
The Annotation Graph Toolkit:
Software Components for

Building Linguistic Annotation Tools

Kazuaki Maeda, Steven Bird, Xiaoyi Ma and Haejoong Lee
Linguistic Data Consortium, University of Pennsylvania

3615 Market St., Philadelphia, PA 19104-2608 USA
fmaeda, sb, xma, haejoongg@ldc.upenn.edu

ABSTRACT
Annotation graphs provide an efficient and expressive data model
for linguistic annotations of time-series data. This paper reports
progress on a complete software infrastructure supporting the rapid
development of tools for transcribing and annotating time-series
data. This general-purpose infrastructure uses annotation graphs
as the underlying model, and allows developers to quickly create
special-purpose annotation tools using common components. An
application programming interface, an I/O library, and graphical
user interfaces are described. Our experience has shown us that it
is a straightforward task to create new special-purpose annotation
tools based on this general-purpose infrastructure.

Keywords
transcription, coding, annotation graph, interlinear text, dialogue
annotation

1. INTRODUCTION
Annotation graphs (AGs) provide an efficient and expressive

data model for linguistic annotations of time-series data [2]. This
paper reports progress on a complete software infrastructure sup-
porting the rapid development of tools for transcribing and anno-
tating time-series data. This general-purpose infrastructure uses
annotation graphs as the underlying model, and allows developers
to quickly create special-purpose annotation tools using common
components. This work is being done in cooperation with the
developers of other widely used annotation systems, Transcriber
and Emu [1, 3].

The infrastructure is being used in the development of a series
of annotation tools at the Linguistic Data Consortium. Several
such tools are shown in the paper: one for dialogue annotation,
one for telephone conversation transcription, and one for interlinear
transcription aligned to speech.

This paper will cover the following points: the application pro-
gramming interfaces for manipulating annotation graph data and
importing data from other formats; the model of inter-component

.

communication which permits easy reuse of software components;
and the design of the graphical user interfaces, which have been
tailored to be maximally ergonomic for the tasks.

The project homepage is: [http://www.ldc.upenn.edu/
AG/]. The software tools and software components described in
this paper are available through a CVS repository linked from this
homepage.

2. ARCHITECTURE

2.1 General Architecture
Existing annotation tools are based on a two level model (Fig-

ure 1 Top). The systems we demonstrate are based around a three
level model, in which annotation graphs provide a logical level
independent of application and physical levels (Figure 1 Bottom).
The application level represents special-purpose tools built on top
of the general-purpose infrastructure at the logical level.

The system is built from several components which instantiate
this model. Figure 2 shows the architecture of the tools currently
being developed. Annotation tools, such as the ones discussed
below, must provide graphical user interface components for signal
visualization and annotation. The communication between compo-
nents is handled through an extensible event language. An appli-
cation programming interface for annotation graphs (AG-API) has
been developed to support well-formed operations on annotation
graphs. This permits applications to abstract away from file format
issues, and deal with annotations purely at the logical level.

2.2 The Annotation Graph API
The complete IDL definition of the AG-API is provided in the

appendix (also online). Here we describe a few salient features of
the API.

The API provides access to internal objects (signals, anchors,
annotations etc) using identifiers. Identifiers are strings which con-
tain internal structure. For example, an AG identifier is quali-
fied with an AGSet identifier: AGSetId:AGId. Annotations and
anchors are doubly qualified: AGSetId:AGId:AnnotationId,
AGSetId:AGId:AnchorId. Thus, it is possible to determine from
any given identifiers, its membership in the overall data structure.

The functioning of the API will now be illustrated with a series
of examples. Suppose we have already constructed an AG and now
wish to create a new anchor. We might have the following API call:

CreateAnchor("agSet12:ag5", 15.234, "sec");

This call would construct a new anchor object and return its
identifier: agSet12:ag5:anchor34. Alternatively, if we already

Physical
Level

Application
Level

Query
Systems

Evaluation
Software

Annotation
ToolsExtraction

Systems
Visualization
& Exploration

Conversion
Tools

RDB
Format XML Tab delimited

flat files

Automatic
Aligners

Physical
Level

Application
Level

Logical
Level

Physical
Level

Application
Level

Logical
Level

Physical
Level

Application
Level

Logical
Level

Tab delimited
flat files

RDB
Format

XML
Tab delimited

flat files

Query
Systems

Automatic
Aligners

Conversion
Tools

Extraction
Systems

Visualization
& Exploration

Evaluation
Software

Annotation
Tools

AG-API

RDB
Format

XML

RDB
Format

XML
Tab delimited

flat files

Query
Systems

Automatic
Aligners

Conversion
Tools

Extraction
Systems

Visualization
& Exploration

Evaluation
Software

Annotation
Tools

AG-API

Extraction
Systems

Visualization
& Exploration

Conversion
Tools

Query
Systems

Evaluation
Software

Automatic
Aligners

Annotation
Tools

AG-API

Figure 1: The Two and Three-Level Architectures for Speech
Annotation

Figure 2: Architecture for Annotation Systems

have an anchor identifier that we wish to use for this new anchor
(e.g. because we are reading previously created annotation data
from a file and do not wish to assign new identifiers), then we could
have the following API call:

CreateAnchor("agset12:ag5:anchor34", 15.234, "sec");

This call will return agset12:ag5:anchor34.
Once a pair of anchors have been created it is possible to create

an annotation which spans them:

CreateAnnotation("agSet12:ag5",
"agSet12:ag5:anchor34",
"agSet12:ag5:anchor35",
"phonetic");

This call will construct an annotation object and return an iden-
tifier for it, e.g. agSet12:ag5:annotation41. We can now add
features to this annotation:

SetFeature("agSet12:ag5:annotation41",
"date", "1999-07-02");

The implementation maintains indexes on all the features, and
also on the temporal information and graph structure, permitting
efficient search using a family of functions such as:

GetAnnotationSetByFeature("agSet12:ag5",
"date", "1999-07-02");

2.3 A File I/O Library
A file I/O library (AG-FIO) to support creation and export of AG

data has been developed. This will eventually handle all widely
used annotation formats. Formats currently supported by the AG-
FIO library include the TIMIT, BU, Treebank, AIF (ATLAS Inter-
change Format), Switchboard and BAS Partitur formats.

2.4 Inter-component Communication
Figure 3 shows the structure of an annotation tool in terms of

components and their inter-communications.

Main program - a small script

Waveform
display

Transcription
editor

Internal
representation

File input
/ output

AG-GUI-API

AG-GUI-API AG-API

AG-FIO-API

Figure 3: The Structure of an Annotation Tool

The main program is typically a small script which sets up the
widgets and provides callback functions to handle widget events.
In this example there are four other components which are reused
by several annotation tools. The AG and AG-FIO components
have already been described. The waveform display component
(of which there may be multiple instances) receives instructions to
pan and zoom, to play a segment of audio data, and so on. The tran-
scription editor is an annotation component which is specialized for

a particular coding task. Most tool customization is accomplished
by substituting for this component.

Both GUI components and the main program support a com-
mon API for transmitting and receiving events. For example, GUI
components have a notion of a “current region” — the timespan
which is currently in focus. A waveform component can change
an annotation component’s idea of the current region by sending a
SetRegion event (Figure 4). The same event can also be used in
the reverse direction. The main program routes the events between
GUI components, calling the AG-API to update the internal repre-
sentation as needed. With this communication mechanism, it is a
straightforward task to add new commands, specific to the annota-
tion task.

Main program

Waveform display AG-API Transcription editor

User types Control-G Update Display

SetRegion t1 t2 AG::SetAnchorOffset SetRegion t1 t2

Update
Internal Representation

Figure 4: Inter-component Communication

2.5 Reuse of Software Components
The architecture described in this paper allows rapid develop-

ment of special-purpose annotation tools using common compo-
nents. In particular, our model of inter-component communica-
tion facilitates reuse of software components. The annotation tools
described in the next section are not intended for general purpose
annotation/transcription tasks; the goal is not to create an “emacs
for linguistic annotation”. Instead, they are special-purpose tools
based on the general purpose infrastructure. These GUI com-
ponents can be modified or replaced when building new special-
purpose tools.

3. GRAPHICAL USER INTERFACES

3.1 A Spreadsheet Component
The first of the annotation/transcription editor components we

describe is a spreadsheet component. In this section, we show two
tools that use the spreadsheet component: a dialogue annotation
tool and a telephone conversation transcription tool.

Dialogue annotation consists of assigning a field-structured record
to each utterance in each speaker turn. A key challenge is to
handle overlapping speaker turns and back-channel cues without
disrupting the structure of individual speaker contributions. The
tool solves these problems and permits annotations to be aligned
to a (multi-channel) recording. The records are displayed in a
spreadsheet. Clicking on a row of the spreadsheet causes the corre-
sponding extent of audio signal to be highlighted. As an extended
recording is played back, annotated sections are highlighted (both
waveform and spreadsheet displays).

Figure 5 shows the tool with a section of the TRAINS/DAMSL
corpus [4]. Figure 6 shows another tool designed for transcribing
telephone conversations. This latter tool is a version of the dialogue
annotation tool, with the columns changed to accommodate the
needed fields: in this case, speaker turns and transcriptions. Both

of these tools are for two-channel audio files. The audio channel
corresponding to the highlighted annotation in the spreadsheet is
also highlighted.

3.2 An Interlinear Transcription Component
Interlinear text is a kind of text in which each word is anno-

tated with phonological, morphological and syntactic information
(displayed under the word) and each sentence is annotated with a
free translation. Our tool permits interlinear transcription aligned
to a primary audio signal, for greater accuracy and accountability.
Whole words and sub-parts of words can be easily aligned with
the audio. Clicking on a piece of the annotation causes the corre-
sponding extent of audio signal to be highlighted. As an extended
recording is played back, annotated sections are highlighted (both
waveform and interlinear text displays).

The following screenshot shows the tool with some interlinear
text from Mawu (a Manding language of the Ivory Coast, West
Africa).

Figure 7: Interlinear Transcription Tool

3.3 A Waveform Display Component
The tools described above utilize WaveSurfer and Snack devel-

oped by Kåre Sjölander and Jonas Beskow [7, 8]. WaveSurfer
allows developers to specify event callbacks through a plug-in
architecture. We have developed a plug-in for WaveSurfer that
enables the inter-component communication described in this paper.
In addition to waveforms, it is also possible to show spectrograms
and pitch contours of a speech file if the given annotation task
requires phonetic analysis of the speech data.

4. FUTURE WORK

4.1 More GUI Components
In addition to the software components discussed in this paper,

we plan to develop more components to support various annotation
tasks. For example, a video component is being developed, and it
will have an associated editor for gestural coding. GUI components
for Conversation Analysis (CA) [6] and CHAT [5] are also planned.

4.2 An Annotation Graph Server
We are presently designing a client-side component which presents

the same AG-API to the annotation tool, but translates all calls

Figure 5: Dialogue Annotation Tool for the TRAINS/DAMSL Corpus

Figure 6: Telephone Conversation Transcription Tool for the CALLFRIEND Spanish Corpus

into SQL and then transmits them to a remote SQL server (see
Figure 8). A centralized server could house a potentially large
quantity of annotation data, permitting multiple clients to collabo-
ratively construct annotations of shared data. Existing methods for
authentication and transaction processing will be be used to ensure
the integrity of the data.

AG-API

Mapping to SQL

SQL

RDB server and
persistent storage

Main program - a small script

Waveform
display

Transcription
editor

File input
/ output

AG-GUI-API

AG-GUI-API

AG-FIO-API

network

Figure 8: Annotation Tool Connecting to Annotation Server

4.3 Timeline for Development
A general distribution (Version 1.0) of the tools is planned for the

early summer, 2001. Additional components and various improve-
ments will be added to future releases. Source code will be
available through a source code distribution service, SourceForge
([http://sourceforge.net/projects/agtk/]). Further
schedule for updates will be posted on our web site: [http:
//www.ldc.upenn.edu/AG/].

5. CONCLUSION
This paper has described a comprehensive infrastructure for

developing annotation tools based on annotation graphs. Our expe-
rience has shown us that it is a simple matter to construct new
special-purpose annotation tools using high-level software compo-
nents. The tools can be quickly created and deployed, and replaced
by new versions as annotation tasks evolve. The components and
tools reported here are all being made available under an open
source license.

6. ACKNOWLEDGMENT
This material is based upon work supported by the National

Science Foundation under Grant No. 9978056 and 9983258.

7. REFERENCES
[1] C. Barras, E. Geoffrois, Z. Wu, and M. Liberman. Transcriber:

development and use of a tool for assisting speech corpora
production. Speech Communication, 33:5–22, 2001.

[2] S. Bird and M. Liberman. A formal framework for linguistic
annotation. Speech Communication, 33:23–60, 2001.

[3] S. Cassidy and J. Harrington. Multi-level annotation of
speech: An overview of the emu speech database management
system. Speech Communication, 33:61–77, 2001.

[4] D. Jurafsky, E. Shriberg, and D. Biasca. Switchboard
SWBD-DAMSL Labeling Project Coder’s Manual, Draft 13.
Technical Report 97-02, University of Colorado Institute of
Cognitive Science, 1997. [http://stripe.colorado.
edu/˜jurafsky/manual.august1.html].

[5] B. MacWhinney. The CHILDES Project: Tools for Analyzing
Talk. Mahwah, NJ: Lawrence Erlbaum., second edition, 1995.
[http://childes.psy.cmu.edu/].

[6] E. Schegloff. Reflections on studying prosody in
talk-in-interaction. Language and Speech, 41:235–60, 1998.
[http://www.sscnet.ucla.edu/soc/faculty/
schegloff/prosody/].

[7] K. Sjölander. The Snack sound toolkit, 2000.
[http://www.speech.kth.se/snack/].

[8] K. Sjölander and J. Beskow. WaveSurfer – an open source
speech tool. In Proceedings of the 6th International
Conference on Spoken Language Processing, 2000.
[http://www.speech.kth.se/wavesurfer/].

APPENDIX

A. IDL DEFINITION FOR FLAT AG API

interface AG {

typedef string Id; // generic identifier
typedef string AGSetId; // AGSet identifier
typedef string AGId; // AG identifier
typedef string AGIds;

// AG identifiers (space separated list)
typedef string AnnotationId;

// Annotation identifier
typedef string AnnotationType; // Annotation type
typedef string AnnotationIds;

// Annotation identifiers (list)
typedef string AnchorId; // Anchor identifier
typedef string AnchorIds;

// Anchor identifiers (list)
typedef string TimelineId; // Timeline identifier
typedef string SignalId; // Signal identifier
typedef string SignalIds;

// Signal identifiers (list)
typedef string FeatureName; // feature name
typedef string FeatureNames; // feature name (list)
typedef string FeatureValue; // feature value
typedef string Features;

// feature=value pairs (list)
typedef string URI;

// a uniform resource identifier
typedef string MimeClass; // the MIME class
typedef string MimeType; // the MIME type
typedef string Encoding; // the signal encoding
typedef string Unit; // the unit for offsets
typedef string AnnotationRef;

// an annotation reference
typedef float Offset; // the offset into a signal

//// AGSet ////
// Id is AGSetId or AGId
AGId CreateAG(in Id id

in TimelineId timelineId);
boolean ExistsAG(in AGId agId);
void DeleteAG(in AGId agId);
AGIds GetAGIds(in AGSetId agSetId);

//// Signals ////

TimelineId CreateTimeline(in URI uri,
in MimeClass mimeClass,
in MimeType mimeType,
in Encoding encoding,
in Unit unit,
in Track track);

TimelineId CreateTimeline(in TimelineId timelineId,
in URI uri,
in MimeClass mimeClass,
in MimeType mimeType,
in Encoding encoding,
in Unit unit,
in Track track);

boolean ExistsTimeline(in TimelineId timelineId);
void DeleteTimeline(in TimelineId timelineId);

// Id may be TimelineId or SignalId
SignalId CreateSignal(in Id id,

in URI uri,
in MimeClass mimeClass,
in MimeType mimeType,
in Encoding encoding,
in Unit unit,
in Track track);

boolean ExistsSignal(in SignalId signalId);
void DeleteSignal(in SignalId signalId);
SignalIds GetSignals(in TimelineId timelineId);

MimeClass
GetSignalMimeClass(in SignalId signalId);

MimeType
GetSignalMimeType(in SignalId signalId);

Encoding GetSignalEncoding(in SignalId signalId);
string GetSignalXlinkType(in SignalId signalId);
string GetSignalXlinkHref(in SignalId signalId);
string GetSignalUnit(in SignalId signalId);
Track GetSignalTrack(in SignalId signalId);

//// Annotation ////
// Id may be AGId or AnnotationId
AnnotationId CreateAnnotation(in Id id,

in AnchorId anchorId1,
in AnchorId anchorId2,
in AnnotationType annotationType);

boolean ExistsAnnotation
(in AnnotationId annotationId);

void DeleteAnnotation
(in AnnotationId annotationId);

AnnotationId CopyAnnotation
(in AnnotationId annotationId);

AnnotationIds SplitAnnotation
(in AnnotationId annotationId);

AnnotationIds NSplitAnnotation(
in AnnotationId annotationId, in short N);

AnchorId
GetStartAnchor(in AnnotationId annotationId);

AnchorId GetEndAnchor(
in AnnotationId annotationId);

void SetStartAnchor(in AnnotationId annotationId,
in AnchorId anchorId);

void SetEndAnchor(in AnnotationId annotationId,
in AnchorId anchorId);

Offset
GetStartOffset(in AnnotationId annotationId);

Offset GetEndOffset(
in AnnotationId annotationId);

void SetStartOffset(in AnnotationId annotationId,
in Offset offset);

void SetEndOffset(in AnnotationId annotationId,
in Offset offset);

// this might be necessary to package up an id
// into a durable reference

AnnotationRef GetRef(in Id id);

//// Features ////
// this is for both the content of an annotation,
// and for the metadata associated with AGSets,
// AGs, Timelines and Signals.
void SetFeature(in Id id,

in FeatureName featureName,
in FeatureValue featureValue);

boolean ExistsFeature(in Id id,
in FeatureName featureName);

void DeleteFeature(in Id id,
in FeatureName featureName);

string GetFeature(in Id id,
in FeatureName featureName);

void UnsetFeature(in Id id,
in FeatureName featureName);

FeatureNames GetFeatureNames(in Id id);
void SetFeatures(in Id id,

in Features features);
Features GetFeatures(in Id id);
void UnsetFeatures(in Id id);

//// Anchor ////
// Id may be AGId or AnchorId
AnchorId CreateAnchor(in Id id,

in Offset offset,
in Unit unit,
in SignalIds signalIds);

AnchorId CreateAnchor(in Id id,
in SignalIds signalIds);

AnchorId CreateAnchor(in Id id);
boolean ExistsAnchor(in AnchorId anchorId);
void DeleteAnchor(in AnchorId anchorId);
void SetAnchorOffset(in AnchorId anchorId,

in Offset offset);
Offset GetAnchorOffset(in AnchorId anchorId);
void UnsetAnchorOffset(in AnchorId anchorId);
AnchorId SplitAnchor(in AnchorId anchorId);
AnnotationIds GetIncomingAnnotationSet(

in AnchorId anchorId);
AnnotationIds GetOutgoingAnnotationSet(

in AnchorId anchorId);
//// Index ////
AnchorIds GetAnchorSet(in AGId agId);
AnchorIds GetAnchorSetByOffset(in AGId agId,

in Offset offset,
in float epsilon);

AnchorIds GetAnchorSetNearestOffset(
in AGId agId,
in Offset offset);

AnnotationIds
GetAnnotationSetByFeature(in AGId agId,

in FeatureName featureName);
AnnotationIds

GetAnnotationSetByOffset(in AGId agId,
in Offset offset);

AnnotationIds
GetAnnotationSetByType(in AGId agId,

in AnnotationType annotationType);

//// Ids ////
// Id may be AGId, AnnotationId, AnchorId
AGSetId GetAGSetId(in Id id);
// Id may be AnnotationId or AnchorId
AGId GetAGId(in Id id);
// Id may be AGId or SignalId
TimelineId GetTimelineId(in Id id);
};

