 4.952 | - 1.106
DP1 2.866 | 0.116 1.903
KP1-Kana 8.088 | 0.013 1.088
KP1-PB 5.731 | 0.013 1.088

Table 8: Average number of keystrokes per word for
various test data

Newspaper Personal text

general | economics || e-mail | book

DWC(C1 4.446 4.278 4.060 | 4.731
KWC1-Kana || 6.683 7.310 6.442 | 6.802
KWC1-PB 5.414 6.058 5.260 | 5.355
DP1 4.864 4.885 4.521 | 5.268
KP1-Kana 7.993 9.189 7.618 | 7.735
KP1-PB 5.991 6.832 5.748 | 5.765

The average total keystrokes needed per word is listed
in the second column (of economics) in Table 8.

First of all, we see that PB and Kana methods have
the same number of strokes for adjusting word border
and selection. This is always true because user ulti-
mately input kana both with PB and Kana methods
Also, the number of keystrokes needed for PB method
is double that of our method. We could also see that
DWC1 needs less number of keystrokes for a word than
DP1, that is the effect of the completion.

With DWC1 and DP1 less keystrokes are needed for
input, but more for selection compared with KWC1 and
KP1 methods. However, as a whole, less keystrokes are
needed(Table 8, second column). We see here that our
approach is successful for this test document. We also
see that DWCI is the most efficient method.

6.4 Difference among Text Kinds

Next, we compare the efficiency to input text of differ-
ent kinds. This time, we only show the total average
keystrokes per word in Table 8, because the breakups of
keystrokes have the same trend as were discussed in the
previous section.

invoke the digit/kana kanji conversion, therefore one extra stroke
is always needed per language unit which is not counted in our
evaluation. Therefore, balancing these two, for DW1, the count
is equal to the minimal number of keystrokes. For DP1 and KP1,
the counts are slightly larger than the minimal.

For all four texts, we see the same trends as we have
seen with economics article, that is:

e Input by digits is more efficient than that by kana.

e DWC1 is the most efficient.

Therefore, we could probably say that, in general, the
input by digit is more efficient than that by kana inde-
pendent of the text kind.

The text that needed least keystrokes turned up to be
the user e-mail text by digits, not the newspaper article
used to construct the dictionary. The reason for this is
that e-mail text was quite characteristic that it contains
many stops (periods and commas) than other texts (see
Table 6). Note that the average keystrokes that we show
also measures text style as well as the efficiency of input.

The worst text by digit input was the user’s book data
of technical domain. For this text, DWCI1 has least dif-
ference with keystrokes by KWC1-PB method. There-
fore, how efficient the input by digit depends on text
kind, although the fact that input by digit is the most
efficient method stays with our four test data.

As a whole, for all data, DWC1 is 37.76% more effi-
cient than KWC1-Kana, 21.82% than KWC1-PB, DP1
is 40.05% more efficient than KP1-Kana, 19.87% than
KP1-PB in average.

6.5 One Stage vs. Two Stages

We also compared our method with that of T9[9] or
ZI[10]. As T9 and ZI methods are word based, we also
implemented a simple word based method (not using
completion) DW1 and then compared it with DW2. Be-
cause our system is based on HMM, conversions of DW1
and DW2 are both estimated by HMM.

As is discussed, DW2 has two stages of selection, first
to select kana and then to select the final kanji form of
the word. As T9 and ZI methods both are not open
to public, we guessed the minimal input method using
two stages and implemented it as follows. First, user
types in a word by digits of consonants, then presses a
key to invoke digit to kana conversion. User selects his
target then presses another key to invoke kana to kanji
conversion and then selects the final form.

Because there are words of final form that only con-
sists of kana, we made the system not to pass these
words to the second selection process of kana-kanji con-
version. We could sum up the number of keystrokes by
addition of that needed for input, selection of kana se-
quence (at least 1 needed to invoke digit kana conversion
for all words)” and selection of target (at least 1 only
for words that contain kanji).

“When the target appears as the best, user can directly go onto
the second selection process. Therefore the number of keystrokes
needed to choose nth target will be n, containing the key stroke
to invoke the conversion process.

Table 9: Number of keystrokes per word for DW1 and

DW2

Newspaper Personal text
action || general | economics | e-mail | book
D | select 2.298 1.783 1.959 | 2.599
W | total 4.729 4.649 4.285 | 4.845

1
D | selectl || 1.644 1.445 1.567 | 1.717
W | select2 || 0.555 0.621 0.385 | 0.510
2 | total 4.630 4.933 4.278 | 4.473

The results are shown in Table 9. Here, keystrokes for
input action is not indicated, because it is in common
to DW1 and DW2. The result of second selection is
total number of keystrokes divided by whole number of
words (also words that does not contain any kanji.) so
that values could be summed for selectl and select2.

For DW2, we could see that the number of keystrokes
for selection is small at each stage. As a result, DW1 is
quite defeated by DW2 for the test data of user’s book.
Having that the user’s book was also a hard task for
DP1 and DWC1 (see Table 8, first row), we should look
for some other method to specialize the system to the
text.

For the other three, DW1 and DW2 competes well.
Having these results, we think that DW1 is better be-
cause man-machine interaction is far simpler. Also, if we
compare DWC1 and DW2, then DWC1 is better (except
for the user book). Therefore, we could say that DWC1
is the better choice with its simplicity of man-machine
interface and also from the efficiency point of view.

7 CONCLUSION

We have discussed an alternative Japanese text input
method for mobile phones. The user inputs the se-
quence of digits that corresponds to the sequence of con-
sonants so that the number of key strokes decreases to
at least half. The system then needs to estimate the
most probable word sequence from digits. We first ver-
ified whether such input system could be put to practi-
cal use, then argued that the word frequency and part
of speech tag could be the key to solving the problem.
Then we implemented our system using Hidden Markov
language model. With this study we verified that our
system decreases more than 35% of the key strokes of
the most popular text input method used on current
mobile phones.

The most important future work is to examine the
potential of a personalized dictionary. Mobile phones
are, by nature, for personal use. Therefore if the dic-
tionary could be personalized based on recent context

or the user’s own corpus, the text input would be more
efficient by eliminating the uncommon word candidates.
We are currently applying a statistical learning method
by extending input system described in this paper.

References

[1] J. Aoe. An efficient implementation of static string
pattern matching machines. In IEEE Transactions
on Software Engineering, 1989.

[2] E. Charniak. Statistical Language Learning. MIT
Press, 1993.

[3] NEC Co.Ltd. Japanese text input system. In
Japanese Patent No.10-124506, 1996.

[4] Toshiba Co.Ltd. Japanese text input system. In
Japanese Patent No.57-185528, 1982.

[5] T. Masui. PO-BOX an efficient text input method
for handheld and ubiquitous computers. In the
ACM Symposium on User Interfface Software and
Technology, pages pp.113-119, 1999.

[6] Y. Matsumoto and et. al. Manual of Japanese mor-
phological analyzer chasen, 1997. Naist Technical
Report.

[7] M. Nagata. Research on Japanese with Stochastic
Models. ph.D. thesis, 1998.

[8] ASCII-24 (online news service). Tegic9 announces
japanese input software for mobile phones, 2000.
http://www.ascii24.com/24/news/tech
/article/2000/12/26/621457-000.html.

[9] Tegic9. Tegic9 home page, 2000. Available from
http://www.t9. com.

[10] ZI-Corp. Zi home page, 2000.
http://207.229.18.241/.

Available from

