
Proceedings of EACL '99

Selective Magic HPSG Parsing

Guido Minnen*
Cognitive and Computing Sciences, University of Sussex

Falmer, Brighton BN1 9QH
United Kingdom

Guido.Minnen@cogs.susx.ac.uk
www.cogs.susx.ac.uk/lab/nlp/minnen/minnen.html

Abstract
We propose a parser for constraint-
logic grammars implementing HPSG
that combines the advantages of dy-
namic bottom-up and advanced top-
down control. The parser allows the
user to apply magic compilation to spe-
cific constraints in a grammar which as
a result can be processed dynamically
in a bottom-up and goal-directed fash-
ion. State of the art top-down process-
ing techniques are used to deal with the
remaining constraints. We discuss vari-
ous aspects concerning the implementa-
tion of the parser as part of a grammar
development system.

1 Introduction
In case of large grammars the space requirements
of dynamic parsing often outweigh the benefit of
not duplicating sub-computations. We propose a
parser that avoids this drawback through combin-
ing the advantages of dynamic bottom-up and ad-
vanced top-down control. 1 The underlying idea is
to achieve faster parsing by avoiding tabling on
sub-computations which are not expensive. The
so-called selective magic parser allows the user to
apply magic compilation to specific constraints in
a grammar which as a result can be processed dy-
namically in a bottom-up and goal-directed fash-
ion. State of the art top-down processing tech-
niques are used to deal with the remaining con-
straints.

Magic is a compilation technique originally de-
veloped for goal-directed bottom-up processing of
logic programs. See, among others, (Ramakrish-
nan et al. 1992). As shown in (Minnen, 1996)

*The presented research was carried out at the Uni-
versity of Tfibingen, Germany, as part of the Sonder-
forschungsbereich 340.

1A more detailed discussion of various aspects of
the proposed parser can be found in (Minnen, 1998).

magic is an interesting technique with respect to
natural language processing as it incorporates fil-
tering into the logic underlying the grammar and
enables elegant control independent filtering im-
provements. In this paper we investigate the se-
lective application of magic to typed feature gram-
mars a type of constraint-logic grammar based on
Typed Feature Logic (Tgv£:; GStz, 1995). Typed
feature grammars can be used as the basis for
implementations of Head-driven Phrase Structure
Grammar (HPSG; Pollard and Sag, 1994) as dis-
cussed in (GStz and Meurers, 1997a) and (Meur-
ers and Minnen, 1997). Typed feature grammar
constraints that are inexpensive to resolve are
dealt with using the top-down interpreter of the
ConTroll grammar development system (GStz and
Meurers, 1997b) which uses an advanced search
function, an advanced selection function and in-
corporates a coroutining mechanism which sup-
ports delayed interpretation.

The proposed parser is related to the so-called
Lemma Table deduction system (Johnson and
DSrre, 1995) which allows the user to specify
whether top-down sub-computations are to be
tabled. In contrast to Johnson and DSrre's deduc-
tion system, though, the selective magic parsing
approach combines top-down and bottom-up con-
trol strategies. As such it resembles the parser
of the grammar development system Attribute
Language Engine (ALE) of (Carpenter and Penn,
1994). Unlike the ALE parser, though, the selec-
tive magic parser does not presuppose a phrase
structure backbone and is more flexible as to
which sub-computations are tabled/filtered.

Bottom-up Interpretation of
Magic-compiled Typed Feature
Grammars

We describe typed feature grammars and discuss
their use in implementing HPSG grammars. Sub-
sequently we present magic compilation of typed

165

Proceedings of EACL '99

feature grammars on the basis of an example and
introduce a dynamic bottom-up interpreter that
can be used for goM-directed interpretation of
magic-compiled typed feature grammars.

2.1 T y p e d F e a t u r e G r a m m a r s

A typed feature grammar consists of a signa-
ture and a set of definite clauses over the con-
straint language of equations o f T Y £ (GStz, 1995)
terms (HShfeld and Smolka, 1988) which we will
refer to as Torz: definite clauses. Equations over
TJr£ terms can be solved using (graph) unifica-
tion provided they are in normal form. (GStz,
1994) describes a normal form for ir~r£ terms,
where typed feature structures are interpreted as
satisfiable normal form T~r£: terms. 2 The signa-
ture consists of a type hierarchy and a set of ap-
propriateness conditions.

E x a m p l e 1 The signature specified in figure 1
and 2 and the T~r£: definite clauses in figure 3
constitute an example of a typed feature gram-
mar. We write T~r£ terms in normal form, i. e.,

relation

Figure 2: Example of a typed feature grammar
signature (part 2)

as typed feature structures. In addition, uninfor-
mative feature specifications are ignored and typ-
ing is left implicit when immaterial to the example
at hand. Equations between typed feature struc-
tures are removed by simple substitution or tags
indicating structure sharing. Notice that we also
use non-numerical tags such as ~ and ~ . In
general all boxed items indicate structure sharing.
For expository reasons we represent the ARGn
features of the append relation as separate argu-
ments.

Typed feature grammars can be used as the
basis for implementations of Head-driven Phrase
Structure Grammar (Pollard and Sag, 1994). 3
(Meurers and Minnen, 1997) propose a compi-
lation of lexical rules into T~r/: definite clauses

2This view of typed feature structures differs from
the perspective on typed feature structures as mod-
ehng partial information as in (Carpenter, 1992).
Typed feature structures as normal form ir~'~E terms
are merely syntactic objects.

aSee (King, 1994) for a discussion of the appro-
priateness of T~-£: for HPSG and a comparison with
other feature logic approaches designed for HPSG.

(1) constituent([PHON):-
LSEM

PHON
constituent([AGR)'

I_Sr~M

teAT° 1
constituent(|AGR)'

append([~,[~,[~).
rCAT °,]

(2) constituent([PHON (,,,,y) /xGR ,h.~-,,.~])"

(3) constituent(|PHON (,leCp,)
/AGR ,h,.~-.,.~ I).
LSEM sleep J

(4) append((), F'~' ~) "
(5) append(3 |

a.ppend(F'x- ~, ~ , ~Y's])-

Figure 3: Example of a set of T:7:£ definite clauses

which are used to restrict lexical entries. (GStz
and Meurers, 1997b) describe a method for com-
piling implicational constraints into typed feature
grammars and interleaving them with relational
constraints. 4 Because of space limitations we have
to refrain from an example. The ConTroll gram-
mar development system as described in (GStz
and Meurers, 1997b) implements the above men-
tioned techniques for compiling an HPSG theory
into typed feature grammars.

2.2 Magic C o m p i l a t i o n

Magic is a compilation technique for goal-directed
bottom-up processing of logic programs. See,
among others, (Ramakrishnan et al. 1992). Be-
cause magic compilation does not refer to the spe-
cific constraint language adopted, its application
is not limited to logic programs/grammars: It can
be applied to relational extensions of other con-
straint languages such as typed feature grammars
without further adaptions.

Due to space limitations we discuss magic com-
pilation by example only. The interested reader
is referred to (Nilsson and Maluszynski, 1995) for
an introduction.

E x a m p l e 2 We illustrate magic compilation of
typed feature grammars with respect to definite

4 (GStz, 1995) proves that this compilation method
is sound in the general case and defines the large class
of type constraints for which it is complete.

166

Proceedings of EACL '99

T

\ ~ ~ IPHON list [
• k ~ . IAGR agr[

mary / / relation / liY~st elist / g r ~ r -

/ ~ nelistk~ "st[th+d-sing mary If sleep~_LIBJ sem--]

s np v

Figure h Example of a typed feature grammar signature (part 1)

clause 1 in figure 3. Consider the TJ:£ definite
clause in figure 4. As a result of magic compi-

+] constituent~ IP"O.):-
[SZM

magic_constituent ~),

PHON
constituent([AGR)'

I.Sr,~ FEAT"]
constituent([AGR)'

LsE [suBJ Ell
appendG,D,Vl).

Figure 4: Magic variant of definite clause 1 in fig-
ure 3

lation a magic literal is added to the right-hand
side of the original definite clause. Intuitively un-
derstood, this magic literal "guards" the applica-
tion of the definite clause. The clause is applied
only when there exists a fact that unifies with this
magic l i teral) The resulting definite clause is also
referred to as the magic variant of the original def-
inite clause.

The definite clause in figure 5 is the so-called
seed which is used to make the bindings as pro-
vided by the initial goal available for bottom-up
processing. In this case the seed corresponds to
the initial goal of parsing the string 'mary sleeps'.
Intuitively understood, the seed makes available
the bindings of the initial goal to the magic vari-

SA fact can be a unit clause, i. e., a TJr£ definite
clause without right-hand side literals, from the gram-
mar or derived using the rules in the grammar. In the
latter case one also speaks of a passive edge.

CAT s 1 magic_constituent(IPHON (m~r~,sl,ep,)).
[SZM ,,~ J

Figure 5: Seed corresponding to the initial goal of
parsing the string 'mary sleeps'

ants of the definite clauses defining a particular
initial goal; in this case the magic variant of the
definite clause defining a constituent of category
's'. Only when their magic literal unifies with the
seed are these clauses applied. 6

The so-cMled magic rules in figure 6 are derived
in order to be able to use the bindings provided by
the seed to derive new facts that provide the bind-
ings which allow for a goal-directed application of
the definite clauses in the grammar not directly
defining the initial goal. Definite clause 3, for
example, can be used to derive a magic_append
fact which percolates the relevant bindings of the
seed/initial goal to restrict the application of the
magic variant of definite clauses 4 and 5 in figure 3
(which are not displayed).

2.3 S e m i - n a i v e B o t t o m - u p I n t e r p r e t a t i o n

Magic-compiled logic programs/grammars can be
interpreted in a bottom-up fashion without losing
any of the goal-directedness normally associated
with top-down interpretation using a so-called
semi-naive bottom-up interpreter: A dynamic in-
terpreter that tables only complete intermediate
results, i. e., facts or passive edges, and uses
an agenda to avoid redundant sub-computations.
The Prolog predicates in figure 7 implement a

~The creation of the seed can be postponed until
r u n time, such that the grammar does not need to be
compiled for every possible initial goal.

167

Proceedings of EACL '99

CAT ~p]
(i) magic_constituent(|AGR|PEON agr|list):_

LSEM sere A

[c T ,]
magic_constituent(|PHON z.,,).

[sEg ,era 1

/PHON
(2) magic_constituent(/AGR):-

Ls~g [S,BJ [7]]

magic_constituent(|PEON),
[SEM

I PHON
constituent(AGR)'

.SEM

(3) magic_append ([~1,[~],[~]) :-

magic_constituent(/PEON),
tszg

PEON
constituent(I AGR),

I.SZg

PHON
constituent(]AGR)"

Figure 6: Magic rules resulting from applying
magic compilation to definite clause 1 in figure 3

semi-naive bottom-up interpreter. 7 In this inter-
preter both the table and the agenda are repre-
sented using lists, s The agenda keeps track of the
facts that have not yet been used to update the
table. It is important to notice that in order to
use the interpreter for typed feature grammars it
has to be adapted to perform graph unification. 9
We refrain from making the necessary adaptions
to the code for expository reasons.

The table is initialized with the facts from the
grammar. Facts are combined using a operation
called match. The match operation unifies all but
one of the right-hand side literals of a definite
clause in the grammar with facts in the table. The

7Definite clauses serving as data are en-
coded using the predicate defini te_clause/ l :
definite_clause((Lhs :-B/Is))., where Khs is a
(possibly empty) list of literals.

SThere are various other--more efficient--ways to
implement a dynamic control strategy in Prolog. See,
for example, (Shieber et el., 1995).

9A term encoding of typed feature structures would
enable the use of term unification instead. See, for
example, (Gerdemann, 1995).

remaining right-hand side literal is unified with a
newly derived fact, i. e., a fact from the agenda.
By doing this, repeated derivation of facts from
the same earlier derived facts is avoided.

semi_naive_interpret (Goal):-
initialization(Agenda,TableO),
updat e_t able (Agenda, Table0, Table),
member (edge (Goal, []) ,Table) .

update_table ([] ,Table ,Table).
update_table([EdgelAgenda0],Table0,Table):-

update_table_w_edge(Edge,Edges,
TableO,Tablel),

append(Edges,Agenda0,Agenda),
update_table(Agenda,Tablel,Table).

update_tableJ_edge(Edge,Edges,Table0,Table):-
findall(NewEdge,

matah(Edge,NewEdge,Table0),
Edges),

store(Edges,Table0,Table).
store([],Table,Table):-
store([EdgelEdges],TableO,Table):-

member(GenEdge,Table0),
\+ subsumes(GemEdge,Edge),
store(Edges,[EdgelTable0] ,Table).

store([_lEdges],TableO,Table):-
store(Edges,Table0,Table).

initialization(Edges,Edges):-
findall(edge(Head, []),

definite_clause((Head:- [])),
Edges).

completion(Edge,edge(Goal,[]),Table):-
definite_clause((Goal :- Body)),
Edge = edge(F,[]),
select(F,Body,R),
edges(R,Table).

edges([],_).
edges([Lit[Lits],Table):-

member(edge(Lit,[]),Table),
edges(Lits,Table).

Figure 7: Semi-naive bottom-up interpreter

3 Selective Magic HPSG Parsing
In case of large grammars the huge space require-
ments of dynamic processing often nullify the ben-
efit of tabling intermediate results. By combin-
ing control strategies and allowing the user to
specify how to process particular constraints in
the grammar the selective magic parser avoids
this problem. This solution is based on the ob-
servation that there are sub-computations that
are relatively cheap and as a result do not need
tabling (Johnson and D6rre, 1995; van Noord,
1997).

3.1 P a r s e T y p e Spec i f ica t ion

Combining control strategies depends on a way
to differentiate between types of constraints. For

168

Proceedings of EACL '99

example, the ALE parser (Carpenter and Penn,
1994) presupposes a phrase structure backbone
which can be used to determine whether a con-
straint is to be interpreted bot tom-up or top-
down. In the case of selective magic parsing we
use so-called parse types which allow the user to
specify how constraints in the g rammar are to be
interpreted. A literal (goal) is considered a parse
lype literal (goal) if it has as its single argument
a typed feature structure of a type specified as a
parse type. 1°

All types in the type hierarchy can be used
as parse types. This way parse type specifica-
tion supports a flexible filtering component which
allows us to experiment with the role of filter-
ing. However, in the remainder we will concen-
trate on a specific class of parse types: We as-
sume the specification of type sign and its sub-
types as parse types. 11 This choice is based on
the observation that the constraints on type sign
and its sub-types play an important guiding role
in the parsing process and are best interpreted
bot tom-up given the lexical orientation of I-IPSG.
The parsing process corresponding to such a parse
type specification is represented schematically in
figure 8. Starting from the lexical entries, i. e.,

word word word

Figure 8: Schematic representation of the selective
magic parsing process

the : r~ 'L definite clauses that specify the word
objects in the grammar, phrases are built bot tom-
up by matching the parse type literals of the def-
inite clauses in the g rammar against the edges in
the table. The non-parse type literals are pro-
cessed according to the top-down control strategy

1°The notion of a parse type literal is closely related
to that of a memo literal as in (Johnson and DSrre,
1995).

l~When a type is specified as a parse type, all its
sub-types are considered as parse types as well. This is
necessary as otherwise there may e.xist magic variants
of definite clauses defining a parse type goal for which
no magic facts can be derived which means that the
magic literal of these clauses can be interpreted nei-
ther top-down nor bottom-up.

described in section 3.3.

3.2 S e l e c t i v e M a g i c C o m p i l a t i o n

In order to process parse type goals according to a
semi-naive magic control strategy, we apply magic
compilation selectively. Only the T~-L definite
clauses in a typed feature g rammar which define
parse type goals are subject to magic compilation.
The compilation applied to these clauses is iden-
tical to the magic compilation illustrated in sec-
tion 2.1 except that we derive magic rules only for
the right-hand side literals in a clause which are of
a parse type. The definite clauses in the g r ammar
defining non-parse type goals are not compiled as
they will be processed using the top-down inter-
preter described in the next section.

3.3 A d v a n c e d T o p - d o w n Control

Non-parse type goals are interpreted using the
standard interpreter of the ConTroll g rammar de-
velopment system (G5tz and Meurers, 1997b) as
developed and implemented by Thilo GStz. This
advanced top-down interpreter uses a search func-
tion that allows the user to specify the information
on which the definite clauses in the g rammar are
indexed. An important advantage of deep multi-
ple indexing is that the linguist does not have to
take into account of processing criteria with re-
spect to the organization of her/his data as is the
case with a standard Prolog search function which
indexes on the functor of the first argument.

Another important feature of the top-down in-
terpreter is its use of a selection function that
interprets deterministic goals, i. e., goals which
unify with the left-hand side literal of exactly
one definite clause in the grammar , prior to non-
deterministic goals. This is often referred to as
incorporating delerministic closure (DSrre, 1993).
Deterministic closure accomplishes a reduction of
the number of choice points that need to be set
during processing to a minimum. Furthermore, it
leads to earlier failure detection.

Finally, the used top-down interpreter imple-
ments a powerful coroutining mechanism: 12 At
run t ime the processing of a goal is postponed
in case it is insufficiently instantiated. Whether
or not a goal is sufficiently instantiated is deter-
mined on the basis of so-called delay palierns. 13
These are specifications provided by the user that

12Coroutining appears under many different guises,
like for example, suspension, residuation, (goal) freez-
ing, and blocking. See also (Colmerauer, 1982; Naish,
1986).

13In the literature delay patterns are sometimes also
referred to as wait declarations or .block statements.

169

Proceedings of EACL '99

indicate which restricting information has to be
available before a goal is processed.

3.4 Adap t ed Semi-naive Bo t tom-up
In t e rp re t a t i on

The definite clauses resulting from selective magic
transformation are interpreted using a semi-naive
bottom-up interpreter that is adapted in two re-
spects. It ensures that non-parse type goals are
interpreted using the advanced top-down inter-
preter, and it allows non-parse type goals that
remain delayed locally to be passed in and out
of sub-computations in a similar fashion as pro-
posed by (Johnson and DSrre, 1995). In order
to accommodate these changes the adapted semi-
naive interpreter enables the use of edges which
specify delayed goals.

Figure 9 illustrates the adapted match op-
eration. The first defining clause of match/3

match(Edge,edge(Goal,Delayed),Table):-
definite_clause((Goal :- Body)),
select(Lit,Body,Lits),
parse_type(Lit),
Edge = edge(Lit,DelayedO),
edges(Lit,Table,DelayedO,TopDown),
advancechtd_interpret(TopDown,Delayed).

match(Edge,edge(Goal,Delayed),Table):-
definite~lause((Goal :- TopDown)),
advanced_td_interpret(TopDown,Delayed).

Figure 9: Adapted definition of mat, oh/3

passes delayed and non-parse type goals of the
definite clause under consideration to the ad-
vanced top-down interpreter via the call to
advanced_td_interpret/2 as the list of goals
TopDown. 14 The second defining clause of match/3
is added to ensure all right-hand side literals are
directly passed to the advanced top-down inter-
preter if none of them are of a parse type.

Allowing edges which specify delayed goals
necessitates the adaption of the definition of
edges/3. When a parse type literal is matched
against an edge in the table, the delayed goals
specified by that edge need to be passed to the
top-down interpreter. Consider the definition of
the predicate edges in figure 11. The third argu-
ment of the definition of edges/4 is used to collect
delayed goals. When there are no more parse type
literals in the right-hand side of the definite clause
under consideration, the second defining clause
of edges/4 appends the collected delayed goals

Z4The definition of match/3 assumes that there ex-
ists a strict ordering of the right-hand side literals in
the definite clauses in the grammar, i. e., parse type
literals always preced e non-parse type literals.

edges([Lit[Lits],Table,Delayed0,TopDown):-
parse_type(Lit),
member(edge(Lit,Delayedl),Table),
append(Delayed0,Delayedl,Delayed).
edges(Lit,Table,Delayed,TopDown).

edges([],_,Delayed,TopDown):-
append(Delayed,Lit,TopDown).

Figure l h Adapted definition of edges/4

to the remaining non-parse type literals. Subse-
quently, the resulting list of literals is passed up
again for advanced top-down interpretation.

4 I m p l e m e n t a t i o n

The described parser was implemented as part of
the ConTroll grammar development system (GStz
and Meurers, 1997b). Figure 10 shows the over-
all setup of the ConTroll magic component. The
Controll magic component presupposes a parse
type specification and a set of delay patterns to
determine when non-parse type constraints are to
be interpreted. At run-time the goal-directedness
of the selective magic parser is further increased
by means of using the phonology of the natural
language expression to be parsed as specified by
the initial goal to restrict the number of facts that
are added to the table during initialization. Only
those facts in the grammar corresponding to lex-
ical entries that have a value for their phonology
feature that appears as part of the input string
are used to initialize the table.

The ConTroll magic component was tested with
a larger (> 5000 lines) HPSG grammar of a size-
able fragment of German. This grammar provides
an analysis for simple and complex verb-second,
verb-first and verb-last sentences with scrambling
in the mittelfeld, extraposition phenomena, wh-
movement and topicalization, integrated verb-first
parentheticals, and an interface to an illocution
theory, as well as the three kinds of infinitive con-
structions, nominal phrases, and adverbials (Hin-
richs et al., 1997).

As the test grammar combines sub-strings in a
non-concatenative fashion, a preprocessor is used
that chunks the input string into linearization do-
mains. This way the standard ConTroll inter-
preter (as described in section 3.3) achieves pars-
ing times of around 1-5 seconds for 5 word sen-
tences and 10-60 seconds for 12 word sentences) s
The use of magic compilation on all grammar
constraints, i.e., tabling of all sub-computations,

lSParsing with such a grammar is difficult in any
system as it does neither have nor allow the extraction
of a phrase structure backbone.

170

Proceedings of EACL '99

i n p u t :

I magic compilation I
on p ~ r s e type

c l a o s e s

preselection I
of r e l e v a n t

l e x i c a l entries

e x t e n d e d s e ~ - n a £ v e

b o t t o m - u p ~nterpreta~ion
of parse type c l a u s e s

combined with advanced

top-doom interpreta=ion

Figure 10: Setup of the ConTroll magic component

leads to an vast increase of parsing times. The
selective magic HPSG parser, however, exhibits a
significant speedup in many cases. For example,
parsing with the module of the grammar imple-
menting the analysis of nominal phrases is up to
nine times faster. At the same time though se-
lective magic HPSG parsing is sometimes signifi-
cantly slower. For example, parsing of particular
sentences exhibiting adverbial subordinate clauses
and long extraction is sometimes more than nine
times slower. We conjecture that these ambigu-
ous results are due to the use of coroutining: As
the test grammar was implemented using the stan-
dard ConTroll interpreter, the delay patterns used
presuppose a data-flow corresponding to advanced
top-down control and are not fine-tuned with re-
spect to the data-flow corresponding to the selec-
tive magic parser.

Coroutining is a flexible and powerful facility
used in many grammar development systems and
it will probably remain indispensable in dealing
with many control problems despite its various

disadvantages) 6 The test results discussed above
indicate that the comparison of parsing strategies
can be seriously hampered by fine-tuning parsing
using delay patterns. We believe therefore that
further research into the systematics underlying
coroutining would be desirable.

5 C o n c l u d i n g R e m a r k s

We described a selective magic parser for typed
feature grammars implementing HPSG that com-
bines the advantages of dynamic bottom-up and
advanced top-down control. As a result the parser
avoids the efficiency problems resulting from the
huge space requirements of storing intermediate
results in parsing with large grammars. The
parser allows the user to apply magic compilation
to specific constraints in a grammar which as a

16Coroutining has a significant run-time overhead
caused by the necessity to check the instantiation sta-
tus of a literal/goal. In addition, it demands the pro-
cedural annotation of an otherwise declarative gram-
mar. Finally, coroutining presupposes that a grammar
writer possesses substantial processing expertise.

171

Proceedings of EACL '99

result can be processed dynamically in a bottom-
up and goal-directed fashion. State of the art
top-down processing techniques are used to deal
with the remaining constraints. We discussed var-
ious aspects concerning the implementation of the
parser which was developed as part of the gram-
mar development system ConTroll.

Acknowledgments
The author gratefully acknowledges the support
of the SFB 340 project B4 "From Constraints to
Rules: Efficient Compilation of ttPSG" funded by
the German Science Foundation and the project
"PSET: Practical Simplification of English Text",
a three-year project funded by the UK Engi-
neering and Physical Sciences Research Council
(GR/L53175), and Apple Computer Inc.. The au-
thor wishes to thank Dale Gerdemann and Erhard
Hinrichs and the anonymous reviewers for com-
ments and discussion. Of course, the author is
responsible for all remaining errors.

References
Bob Carpenter and Gerald Penn. 1994. ALE -

The Attribute Logic Engine, User's guide, ver-
sion 2.0.2. Technical report, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA.

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures - With Applications to Unifica-
tion Grammars, Logic Programs and Constraint
Resolution. Cambridge University Press, New
York, USA.

Alain Colmerauer. 1982. PrologII: Manuel de
r@f~rence et module th@orique. Technical re-
port, Groupe d'Intelligence Artificielle, Facult~
de Sciences de Luminy, Marseille, France.

Jochen DSrre. 1993. Generalizing Earley Deduc-
tion for Constraint-based Grammars. In Jochen
DSrre and Michael Dorna (eds.), 1993. Compu-
tational Aspects of Constraint-Based Linguistic
Description L DYANA-2, Deliverable R1.2.A.

Dale Gerdemann. 1995. Term Encoding of
Typed Feature Structures. In Proceedings of
the Fourth International Workshop on Parsing
Technologies, Prague, Czech Republic.

Thilo GStz and Detmar Meurers. 1997a. In-
terleaving Universal Principles and Relational
Constraints over Typed Feature Logic. In
A CL/EACL Proceedings, Madrid, Spain.

Thilo GStz and Detmar Meurers. 1997b. The
ConTroll System as Large Grammar Develop-
ment Platform. In Proceedings of the ACL
Workshop on Computational Environments for
Grammar Development and Linguistic Engi-
neering, Madrid, Spain.

Thilo GStz. 1994. A Normal Form for Typed
Feature Structures. Technical report SFB 340
nr. 40, University of Tfibingen, Germany.

Thilo GStz. 1995. Compiling HPSG Constraint
Grammars into Logic Programs. In Proceedings
of the Workshop on Computational Logic for
Natural Language Processing, Edinburgh, UK.

Erhard Hinrichs, Detmar Meurers, Frank Richter,
Manfred Sailer, and Heike Winhart. 1997. Ein
HPSG-fragment des Deutschen, Tell 1: Theo-
rie. Technical report SFB 340 95, University of
Tiibingen, Germany.

Markus HShfeld and Gert Smolka. 1988. Definite
Relations over Constraint Languages. Technical
Report 53, IBM, Germany.

Mark Johnson and Jochen DSrre. 1995. Memo-
ization of Coroutined Constraints. In A CL Pro-
ceedings, Cambridge, Massachusetts, USA.

Paul King. 1994. Typed Feature Structures as
Descriptions. In Proceedings of of the 15th Con-
ference on Computational Linguistics, Kyoto,
Japan.

Detmar Meurers and Guido Minnen. 1997. A
Computational Treatment of Lexical Rules in
HPSG as Covariation in Lexical Entries. Com-
putational Linguistics, 23(4).

Guido Minnen. 1996. Magic for Filter Optimiza-
tion in Dynamic Bottom-up Processing. In ACL
Proceedings, Santa Cruz, California, USA.

Guido Minnen. 1998. Off-line Compilation for Ef-
ficient Processing with Constraint-logic Gram-
mars. Ph.D. thesis, University of Tfibingen,
Germany. Technical report SFB 340 nr. 130.

Lee Naish. 1986. Negation and Control in Prolog.
Springer-Verlag, Berlin, Germany.

Ulf Nilsson and Jan Matuszynski. 1995. Logic,
Programming and Prolog. John Wiley • Sons,
Chichester, UK, 2nd edition.

Carl Pollard and Ivan Sag. 1994. Head-Driven
Phrase Structure Grammar. University of
Chicago Press, Chicago, Illinois, USA.

Raghu Ramakrishnan, Divesh Srivastava, and
S. Sudarshan. 1992 . Efficient Bottom-up
Evaluation of Logic Programs. In Joos Van-
dewalle (ed.), 1992. The State of the Art in
Computer Systems and Software Engineering.
Kluwer Academic Publishers.

Stuart Shieber, Yves Schabes, and Fernando
Pereira. 1995. Principles and Implementation
of Deductive Parsing. Journal of Logic Pro-
gramming, 24(1-2).

Gertjan van Noord. 1997. An Efficient Imple-
mentation of the Head-corner Parser. Compu-
tational Linguistics, 23(3).

172

