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ABSTRACT
We present the design and development of a Hidden Markov
Model for the division of news broadcasts into story segments.
Model topology, and the textual features used, are discussed,
together with the non-parametric estimation techniques that were
employed for obtaining estimates for both transition and
observation probabilities.  Visualization methods developed for
the analysis of system performance are also presented.

1. INTRODUCTION
Current technology makes the automated capture, storage,
indexing, and categorization of broadcast news feasible allowing
for the development of computational systems that provide for the
intelligent browsing and retrieval of news stories [Maybury,
Merlino & Morey ‘97; Kubula, et al., ‘00].  To be effective, such
systems must be able to partition the undifferentiated input signal
into the appropriate sequence of news-story segments.

In this paper we discuss an approach to segmentation based on the
use of a fine-grained Hidden Markov Model [Rabiner, `89] to
model the generation of the words produced during a news
program.  We present the model topology, and the textual features
used.  Critical to this approach is the application of non-parametric
estimation techniques, employed to obtain robust estimates for
both transition and observation probabilities. Visualization
methods developed for the analysis of system performance are
also presented.

Typically, approaches to news-story segmentation have been
based on extracting features of the input stream that are likely to
be different at boundaries between stories from what is observed
within the span of individual stories. In [Beeferman, Berger, &
Lafferty ‘99], boundary decisions are based on how well
predictions made by a long-range exponential language model
compare to those made by a short range trigram model. [Ponte and
Croft, ‘97] utilize Local Context Analysis [Xu, J. and Croft, ‘96]

to enrich each sentence with related words, and then use dynamic
programming to find an optimal boundary sequence based on a
measure of word-occurrence similarity between pairs of enriched
sentences. In [Greiff, Hurwitz & Merlino, `99], a naïve Bayes
classifier is used to make a boundary decision at each word of the
transcript.  In [Yamron, et al., ‘98], a fully connected Hidden
Markov Model is based on automatically induced topic clusters,
with one node for each topic.  Observation probabilities for each
node are estimated using smoothed unigram statistics.

The approach reported in this paper goes further along the lines of
find-grained modeling in two respects: 1) differences in feature
patterns likely to be observed at different points in the
development of a news story are exploited, in contrast to
approaches that focus on boudary/no-boundary differences; and 2)
a more detailed modeling of the story-length distribution profile,
unique to each news source (for example, see the histogram of
story lengths for ABC World News Tonight shown in the top
graph of Figure 3, below).

2. GENERATIVE MODEL

We model the generation of news stories as a 251 state Hidden
Markov Model, with the topology shown in Figure 1. States
labeled, 1 to 250, correspond to each of the first 250 words of a
story.  One extra state, labeled 251, is included to model the
production of all words at the end of stories exceeding 250 words
in length.

Several other models were considered, but this model is
particularly suited to the features used, as it allows one to model
features that vary with depth into the story (Section 3.1), while
simultaneously, by delaying certain features.  It also allows one to
model features that occur in specific regions the boundaries
(Section 3.3).  This is possible because all states can feed into the
initial state, i.e. all stories end by going into the first word of a
new story.
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Figure 1:  Current HMM Topology



For example, the original model involved a series of beginning
and then end states, with a single middle state that could be cycled
through (Figure 2).  This proved to be a problem because the ends
of long stories were being mixed with the ends of short stories
which led to problems with our spaced coherence feature (Section
3.1).  Another possibility involved splitting the model into two
main paths, one to model the shorter stories, and one to model the
longer as there is something of a bimodal distribution in story
lengths (Figure 4).  However, the fine-grained nature of our model
would suffer from splitting the data in this manner, and a choice
about at which length to fork the model would be somewhat
artificial.
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COHER-4  (Figures 3b, c & d) correspond to similar features; for
these, however, the buffer is separated by 50, 100, and 150 words,
respectively, from the current word.  Interestingly, the COHER-4
feature actually caused a reduction in performance, and was not
used in the final evaluation.

3.2. X-duration
This feature is based on indications given by the speech recognizer
that it was unable to transcribe a portion of the audio signal. The
existence of an untranscribable section prior to the word gives a
non-zero X-DURATION value based on the extent of the section.
Empirically this is an excellent predictor of boundaries in that an
untranscribable event has uniform likelihood of occurring
anywhere in a news story, except prior to the first word of a story,
where it is extremely likely to occur.

3.3. Triggers
Trigger features correspond to small regions at the beginning and
end of stories, and exploit the fact that some words are far more
likely to occur in these positions than in other parts of a news
segment.  One region, for example, is restricted to the first word of
the story.  In ABC’s World News Tonight, for example, the word
“finally” is far more likely to occur in the first word of a story than
1 2 500 501

Figure 3: Original Topology
. FEATURES
ssociated with the model is a set of features.  For each state, the
odel assigns a probability distribution over all possible
mbinations of values the features may take on.  The probability
signed to value combinations is assumed to be independent of
e state/observation history, conditioned on the state. We further
sume that the value of any one feature is independent of all
hers, once the current state is known. Features have been
plicitly designed with this assumption in mind.  Three
tegories of features have been used, which we refer to as
herence features, x-duration feature, and the trigger features.

.1. Coherence

e have used four coherence features.  The COHER-1 feature,
own schematically in Figure 2a, is based on a buffer of 50
ords immediately prior to the current word.  If the current word
es not appear in the buffer, the value of COHER-1 is 0.  If it does
pear in the buffer, the value is -log(sw/s), where sw is the number
 stories in which the word appears, and s is the total number of
ories, in the training data. Words that did not appear in the
aining data, are treated as having appeared once.  In this way,
re words get high feature values, and common words get low
ature values.  Three other features: COHER-2, COHER-3, and

would be expected by its general rate of occurrence in the training
data.  For a word, w, appearing in the input stream, the value of
the feature is an estimate of how likely it is for w to appear in the
region of interest.  The estimate used is given by:
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where Rwn ∈ is the number of times w appeared in R in the training

data; wn  is the total number of occurrences of w; and Rf  is the
fraction of all tokens of w that occurred in the region.  This
estimate can be viewed as Bayesian estimate with a beta prior.
The beta prior is equivalent to a uniform prior and the observation
of one occurrence of the word in the region out of ( )Rf/1  total
occurrences.  This estimate was chosen so that: 1) the prior
probability would not be greatly affected for words observed only
a few times in the training data; 2) it would be pushed strongly
towards the empirical probability of the word appearing in the
region for words that were encountered in R; 3) it has a prior
probability, Rf , equal to the expectation for a randomly selected
word.  The regions used for the submission were restricted to the
one-word regions for: first word, second word, last word, and
next-to-last word.  Limited experimentation with multi-state
regions, was not fruitful.  For example, including the regions,
{3,4,…,10} and {-10,-9,…,-3}, where –i is interpreted as i words
prior to the end of the story, did not improve segmentation
performance.

Since, as described, the current HMM topology does not model
end-of-story words (earlier versions of the topology did model
these states directly), trigger features for end-of-story regions are
delayed. That means that a trigger related to the last word in a
story would be delayed by a one word buffer.  In this way, it is
linked to the first word in the next story.  For example, the word
“Jennings” (the name of the main anchorperson) is strongly
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Figure 2: Coherence Features



correlated with the last word in news stories in the ABC World
News Tonight corpus.  The estimated probability of it being the
last word of the story in which it appears is .235 (obtained by the
aforementioned method). The trained model associates a high
likelihood of seeing the value .235 at state = 1; the intuitive
interpretation being, "a word highly likely to appear at the last
word of a story, occurred 1-word ago".

4. PARAMETER ESTIMATION
The Hidden Markov Model requires the estimation of transition
and conditional observation probabilities.  There are 251 transition
probabilities to be estimated.  Much more of a problem are the
observation probabilities, there being 9 features in the model, for
each of which a probability distribution over as many as 100
values must be estimated, for each of 251 states.  With the goal of
developing methods for robust estimation in the context of story
segmentation, we have applied non-parametric kernel estimation
techniques, using the LOCFIT library [Loader, ‘99] of the R open-
source statistical analysis package, which is based on the S-plus
system [Venables & Ripley,

`99; Chambers & Hastie, `92, Becker, Chambers & Wilks, `88].
For the transition probabilities, it is assumed that the underlying
probability distribution over story length is smooth, allowing the
empirical histogram, shown at the top of Figure 4, to be
transformed to the probability density estimate shown at the
bottom. From this probability distribution over story lengths, the
conditional transition probabilities can be estimated directly.

Conditional observation probabilities are also deduced from an
estimate of the joint probability distribution.  First, observation
values were binned.  Binning limits were set in an attempt to 1) be
large enough to obtain sufficient counts for the production of
robust probability estimates, and yet, 2) be constrained enough so
that important distinctions in the probabilities for different feature
values will be reflected in the model.  For each bin, the
observation counts are smoothed by performing a non-parametric
regression of the observation counts as a function of state.  The
smoothed observations counts corresponding to the regression are
then normalized so as to sum to the total observation count for the

bin.  The result is a conditional probability distribution over states
for a given binned feature value,  p(State=s|Feature=fv).  Once
this is done for all bin values, each conditional probability is
multiplied by the marginal probability, p(State=s), of being in a
given state, resulting in a joint distribution, p(fv,s), over the entire
space of (Feature,State) values.  From this joint distribution, the
necessary conditional probabilities, p(Feature=fv|State=s), can be
deduced directly.

Figure 5 shows the conditional probability estimates, p(fv | s), for
the feature value COHER-3=20, across all states, confirming the
intuition that, while the probability of seeing a value of 20 is small
for all states, the likelihood of seeing it is much higher in latter
parts of a story than it is in early-story states.

5. SEGMENTATION
Once parameters for the HMM have been determined,
segmentation is straightforward.  The Viterbi algorithm [Rabiner,
`89], is employed to determine the sequence of states most likely
to have produced the observation sequence associated with the
broadcast.  A boundary is then associated with each word
produced from State 1 for the maximum likelihood state sequence.

The version of the Viterbi algorithm we have implemented
provides for the specification of “state-penalty” parameters, which
we have used for the “boundary state”, state 1. In effect, the
probability for each path in consideration is multiplied by the
value of this parameter (which can be less than, equal to, or
greater than, 1) for each time the path passes through the boundary
state.  Variation of the parameter effectively controls the
“aggressiveness” of segmentation, allowing for tuning system
behavior in the context of the evaluation metric.

6. RESULTS
Preliminary test results of this approach are encouraging.  After
training on all but 15 of the ABC World News Tonight programs
from the TDT-2 corpus [Nist, ’00], a test on the remaining 15
produced a false-alarm (boundary predicted incorrectly)
probability of .11, with a corresponding miss (true boundary not
predicted) probability of .14, equal to the best performance
reported to date, for this news source.

A more intuitive appreciation for the quality of performance can
be garnered from the graphs in Figure 6, which contrast the
segmentation produced by the system (middle) with ground truth
(the top graph), for a typical member of the ABC test set. The x-
axis corresponds to time (in units of word tokens); i.e., the index
of the word produced by the speech recognizer, and the y-axis

Figure 4: Histograms of story lengths (up to 250 words)
-- raw and smoothed --

Figure 5: Likelihood of COHER-3=2 over all states



corresponds to the state of the HMM model. A path passing
through the point (301, 65), for example, corresponds to a path
through the network that produced the 65th word from state 301.
Returns to state=1 correspond to boundaries between stories. The
bottom graph shows the superposition of the two to help illustrate
the agreement between the path chosen by the system and the path
corresponding to perfect segmentation..

7. VISUALIZATION
The evolution of the segmentation algorithm was driven by
analysis of the behavior of the system, which was supported by
visualization routines developed using the graphing capability of
the R package.  Figure 7 gives an example of the kind of graphical
displays that were used for analysis of the segmentation of a
specific broadcast news program; in this case, analysis of the role
of the X-DURATION feature.  This graphical display allows for
the comparison of the maximum likelihood path produced by the
HMM to the path through the HMM that would be produced by a
perfect system – one privy to ground-truth.

The top graph corresponds to the bottom graph of Figure 6,
showing the states traversed by the two systems.  The second
graph shows the value of the X-DURATION feature
corresponding to each word of the broadcast. So, the plotting of a
point at (301, 3) corresponds to an X-DURATION value of 3
having been observed at time, 301. One thing that can be seen
from this graph is that being at a story boundary (low-points on
the thicker-darker line of the top graph) is more frequent when
higher values of the X-DURATION cue are observed, than when
lower values are observed, as could be expected.

The third graph shows, on a log scale, how many times more
likely it is that the observed X-DURATION value would be
generated from the true state than from the state predicted by the
system.  Most points are close to 0, indicating that the X-
DURATION value observed was as likely to have come from the
true state as it is to have come from the state predicted by the
Viterbi algorithm.  Of course, this is the case wherever the true
state has been correctly predicted. Negative points indicate that the
X-DURATION value observed is less likely to be produced from

the true state than from the predicted state.  Strongly negative
points are a major component of the probability calculation that
resulted in the system preferring the path it chose over the true
path.  These points suggest potential deficiencies in the modeling.
Their identification directs the focus of analysis so that system
performance can be improved by correcting weaknesses of the
existing model.
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Figure 7: Visualization for x-duration feature
Figure 6: Performance
he final graph shows the cumulative sum of the values from the
raph above it. (Note that the sum of the logs of the probabilities
s equivalent to the cumulative product of probabilities on a log
cale.)  The graphing of the cumulative sum can be very useful
hen the system is performing poorly due to a small but

onsistent preference for the observations having been produced
y the state sequence chosen by the system.  This phenomenon is
ade evident by a steady downward trend in the graph of the

umulative sum.  This is in contrast to an overall level trend with
ccasional downward dips.  Note, that a similar graph for the total
robability (equal to the product of all the individual feature value
robabilities) will always have an overall downward trend, since
he maximum likelihood path will always have a likelihood



greater than the likelihood of any other path.

Aside from supporting the detailed analysis of specific features,
the productions of these graphs for each of the features, together
with the corresponding graph for the total observation probability,
allowed us to quickly asses which of the features was most
problematic at any given stage of model development.

8. FURTHER WORK
It should be kept in mind that experimentation with this approach
has been based on relatively primitive features – our focus, to this
point, having been on the development of the core segmentation
mechanism.  Features based on more sophisticated extraction
techniques, which have been reported in the literature – for
example, the use of exponential models for determining trigger
cues used in [Beeferman, Berger, & Lafferty ‘99] – can easily be
incorporated into this general framework.  Integration of such
techniques can be expected to result in significant further
improvement in segmentation quality.

To date, the binning method described has given much better
results than two dimensional kernel density estimation techniques
which we also attempted to employ.  One of the main difficulties
with using traditional kernel density estimation techniques is that
they tend to inaccurately estimate the density at areas of
discontinuity, such as state=1 in our model and our trigger
features.  Preliminary work with boundary kernels [Scott, ‘92] is
very promising.  It is certainly an area worthy of more in-depth
investigation.

Work done by another group [Liu, ‘00] to segment documentaries
based on video cues alone has been moderately successful in the
past.  We engineered a neural network in an attempt to identify
video frames containing an anchorperson, a logo, and blank
frames, with a belief that these are all features that would contain
information about story boundaries.  Preliminary work was also
done to extract features directly from the audio signal, such as
trying to identify speaker change. Initial work with the audio and
video has been unable to aid in segmentation, but we feel this is
also an area worth continuing to pursue.

9. REFERENCES
1. [Becker, Chambers & Wilks, `88] Becker, Richard A.,

Chambers, John M., and Wilks, Allan R.  The New S
Language.  Wadsworth & Brooks/Cole, Pacific Grove, Cal.

2. [Beeferman, Berger, & Lafferty ‘99] D. Beeferman, D., A.
Berger, A. and Lafferty, J.  Statistical models for text
segmentation.  Machine Learning, vol. 34, pp. 1-34, 1999.

3. [Chambers & Hastie, `88] Chambers, John M. and Hastie,
Trevor, J.  Statistical Models in S.  Wadsworth &
Brooks/Cole, Pacific Grove, Cal., 1988.

4. [Greiff, Hurwitz & Merlino, `99] Greiff, Warren, Hurwitz,
Laurie, and Merlino, Andrew.  MITRE TDT-3 segmentation
system.  TDT-3 Topic Detection and Tracking Conference,
Gathersburg, Md, February, 2000.

5. [Kubula, et al., ‘00] Kubula, F., Colbath, S.,  Liu, D.,
Srivastava, A. and Makhoul, J.  Integrated technologies for
indexing spoken language, Communication of the ACM, vol.

43, no. 2, Feb., 2000.
6. [Liu, ‘00] Liu, Tiecheng and Kender, John R.  A hidden

Markov model approach to the structure of documentaries.
Proceedings of the IEEE Workshop on Content-based
Access of Image and Video Libraries, 2000.

7. [Loader, `99] Loader, C.  Local Regression and Likelihood.
Springer, Murray Hill, N.J., 1999.

8. [Maybury, Merlino & Morey ‘97] Maybury, M., Merlino, A.
Morey, D.  Broadcast news navigation using story
segments. Proceedings of the ACM International
Multimedia Conference, Seattle, WA, Nov., 1997.

9. [Nist, ‘00] Topic Detection and Tracking (TDT-3) Evaluation
Project.  http://www.nist.gov/speech/tests/tdt/tdt99/.

10. [Ponte and Croft, ‘97] Ponte, J.M. and Croft, W.B.  Text
segmentation by topic, Proceedings of the First European
Conference on Research and Advanced Technology for
Digital Libraries, pp. 120--129, 1997.

11. [Rabiner, `89] L. R. Rabiner, A tutorial on hidden Markov
models and selected applications in speech recognition.
Proceedings of the IEEE, vol. 37, no. 2, pp. 257-86,
February, 1989.

12. [Scott, ‘92] David W. Scorr, Boundary kernels, Multivariate
Density Estimation: Theory and Practice, pp 146-149, 1992.

13. [Venables & Ripley, `99]  Venables, W. N. and Ripley, B. D.
Modern Applied Statistics with S-PLUS.  Springer, Murray
Hill, N.J., 1999.

14. [Xu, J. and Croft, ‘96] Xu, J. and Croft, W.B., Query
expansion using local and global document analysis,
Proceedings of the Nineteenth Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pp. 4--11, 1996

15. [Yamron, et al., ‘98] Yamron, J. P., Carp, I., Gillick, L., Lowe,
S. and van Mulbregt, P.  A Hidden Markov Model approach
to text segmentation and event tracking.  Proceedings
ICASSP-98, Seattle, WA. May, 1998.


