
Proceedings of EACL '99

The Treegram Index An Efficient Technique for Retrieval in
Linguistic Treebanks

H a n s A r g e n t o n and A n k e F e l d h a u s

Infineon Technologies, DAT CIF, Postbox 801709, D-81617 Miinchen
hans.argenton@infineon.com

University of Tiibingen, SfS, Kleine Wilhelmstr.113, D-72074 Tiibingen
feldhaus@sfs.nphil.uni-tuebingen.de

Multiway trees (MT, henceforth) are a
common and well-understood data struc-
ture for describing hierarchical linguistic
information. With the availability of large
treebanks, retrieval techniques for highly
structured data now become essential. In
this contribution, we investigate the effi-
cient retrieval of MT structures at the cost
of a complex index--the Treegram Index.

We illustrate our approach with the
VENONA retrieval system, which han-
dles the BH t (Biblia Hebraica transeripta)
treebank comprising 508,650 phrase struc-
ture trees with maximum degree eight and
maximum height 17, containing altogether
3.3 million Old-Hebrew words.

1 M u l t i w a y - t r e e re tr i eva l based on
t r e e g r a m s

The base entities of the tree-retrieval
problem for positional MTs are (labeled)
rooted MTs where children are distin-
guished by their position.

Let s and t be two MTs; t contains s
(written as s ~ t) if there exists an in-
jective embedding such that (1) nodes are
mapped to nodes with identical labels and
(2) a root of a child with position i is
mapped to a root of a child with the same
position.

R e t r i e v a l p roblem: Let DB be a set
of' labeled positional MTs and let q be a
query tree having the same label alphabet.
The problem is to find efficiently all trees
t C DB that contain q.

To cope with this tree-retrieval problem,
we generalize the well-known n-gram in-
dexing technique for text databases: In
place of substrings with fixed length, we
use subtrees with fixed maximal height--
treegrams.

Let TG(t,h) denote the set of all tree-
grams of height h contained in the MT
t, and let T(DB, g) denote the set of all
database trees that contain the treegram
g. Assume that g has the height h and
that T(DB, g) can be efficiently computed
using the index relation I~B := {(g, t)lt E
DB A g C TG(t, h)}, which lists for each
treegram g of height h every database tree
that contains g. We compute the desired
result set R = {t C DBIq ___ t} for a given
query tree q such that q's height is greater
than or equal h as follows:

R e t r i e v a l m e t h o d :

(1) Compute the set TG(q,h): All tree-
grams of height h contained in the
query.

(2) Compute the candidate set of" (t
Candh(q) := Ng~Ta(q,h) T(DB, g).
The set of all database trees that con-
tain every query treegram.

(3) Compute the result set R = {t E
Cand~(q)l q ! t}.

The costly operation in this approach is
the last containment test q _ t. The build-
ing of index I h s is justified if in general tile

267

Proceed ings of E A C L '99

number of candidateswill be much smaller
than the number of trees in DB.

2 Eff ic ient query eva luat ion

The treegram-index retrieval method given
above encounters the following interesting
problems:

(A) A single treegram may be very com-
plex because of its unlimited degree
and label strings; this leads to costly
look-up operations.

(B) There are many treegrams rooting at
a given node in a database tree: To
accomodate queries with subtree vari-
ables, the index has to contain all
matching treegrams for that subtree.

(c) It is quite expensive to intersect the
tree sets T(DB, g) for all treegrams g
contained in the query q.

VENONA addresses these problems by the
following approach:

P r o b l e m A: Processing of a single tree-
gram: (1) Node labels hash to an integer
of a few bytes: We do not consider labels
structured; to model the structure of word
forms, feature terms should be used 1. (2)
V E N O N A deals only with treegrams of a
maximal degree d; if a tree is of greater
degree, it will be transformed automati-
cally to a d-ary tree. 2 (3) For describing
a single treegram g, VENONA takes each
of g's hashed labels and combines it with
the position of its corresponding node in
a complete d-ary tree; an integer encod-
ing g's structure completes this represen-
tation: Structure is at least as essential for
tree retrieval as label information.

1Due to lack of space, we cannot present our ex-
tension of treegram indexing to feature terms in this
abstract .

2The employed algorithm is a generalization of the
well-known transformation of trees to binary trees.
d's value is a configurable parameter of the index-
generation.

P r o b l e m B V E N O N A uses only one tree-
gram per node v: the treegram includ-
ing every node found on the first h lev-
els of the subtree rooted in v. This ap-
proach keeps the index small but intro-
duces another problem: A query treegram
may not appear in the treegram index as it
is. Therefore, VENONA expands all query
treegram structures at runtime; for a given
query treegram g, this expansion yields all
database treegrams with a structure com-
patible to g. That approach keeps the tree-
gram index small and preserves efficiency.

P r o b l e m C The evaluation of a given
query q is processed along the following
steps: (1) According to q's degree and
height, V E N O N A chooses a treegram in-
dex among those available for the tree
database. (2) VENONA collects q's tree-
grams and represents them by sets of tree-
gram parts. For a given query treegram,
V E N O N A expands the structure number to
a set of index treegram structures and re-
moves those labels that consist of a vari-
able: Variables and the constraints that
they impose belong to the matching phase.
(3) VENONA sorts q's treegrams according
to their .selectivity by estimating a tree-
gram's selectivity based on the selectivity
of its treegram parts. (4) VENONA esti-
mates how many query treegrams it has
to evaluate to yield a candidate set small
enough for the tree matcher; only for those
it determines the corresponding index tree-
grams. (5) VENONA processes these se-
lected treegrams until the candidate set
has the desired size--if necessary, falling
back on some of the treegrams put aside.
(6) Finally, the tree matcher selects the an-
swer trees from these candidates.

268

