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ABSTRACT

Unlike earlier information extraction research programs, the new
ACE (Automatic Content Extraction) program calls for entity
extraction by identifying and linking all of the mentions of an
entity in the source text, including names, descriptions, and
pronouns. Coreference is therefore a key component. BBN has
developed statistical co-reference models for this task, including
one for pronoun co-reference that we describe here in some detail.
In addition, ACE calls for extraction not just from clean text, but
also from noisy speech and OCR input. Since speech recognizer
output includes neither case nor punctuation, we have extended
our statistical parser to perform sentence breaking integrated with
parsing in a probabilistic model.

1. INTRODUCTION

The Automatic Content Extraction (ACE) program, a new effort
to stimulate and benchmark research in information extraction,
presents two challenges:

1. Recognition of entities is paramount. In named entity
evaluations, recognizing and classifying name strings is the
focus; in the MUC Template Element (TE) task, all names
for an entity but only one description were to be collected.
In the ACE entity detection and tracking (EDT) task, all
mentions of an entity, whether a name, a description, or a
pronoun, are to be found and collected into equivalence
classes based on reference to the same entity. Therefore,
practical co-reference resolution is fundamental.

2.  Extraction is measured not merely on text, but also on
speech and on OCR input. Named entity recognition had
previously been benchmarked on text, speech, and OCR, but
extraction above the level of names had rarely been
attempted. Moving beyond name finding is a crucial leap for

modalities other than text, since the ability to relate two
strings (as in ACE) in very noisy input may degrade much
more than finding strings in isolation (as in named entity
recognition.) Furthermore, the lack of case and punctuation,
including the lack of sentence boundary markers, poses a
challenge to full parsing of speech.

To address challenge 1 above, BBN developed statistical learning
algorithms for pronoun resolution and name co-reference and is
developing a statistical learning algorithm for co-reference of
definite noun phrases (beyond names and pronouns). The
pronoun co-reference algorithm is described here.

Challenge 2 did not require abandoning our statistical approach to
full parsing, even though there is no punctuation in automatic
speech recognition (ASR) output, which removes many of the
clues that help to determine sentence boundaries in printed text.
Rather, we developed a technique to parse a window of words,
successively sliding the window a word at a time over a whole
speaker turn. A non-overlapping sequence of trees that covers the
speaker turn is chosen to obtain full parses of ASR output. As a
side effect of selecting full parses for a speaker turn, sentence
boundaries are predicted. This new algorithm is described here.

In addition to describing these two algorithms, this paper
overviews the task briefly, describes the system, and reports
results from two evaluations performed under the auspices of
NIST.

2. TASK

The ACE program uses the term “mention” for any text span that
refers to an entity of one of the ACE target types. For example, in
the phrase “Lincoln was 51 when he became president of the US”,
“Lincoln” is a name mention, “he” is a pronoun mention, and
“president of the US” is a nominal (other noun phrase) mention.
In the current specification for the ACE Entity Detection and
Tracking (EDT) task, all mentions of an entity are to be collected
within a document. The entity must be classified by type, i.e.,
person, organization, location, facility, or GPE (geo-political
entity: country, state, province, or city). In addition to the “type”
attribute, all names, if any, are reported as “name” attributes for
the entity. Future versions of the task specification may include
both additional types of entities and additional attributes for each
entity, and will include tracking entities across documents, rather
than merely within documents.



BAGHDAD, llfag (AP) _llfag's deputy foreign minister attacked iSH National
Security Advisor Sandy Berger Friday, accusing him of “lies and deception.”

Riyadh al-Qaysi picked his way through Berger's press conference in
Washington hours earlier, criticizing the security advisor’'s assertion that Iraq
had been repeatedly in “material breach” of U.N. Security Council

resolutions.
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Figure 1: Sample Text with EDT Entities and Mentions

Figure 1 shows a sample of text with the mentions of EDT entities
highlighted, and a table showing the types of EDT entities and
listing the different mentions for each.

3. BRIEF SYSTEM OVERVIEW

BBN’s ACE system for the EDT task involves three primary
components: name finding, parsing, and co-reference. The name
finding component [1] provides some of the strongest clues for
entity detection and tracking. The parsing component [2]
determines the extent and head word of each mention, which is
particularly useful for those noun phrases not headed by proper
names. Both components are implemented as trained statistical
models. The parsing model considers only parses that are
consistent with the name boundaries already predicted by the
name finding model.

There are co-reference components for names, for pronouns, and
for other noun phrases. For names, the model decides for each
name mention encountered whether it is more likely to be the first
mention of a new entity or if it should be linked to a previous
name mention of some existing entity. For pronouns, the model
determines similarly for each pronoun mention which earlier
mention (whether pronoun, name, or nominal) it should be linked
to, or whether it should be left unlinked. The nominal co-

reference component performs two tasks for every noun phrase in
the parse:

1. Determine what ACE class, if any, the noun phrase has.

2. Determine which previous entity the noun phrase refers to or
that this is an entity not previously seen in the document.

BBN has statistical models for all of these tasks, though the
nominal co-reference model was not ready in time for the formal
evaluation in early November. The following section describes the
pronoun co-reference model in more detail.

4. PRONOUN CO-REFERENCE MODEL

A statistical model is used to predict pronoun co-reference.
Although the algorithm is designed to produce antecedents for all
pronouns except expletives and those with implicit antecedents,
our focus was on cases when the antecedent was an ACE mention.
We could therefore focus on connecting the parse constituent
corresponding to a pronoun either to an NP in a parse tree or else
declaring the pronoun “unresolvable” when no such constituent
node could be found. The pronoun resolution algorithm takes as
input a parse tree where each constituent corresponding to a
mention has been labeled with one of the EDT types (Person,
Organization, GPE, Location, or Facility) and with the mention
type (Name or Descriptor). Further, if the mention has already



been found to be a member of a co-reference chain by the name or
nominal co-reference components, the constituent node was also
labeled with the ID of this chain.

Pronouns are processed in a depth-first traversal of the parse tree.
For each pronoun, all earlier NP nodes in the document are
considered as possible antecedents. Candidates are processed by
walking backwards through the parse trees from the pronoun
towards the beginning of the document (as proposed by Hobbs
[3]). Each of these NPs and the “unresolvable” case are then
scored using the following model, and the choice with the highest
probability is selected.

The goal of the probabilistic model is choose the antecedent (ant)
SO as to maximize its probability given the pronoun (pro) and its
surrounding environment (env). Using Bayes Rule to invert the
probabilities and an independence assumption to separate the
pronoun from its environment, this is approximately equivalent to
the following expression:

P(ant)P(pro|ant)P(env | ant)
P(pro, env)

P(ant | pro,env) =

Since the denominator is constant regardless of the choice of
antecedent, we only need to maximize the following expression:

P(ant)P(pro|ant)P(env|ant)

As features to predict the probability of the possible antecedents,
we use their Type (either one of the EDT types or Undetermined
for non-mention candidates), their Number and Gender, and their
Distance. The distance for an antecedent is computed by
searching through the parse trees of the current and previous
sentences in the order suggested by Hobbs [3], and counting the
number of NP constituents between the pronoun and the
antecedent. Making another independence assumption, the
distance is also modeled separately from the type, number, and
gender.

For example, in the following case:
... Mrs. Brown ... < 7 other constituents > ... She said ...
the probability of the “Mrs. Brown” phrase being the antecedent
is computed as follows:
P(ant) =P(person, singular, female) P(dist=7)

The probability of the pronoun itself is estimated as the
probability of that particular word, conditioned on the type,
number, and gender of the antecedent, in this case:

P(pro | ant) = P(“she” | person, singular, female)

As a feature for estimating the probability of the pronoun’s
environment, we used just the head word of the constituent that
was the parent of the pronoun in the parse tree, conditioned on the
type of the antecedent. In this example, that means:

P(env | ant) =P(“said” | person)
When the parent head word in the actual parse tree was an
auxiliary verb, it was augmented by the main verb.

The training counts for each part of the model were taken from
300K words of Penn Treebank data that had been annotated for
pronoun co-reference. The lexical model for the parent head word
was smoothed by using the uniform distribution as a back-off.
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Figure 2: Windowing Parser, window_size=4

5. PARSING AUTOMATICALLY
TRANSCRIBED SPEECH

For speech, in order to apply our system to ASR output, we
modified the parser component to combine syntactic parsing and
sentence-breaking functionality into a single module. Our primary
goal in integrating these two processes was to avoid the serious
parsing errors that could be caused by relying on a potentially
errorful independent sentence-breaking mechanism. At the same
time, we wanted as much as possible to maintain optimal parser
accuracy.

For each speaker turn, we begin by providing the parser with a
window of the first N words of text. The bottom-up, statistical
parser is then called to construct a chart for that initial portion of
the text, showing the syntactic constituents that can cover each
span of words, along with their estimated probabilities. Some of
those chart cells will typically contain “TOP” entries, the symbol
used for separate utterances in the training data (which
syntactically are often sentences, but can also be isolated noun
phrases or the like).

The algorithm then shifts the chart window one word to the right,
giving the parser words 2 through N+1, computing any new
constituents that include the new word. The process of sliding the
window over proceeds until the parser has processed the last N
words of the speaker turn. The window size N defines the
maximum number of tokens per constituent (and thus the
maximum sentence length). This value is set at 30 in the current
system. The final parse of the speaker turn is then formed by
finding the sequence of sentence parses that exactly covers the full
text with the best overall probability.

At the lowest levels, the windowing chart algorithm runs much
the same as the original, updating chart entries from the same
subordinate entries and according to identical statistical formulas.
The differences lie in the “outer loops™ of the algorithm.

1. First, rather than filling in the chart in the usual left-to-right,
bottom-to-top order, we iterate over tokens, proceeding
upward along the diagonal for each [see Figure 2].
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Figure 3: Alternate Possible Sentence Sequences

2. We cap our chart at window_size rows, thereby constraining
the sentence length and the required parse computation.
Only window_size columns are active at a time, making it
simple to visualize shifting the chart by one column per
token iteration.

3. Unlike the standard parser, which at the end of each sentence
only has to choose the best sentence (TOP) constituent from
the upper-left-most chart entry, this algorithm needs to select
a sequence of high probability sentence (TOP) constituents
that together cover the entire speaker turn. We use a Viterbi
search to determine the best path through this space of
sentences.

At the end of processing a speaker turn, the algorithm must search
back to identify the most likely sequence of TOP constituents that
together cover all the words in the turn. For example, given the
TOP constituents found in Figure 3, that six-word turn could be
parsed as shown either as a two-word sentence followed by a four-
word sentence, or as two three-word sentences. The four-word
TOP constituent beginning at word 0 does not form an alternative
path because no TOP constituent covers words 4 and 5. (In the
actual system, there is a fall-back provision allowing any
individual words to be treated as a TOP constituent. This ensures
that some path can always be found, although an artificial
probability cost is added for each word so treated that is high
enough to force the system to prefer linking normal TOP
constituents whenever possible.)

Using the Viterbi algorithm to efficiently search for the most
likely sequence involves storing for each column the cost of the
best path up to that point and a pointer to the final constituent
along that best path. The search proceeds first from left to right.

At each position, there are at most window_size possibilities to
consider, working up the diagonal. If a TOP element is found
along that diagonal in column kK, the cost of the best path through
that element is the cost of the element itself combined with the
known cost of the best path up to column k-1. Once the optimal
cost for a path through the entire speaker turn has been computed,
the final constituent pointers can be traced back right-to-left to
output the complete best path.

6. PERFORMANCE

Two ACE EDT evaluations were performed in 2000, with four
participating sites submitting systems. Extensive graphs analyzing
the combined results are available through the NIST Web site™.
Table 1 shows the entity error rates from the second of these
evaluations for BBN's system when run both on newswire texts
and on the ASR output from broadcast news programs.

The scoring program searched for the mapping between the
entities found by the system and those in the answer key that best
aligned their mentions. Based on that mapping, answer key
entities not found by the system were counted as misses, and
system entities not in the answer key were counted as false alarms.
Mapped entities to which the system had assigned the wrong type
were counted as errors. The final column sums the three kinds of
error.

These scores were state-0f-the-art as of the November evaluation.
Human performance based on limited studies of inter-annotator
agreement is estimated at roughly 20% sum of errors.

Table 1: BBN Entity Detection Results

False Sum of
Entity Scores Miss Alarm Error Errors
Newswire 28.2 24.9 8.3 61.4
Broadcast 38.9 28.6 6.4 73.9
News ASR
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