A Note on Categorial Grammar, Disharmony and Permutation

Crit Cremers

Leiden University, Department of General Linguistics P.O. box 9515, 2300 RA Leiden, The Netherlands cremers@rullet.leidenuniv.nl

<u>Disharmonious Composition (DishComp)</u> is definable as

 $X/Y Y \setminus Z \Rightarrow X \setminus Z \quad Y/Z X \setminus Y \Rightarrow X/Z$ (and is comdemned by Carpenter 1998: 202 and Jacobson 1992: 139ff)

 $\begin{array}{ll} \underline{\text{Harmonious Composition (HarmComp)}} & \text{is} \\ \text{defined as} \\ X/Y \ Y/Z \Rightarrow X/Z \quad Y \backslash Z \ X \backslash Y \Rightarrow X \backslash Z \\ (and is generally adored) \end{array}$

<u>Lambek Calculus (Lambek)</u> has the following basis:

axiom: $X \Rightarrow X$ rules: if $X Y \Rightarrow Z$ then $X \Rightarrow Z/Y$ and $Y \Rightarrow Z \setminus X$ if $X \Rightarrow Z/Y$ then $X Y \Rightarrow Z$ if $X \Rightarrow Z \setminus Y$ then $Y X \Rightarrow Z$

Permutation Closure of language L (PermL)

PermL = { s | s' in L and s is a permutation of s'} and L \subseteq **PermL** (but nice languages are not PermL for any L)

<u>Fact 1</u>

DishComp is not a theorem of Lambek but HarmComp is (as you can easily check)

<u>Fact 2</u>

DishComp + Lambek = Lambek + Permutation = undirected Lambek (Moortgat 1988, Van Benthem 1991; Lambek is maximal, but contextfree)

⇔

For any assignment A of categorial types to the atoms of language L, if Lambek recognizes L under A, Lambek + DishComp recognizes PermL under A (so disharmony is always too much for Lambek)

<u>Generalized Composition (GenComp)</u> (Joshi et al. 1991, Steedman 1990)

(Summarizing combinatory categorial grammar:)

Fact 3

GenComp entails DishComp

(and you need it for the famous crossing dependencies in Dutch, but)

Fact 4

It is **not** the case that for any assignment A of categorial types to the atoms of language L, if GenComp recognizes L with respect to A, GenComp recognizes PermL with respect to A

(as you can see from:)

<u>MIX</u>

MIX = PermTRIPLE, where $TRIPLE = \{a^nb^nc^n: n > 0\}$

(- which is more than mildly context-sensitive; Joshi et al. 1991 - and)

<u>Fact 5</u>

Consider the assignment A_b of categories to the lexicon $\{a,b,c\}$ s.t. $A_b(a) = a$, $A_b(c) = c$, $A_b(b) = \{ (s/a)/c, ((s/a)/c)/s, \}$ $\begin{array}{ll} \ldots, \ ((s\backslash c)/s)\backslash a, \ \ldots ((s\backslash s)\backslash c)\backslash a, \ (s\backslash c)\backslash a\}, \ i.e. \\ A_b(b) &= \{s|x|y, \ s|v|w|t \mid \{x,y\} = \{a,b\}, \\ \{v,w,t\} &= \{a,c,s\} \ and \ | \ is \ \backslash \ or \ /\}; \ b, \ then, \\ is \ said \ to \ be \ fully \ functional, \ since \ it \ has \ all \\ relevant \ functional \ types. \end{array}$

GenComp does not recognize MIX with respect to assignment A_b.

For example: GenComp does not derive baaccb and abaaccbcb with respect to A_b

<u>Fact 6</u>

Let $A_{bc}(a) = A_b a$, $A_{bc}(b) = A_b(b)$, $A_{bc}(c)$ = { (s/a)/b, ((s/a)/b)/s, ..., ((s\b)/s)\a, ...((s\s)\b)\a, (s\b)\a } (both b and c are fully functional).

GenComp recognizes MIX with respect to assignment A_{bc}.

(Now consider the grammar exhibiting the following features.)

Primitive Cancellation Constraint X/Y Y ⇒ X iff Y is primitive (- in order to be more restrictive - and) Directed Stacks (example) (((X\Y)/W)\U)/V is written as X\[U,Y]/[V,W] (- in order to be more transparent - and) Transparent Primary Category (examples) X\[A]/[Y,B] Y\[C]/[D] ⇒ X\[A,C]/[B,D] or X\[A]/[Y,B] Y\[C]/[D] ⇒ X\[C,A]/[B,D] or X\[A]/[Y,B] Y\[C]/[D] ⇒ X\[C,A]/[B,B] or X\[A]/[Y,B] Y\[C]/[D] ⇒ X\[C,A]/[D,B] (- in order to gain expressivity - make Gen-Comp into)

Categorial List Grammar (CatListGram) (Cremers 1993 and at fonetiek-6.leidenuniv.nl/hijzlndr/delilah.html) GenComp + Primitive Cancellation Constraint + Directed Stacks + Transparent Primary Category (but nevertheless)

<u>Fact 7</u>

Fact 4, Fact 5 and Fact 6 also hold *mu-tatis mutandis* for CatListGram. In these aspects, CatListGram and GenComp are weakly equivalent.

CONCLUSIONS

None of the additional characteristics for CatListGram affects the weak capacity of a categorial grammar; i.e.:

- exclusive cancellation of primitives does not affect recognition capacity
- maintaining more than one argument stack does not affect recognition capacity
- merging argument stacks of primary and secondary category does not affect recognition capacity

and it takes more than disharmony to induce permutation closure.

References

Benthem, J. van, Language in Action, North Holland, 1991

Carpenter, B., Type-Logical Semantics, MIT Press, 1997

Cremers, C., On Parsing Coordination Categorially, HIL diss, Leiden University, 1993 Jacobson, P., 'Comment Flexible Categorial Grammars', in: R. Levine (ed.), Formal grammar: theory and implementation, Oxford Univ. Press, 1991, p. 129 - 167

Joshi, A.K., K. Vijay-Shanker, D. Weir, 'The Convergence of Mildly Context-Sensitive Grammar Formalisms', in: P. Sells, S.M. Shieber, T. Wasow (eds), Foundational Issues in Natural Language Processing, MIT Press, 1991, pp. 31 - 82

Moortgat, M., Categorial Investigations, Foris, 1988

Steedman, M., 'Gapping as Constituent Coordination', *Linguistics and Philosophy 13*, p. 207 - 263