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1. INTRODUCTION

Treebanks are of two types according to their annotation schemata:
phrase-structure Treebanks such as the English Penn Treebank [8]
and dependency Treebanks such as the Czech dependency Tree-
bank [6]. Long before Treebanks were devel oped and widely used
for natural language processing, there had been much discussion of
comparison between dependency grammars and context-free phrase-
structure grammars [5]. In this paper, we address the relationship
between dependency structures and phrase structures from a practi-
cal perspective; namely, the exploration of different algorithms that
convert dependency structures to phrase structures and the evalua-
tion of their performance against an existing Treebank. This work
not only provides ways to convert Treebanks from one type of rep-
resentation to the other, but aso clarifies the differences in repre-
sentational coverage of the two approaches.

2. CONVERTING PHRASE STRUCTURES
TO DEPENDENCY STRUCTURES

The notion of head is important in both phrase structures and
dependency structures. In many linguistic theories such as X-bar
theory and GB theory, each phrase structure has a head that de-
termines the main properties of the phrase and a head has several
levels of projections; whereas in a dependency structure the head
islinked to its dependents. In practice, the head information is ex-
plicitly marked in a dependency Treebank, but not always so in a
phrase-structure Treebank. A common way to find the head in a
phrase structure is to use a head percolation table, as discussed in
[7, 1] among others. For example, the entry (S right S'VP) in the
head percolation table says that the head child! of an S node is the
first child of the node from the right with the label Sor VP,

Once the heads in phrase structures are found, the conversion
from phrase structures to dependency structures is straightforward,
as shown below:

(a) Mark the head child of each node in a phrase structure, using
the head percolation table.

' The head-child of a node XP is the child of the node XP that is
the ancestor of the head of the XP in the phrase structure.

(b) In the dependency structure, make the head of each non-
head-child depend on the head of the head-child.

Figure 1 shows a phrase structure in the English Penn Treebank
[8]. In addition to the syntactic labels (such as NP for a noun
phrase), the Treebank also uses function tags (such as SBJ for the
subject) for grammatical functions. Inthisphrase structure, the root
node has two children: the NP and the VP. The algorithm would
choose the VP as the head-child and the NP as a non-head-child,
and make the head Vinkin of the NP depend on the head join of
the VP in the dependency structure. The dependency structure of
the sentence is shown in Figure 2. A more sophisticated version
of the algorithm (as discussed in [10]) takes two additional tables
(namely, the argument table and the tagset table) as input and pro-
duces dependency structures with the argument/adjunct distinction
(i.e., each dependent is marked in the dependency structure as ei-
ther an argument or an adjunct of the head).
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Figure2: A dependency treefor thesentencein Figurel. Heads
are marked as parents of their dependentsin an ordered tree.

It is worth noting that quite often there is no consensus on what
the correct dependency structure for a particular sentence should
be. To build adependency Treebank, the Treebank annotators must
decide which word depends on which word; for example, they have
to decide whether the subject Vinken in Figure 1 depends on the



modal verb will or the main verb join. In contrast, the annotators
for phrase-structure Treebanks do not have to make such decisions.
The users of phrase-structure Treebanks can modify the head per-
colation tablesto get different dependency structuresfrom the same
phrase structure. In other words, phrase structures offer more flex-
ibility than dependency structures with respect to the choices of
heads.

The feasibility of using the head percolation table to identify the
heads in phrase structures depends on the characteristics of the lan-
guage, the Treebank schema, and the definition of the correct de-
pendency structure. For instance, the head percolation table for a
strictly head-final (or head-initial) language is very easy to build,
and the conversion agorithm works very well. For the English
Penn Treebank, which we used in this paper, the conversion algo-
rithm works very well except for the noun phrases with the appos-
itive construction. For example, the conversion algorithm would
choose the appositive the CEO of FNX as the head child of the
phrase John Smith, the CEO of FNX, whereas the correct head child
should be John Smith.

3. CONVERTING DEPENDENCY STRUC-
TURESTO PHRASE STRUCTURES

The main information that is present in phrase structures but not
in dependency structuresisthe type of syntactic category (e.g., NP,
VP, and S); therefore, to recover syntactic categories, any algorithm
that converts dependency structures to phrase structures needs to
address the following questions:

Projections for each category: for a category X, what kind of
projections can X have?

Projection levels for dependents: Given a category Y depends
on a category X in a dependency structure, how far should Y
project before it attaches to X's projection?

Attachment positions: Given a category Y depends on a cate-
gory X in adependency structure, to what position on X's projec-
tion chain should Y’s projection attach?

In this section, we discuss three conversion algorithms, each of
which gives different answers to these three questions. To make
the comparison easy, we shall apply each algorithm to the depen-
dency structure (d-tree) in Figure 2 and compare the output of the
algorithm with the phrase structure for that sentence in the English
Penn Treebank, asin Figure 1.

Evaluating these algorithms is tricky because just like depen-
dency structures there is often no consensus on what the correct
phrase structure for a sentence should be. In this paper, we mea-
sure the performance of the algorithms by comparing their output
with an existing phrase-structure Treebank (namely, the English
Penn Treebank) because of the following reasons: first, the Tree-
bank is available to the public, and provides an objective although
imperfect standard; second, one goal of the conversion algorithms
is to make it possible to compare the performance of parsers that
produce dependency structures with the ones that produce phrase
structures. Since most state-of-the-art phrase-structure parsers are
evaluated against an existing Treebank, we want to evaluate the
conversion algorithms in the same way; third, a potential appli-
cation of the conversion algorithms is to help construct a phrase-
structure Treebank for one language, given parallel corpora and the
phrase structures in the other language. One way to evaluate the
quality of the resulting Treebank is to compare it with an existing
Treebank.

3.1 Algorithm 1
According to X-bar theory, a category X projects to X', which

further projects to XP. There are three types of rules, as shown in
Figure 3(a). Algorithm 1, as adopted in [4, 3], strictly follows X-
bar theory and uses the following heuristic rules to build phrase
structures:
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Figure 3: Rulesin X-bar theory and Algorithm 1 (which is
based on it)

Two levels of projectionsfor any category: any category X has
two levels of projection: X’ and XP.

Maximal projections for dependents: a dependent Y aways
projectsto Y’ then YP, and the Y P attaches to the head's projection.

Fixed positions of attachment: Dependents are divided into
three types. specifiers, modifiers, and arguments. Each type of
dependent attaches to a fixed position, as shown in Figure 3(c).

The algorithm would convert the d-tree in Figure 3(b) to the
phrase structure in Figure 3(c). If a head has multiple modifiers,
the algorithm could use either asingle X’ or stacked X’ [3]. Figure
4 shows the phrase structure for the d-tree in Figure 2, where the
agorithm usesasingle X’ for multiple modifiers of the same head?
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Figure 4: The phrase structure built by algorithm 1 for the d-
treein Figure2

3.2 Algorithm 2

Algorithm 2, as adopted by Collins and his colleagues [2] when
they converted the Czech dependency Treebank [6] into a phrase-
structure Treebank, produces phrase structures that are as flat as
possible. It uses the following heuristic rules to build phrase struc-
tures:

Onelevel of projection for any category: X has only onelevel
of projection: XP.

To make the phrase structure more readable, we use N’ and NP as
the X’ and XP for al kinds of POS tags for nouns (e.g., NNP, NN,
and CD). Verbs and adjectives are treated similarly.



Minimal projectionsfor dependents: A dependent Y does not
project to Y P unless it has its own dependents.

Fixed position of attachment: A dependent is a sister of its
head in the phrase structure®

The algorithm treats all kinds of dependents equally. It converts
the pattern in Figure 5(a) to the phrase structure in Figure 5(b).
Noticethat in Figure 5(b), Y does not project to Y P because it does
not have its own dependents. The resulting phrase structure for the
d-tree in Figure 2 isin Figure 6, which is much flatter than the one
produced by Algorithm 1.
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Figure5: The schemefor Algorithm 2
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Figure 6: The phrase structure built by Algorithm 2 for the
d-treein Figure2

3.3 Algorithm 3

The previous two algorithms are linguistically sound. They do
not use any language-specific information, and as aresult there are
several major differences between the output of the algorithms and
the phrase structures in an existing Treebank, such as the Penn En-
glish Treebank (PTB).

Projectionsfor each category: Both algorithms assume that the
numbers of projections for al the categories are the same, whereas
in the PTB the number of projections varies from head to head. For
example, in the PTB, determiners do not project, adverbs project
only one level to adverbial phrases, whereas verbs project to VPR,
then to S, then to SBAR.*

Projection levels for dependents: Algorithm 1 assumes the
maximal projections for al the dependents, while Algorithm 2 as-
sumes minimal projections; but in the PTB, the level of projection
of adependent may depend on several factors such asthe categories
of the dependent and the head, the position of the dependent with
respect to the head, and the dependency type. For example, when a

3If adependent Y hasits own dependents, it projectsto YPand YP
isasister of the head X; otherwise, Y isasister of the head X.
1Sissimilar to IP (IP is the maximal projection of INFL) in GB
theory, so is SBAR to CP (CPis the maximal projection of Comp);
therefore, it could be argued that only VP is a projection of verbs
in the PTB. Nevertheless, because PTB does not mark INFL and
Comp, wetreat S and SBAR as projections of verbs.

noun modifies averb (or VP) such as yesterday in he came yester-
day, the noun always projects to NP, but when anoun N, modifiers
another noun N, N; projects to NP if Ny is to the right of N
(e.g., in an appositive construction) and it does not project to NP if
N, istotheleft of N,.

Attachment positions. Both algorithms assume that all the de-
pendents of the same dependency type attach at the sameleve (e.g.,
in Algorithm 1, modifiers are sisters of X', while in Algorithm 2,
modifiers are sisters of X); but in the PTB, that is not always true.
For example, an ADVP, which depends on a verb, may attach to
either an Sor aVPin the phrase structure according to the position
of the ADVP with respect to the verb and the subject of the verb.
Also, in noun phrases, left modifiers (e.g., JJ) are sisters of the head
noun, while the right modifiers (e.g., PP) are sisters of NP.

For some applications, these differences between the Treebank
and the output of the conversion algorithms may not matter much,
and by no means are we implying that an existing Treebank pro-
vides the gold standard for what the phrase structures should be.
Nevertheless, because the goal of this work is to provide an algo-
rithm that has the flexibility to produce phrase structures that are
as close to the ones in an existing Treebank as possible, we pro-
pose a new agorithm with such flexibility. The algorithm distin-
guishes two types of dependents: arguments and modifiers. The
algorithm also makes use of language-specific information in the
form of three tables. the projection table, the argument table, and
the modification table. The projection table specifies the projec-
tions for each category. The argument table (the modification table,
resp.) lists the types of arguments (modifiers, resp) that a head can
take and their positions with respect to the head. For example, the
entry V. — VP — S in the projection table says that a verb can
project to a verb phrase, which in turn projects to a sentence; the
entry (P0 1 NP/S) in the argument table indicates that a preposition
can take an argument that is either an NP or an S, and the argument
isto the right of the preposition; the entry (NP DT/JJ PP/S) in the
modification table says that an NP can be modified by a determiner
and/or an adjective from the left, and by a preposition phrase or a
sentence from the right.

Given these tables, we use the following heuristic rules to build
phrase structures:®

Oneprojection chain per category: Each category hasaunique
projection chain, as specified in the projection table.

Minimal projection for dependents:. A category projects to a
higher level only when necessary.

L owest attachment position: The projection of adependent at-
taches to a projection of its head aslowly as possible.

The last two rules require further explanation, as illustrated in
Figure 7. In the figure, the node X has three dependents: Y and Z
are arguments, and W is a modifier of X. Let's assume that the al-
gorithm has built the phrase structure for each dependent. To form
the phrase structure for the whole d-tree, the algorithm needs to
attach the phrase structures for dependents to the projection chain
X° X' ..X"* of the head X. For an argument such as Z, sup-
poseits projection chainis Z°, Z1,...Z* and the root of the phrase
structure headed by Z is Z°. The algorithm would find the low-
est position X" on the head projection chain, such that Z has a
projection Z¢ that can be an argument of X"~! according to the
argument table and Z* is no lower than Z* on the projection chain
for Z. The algorithm then makes Z* a child of X" in the phrase
structure. Notice that based on the second heuristic rule (i.e., mini-
mal projection for dependents), Z* does not further project to Z* in

®In theory, the last two heuristic rules may conflict each other in
some cases. In those cases, we prefer the third rule over the second.
In practice, such conflicting cases are very rare, if exist.



thiscase although Z* isavalid projection of Z. The attachment for
modifiersis similar except that the algorithm uses the modification
table instead of the argument table®
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Ne j

nonexecutive

(d)

Figure 8: The phrase structure produced by Algorithm 3

The phrase structure produced by Algorithm 3 for the d-tree in
Figure2isin Figure 8. In Figure 8, (a)-(e) are the phrase structures
for five dependents of the head join; (f) is the projection chain for
the head. The arrows indicate the positions of the attachment. No-
tice that to attach (a) to (f), the NNP Vinken needs to further project
to NP because according to the argument table, a VP can take an
NP, but not an NNP, as its argument.

In the PTB, a modifier either sister-adjoins or Chomsky-adjoins
to the modifiee. For example, in Figure 1, the MD will Chomsky-
adjoins whereas the NP Nov. 29 sister-adjoins to the VP node. To
account for that, we distinguish these two types of modifiersin the
modification table and Algorithm 3 is extended so that it would at-
tach Chomsky-adjoining modifiers higher by inserting extra nodes.
To convert the d-tree in Figure 2, the algorithm inserts an extra VP
node in the phrase structure in Figure 8 and attaches the MD will
to the new VP node; the final phrase structure produced by the al-
gorithm isidentical to the onein Figure 1.

3.4 Algorithm 1 and 2 as special cases of Al-
gorithm 3

5Note that once Z¢ becomes a child of X", other dependents of
X (such as W) that are on the same side as Z but are further away
from X can attach only to X" or higher on the projection chain of
X.

Although the three algorithms adopt different heuristic rules to
build phrase structures, the first two algorithms are special cases
of the last algorithm; that is, we can design a distinct set of pro-
jection/argument/modification tables for each of the first two al-
gorithms so that running Algorithm 3 with the associated set of ta-
blesfor Algorithm 1 (Algorithm 2, respectively) would produce the
same results as running Algorithm 1 (Algorithm 2, respectively).

For example, to produce the results of Algorithm 2 with the code
for Algorithm 3, the three tables should be created as follows:

(a) In the projection table, each head X has only one projection
XP;

(b) In the argument table, if a category Y can be an argument of
acategory X in ad-tree, then include both Y and Y P as arguments
of X;

() In the modification table, if a category Y can be a modifier
of a category X in a d-tree, then include both Y and YP as sister-
modifiers of XP.

4. EXPERIMENTS

So far, we have described two existing algorithms and proposed
a new algorithm for converting d-trees into phrase structures. As
explained at the beginning of Section 3, we evaluated the perfor-
mance of the algorithms by comparing their output with an exist-
ing Treebank. Because there are no English dependency Treebanks
available, we first ran the algorithm in Section 2 to produce d-trees
from the PTB, then applied these three algorithms to the d-trees
and compared the output with the original phrase structures in the
PTB.” The process is shown in Figure 9.
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tagset table modification table
new phrase results
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Figure9: Theflow chart of the experiment

Theresultsare shown in Table 1, which use Section 0 of the PTB.
The precision and recall rates are for unlabelled brackets. The last
column shows the ratio of the number of brackets produced by the
algorithms and the number of brackets in the origina Treebank.
From the table (especially the last column), it is clear that Algo-
rithm 1 produces many more brackets than the original Treebank,
resulting in a high recall rate but low precision rate. Algorithm 2
produces very flat structures, resulting in alow recall rate and high
precision rate. Algorithm 3 produces roughly the same number of
brackets as the Treebank and has the best recall rate, and its preci-
sion rate is almost as good as that of Algorithm 2.

The differences between the output of the algorithms and the
phrase structures in the PTB come from four sources:

(S1) Annotation errorsin the PTB

(S2) Errorsin the Treebank-specific tables used by the algorithms
in Sections 2 and 3 (e.g., the head percolation table, the pro-
jection table, the argument table, and the modification table)

"Punctuation marks are not part of the d-trees produced by Lex-
Tract. We wrote a simple program to attach them as high as possi-
ble to the phrase structures produced by the conversion algorithms.



recall prec | no-cross | ave | test/

(%) (%) (%) | cross | gold
Algl | 81.34 | 3281 50.81 | 0.90 | 248
Alg2 | 54.24 | 91.50 9490 | 0.10 | 0.59
Alg3 | 86.24 | 88.72 84.33 | 0.27 | 0.98

Table 1: Performance of three conversion algorithms on the
Section 0 of the PTB

(S3) The imperfection of the conversion algorithm in Section 2
(which converts phrase structures to d-trees)

(S4) Mismatches between the heuristic rules used by the algorithms
in Section 3 and the annotation schemata adopted by the PTB

To estimate the contribution of (S1)—(S4) to the differences be-
tween the output of Algorithm 3 and the phrase structures in the
PTB, we manually examined the first twenty sentences in Section
0. Out of thirty-one differences in bracketing, seven are due to
(S2), three are due to (S2), seven are due to (S3), and the remaining
fourteen mismatches are due to ($4).

While correcting annotation errorsto eliminate (S1) requiresmore
human effort, it is quite straightforward to correct the errorsin the
Treebank-specific tables and therefore eliminate the mismatches
caused by (S2). For (S3), we mentioned in Section 2 that the al-
gorithm chose the wrong heads for the noun phrases with the ap-
positive construction. As for ($4), we found several exceptions
(as shown in Table 2) to the one-projection-chain-per-category as-
sumption (i.e., for each POStag, thereisaunique projection chain),
an assumption which was used by al three algorithmsin Section 3.
The performance of the conversion algorithms in Section 2 and 3
could be improved by using additional heuristic rules or statistical
information. For instance, Algorithm 3 in Section 3 could use a
heuristic rule that says that an adjective (3J) projectsto an NPif the
JJ follows the determiner the and the JJ is not followed by a noun
asintherich are getting richer, and it projectsto an ADJPin other
cases. Notice that such heuristic rules are Treebank-dependent.

most likely projection | other projection(s)
JJ— ADJP JJ— NP

CD — NP CD - QP — NP
VBN - VP— S VBN —» VP —» RRC
NN — NP NN — NX — NP
VBG - VP—S VBG — PP

Table2: Someexamplesof headswith morethan oneprojection
chain

Empty categoriesare often explicitly marked in phrase-structures,
but they are not always included in dependency structures. We be-
lieve that including empty categories in dependency structures has
many benefits. First, empty categories are useful for NLP applica-
tions such as machine trandlation. To translate a sentence from one
language to another, many machine translation systems first create
the dependency structure for the sentence in the source language,
then produce the dependency structure for the target language, and
finaly generate a sentence in the target language. If the source
language (e.g., Chinese and Korean) allows argument deletion and
the target language (e.g., English) does not, it is crucia that the
dropped argument (which is a type of empty category) is explic-
itly marked in the source dependency structure, so that the machine
trandation systems are aware of the existence of the dropped argu-
ment and can handle the situation accordingly. The second benefit
of including empty categoriesin dependency structuresisthat it can

improve the performance of the conversion algorithms in Section
3, because the phrase structures produced by the algorithms would
then have empty categories as well, just like the phrase structures
inthe PTB. Third, if asentence includes a non-projective construc-
tion such as wh-movement in English, and if the dependency tree
did not include an empty category to show the movement, travers-
ing the dependency tree would yield the wrong word order®

5. CONCLUSION

We have proposed a new algorithm for converting dependency
structures to phrase structures and compared it with two existing
ones. We have shown that our algorithm subsumes the two ex-
isting ones. By using simple heuristic rules and taking as input
certain kinds of Treebank-specific information such as the types of
arguments and modifiers that a head can take, our algorithm pro-
duces phrase structures that are very close to the ones in an anno-
tated phrase-structure Treebank; moreover, the quality of the phrase
structures produced by our algorithm can be further improved when
more Treebank-specific information is used. We also argue for in-
cluding empty categories in the dependency structures.
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