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Abstract 

This paper presents a new approach to 
partial parsing of context-free structures. 
The approach is based on Markov Mod- 
els. Each layer of the resulting structure 
is represented by its own Markov Model, 
and output of a lower layer is passed as 
input to the next higher layer. An em- 
pirical evaluation of the method yields 
very good results for NP/PP chunking of 
German newspaper texts. 

1 Introduction 

Partial parsing, often referred to as chunking, is 
used as a pre-processing step before deep analysis 
or as shallow processing for applications like in- 
formation retrieval, messsage extraction and text 
summarization. Chunking concentrates on con- 
structs that can be recognized with a high degree 
of certainty. For several applications, this type of 
information with high accuracy is more valuable 
than deep analysis with lower accuracy. 

We will present a new approach to partial pars- 
ing that uses Markov Models. The presented 
models are extensions of the part-of-speech tag- 
ging technique and are capable of emitting struc- 
ture. They utilize context-free grammar rules and 
add left-to-right transitional context information. 
This type of model is used to facilitate the syntac- 
tic annotation of the NEGRA corpus of German 
newspaper texts (Skut et al., 1997). 

Part-of-speech tagging is the assignment of syn- 
tactic categories (tags) to words that occur in the 
processed text. Among others, this task is ef- 
ficiently solved with Markov Models. States of 
a Markov Model represent syntactic categories 
(or tuples of syntactic categories), and outputs 
represent words and punctuation (Church, 1988; 
DeRose, 1988, and others). This technique of sta- 
tistical part-of-speech tagging operates very suc- 

cessfully, and usually accuracy rates between 96 
and 97% are reported for new, unseen text. 

Brants et al. (1997) showed that the technique 
of statistical tagging can be shifted to the next 
level of syntactic processing and is capable of as- 
signing grammatical functions. These are func- 
tions like subject, direct object, head, etc. They 
mark the function of a child node within its par- 
ent phrase. 

Figure 1 shows an example sentence and its 
structure. The terminal sequence is complemen- 
ted by tags (Stuttgart-Tiibingen-Tagset, Thielen 
and Schiller, 1995). Non-terminal nodes are la- 
beled with phrase categories, edges are labeled 
with grammatical functions (NEGRA tagset). 

In this paper, we will show that Markov Mod- 
els are not restricted to the labeling task (i.e., the 
assignment of part-of-speech labels, phrase labels, 
or labels for grammatical functions), but are also 
capable of generating structural elements. We will 
use cascades of Markov Models. Starting with 
the part-of-speech layer, each layer of the result- 
ing structure is represented by its own Markov 
Model. A lower layer passes its output as input 
to the next higher layer. The output of a layer 
can be ambiguous and it is complemented by a 
probability distribution for the alternatives. 

This type of parsing is inspired by finite state 
cascades which are presented by several authors. 

CASS (Abney, 1991; Abney, 1996) is a partial 
parser that recognizes non-recursive basic phrases 
(chunks) with finite state transducers. Each 
transducer emits a single best analysis (a longest 
match) that serves as input for the transducer at 
the next higher level. CASS needs a special gram- 
mar for which rules are manually coded. Each 
layer creates a particular subset of phrase types. 
FASTUS (Appelt et al., 1993) is heavily based 
on pattern matching. Each pattern is associated 
with one or more trigger words. It uses a series of 
non-deterministic finite-state transducers to build 
chunks; the output of one transducer is passed 

118 



Proceedings of EACL '99 

,D 
,] 

an Arbeit und Gelci 

APPR NN KON NN 

of work and money 

Ein enormer Posten wird von den 37 beteiligten Vereinen aufgebracht 

ART ADJA NN VAFIN APPR ART CARD ADJA NN WPP 

An enormous amount is by the 37 involved organizations raised 

'A large amount of money and work was raised by the involved organizations' 

Figure 1: Example sentence and annotation. The structure consists of terminal nodes (words and their 
parts-of-speech), non-terminal nodes (phrases) and edges (labeled with grammatical functions). 

as input to the next transducer. (Roche, 1994) 
uses the fix point of a finite-state transducer. The 
transducer is iteratively applied to its own out- 
put until it remains identical to the input. The 
method is successfully used for efficient processing 
with large grammars. (Cardie and Pierce, 1998) 
present an approach to chunking based on a mix- 
ture of finite state and context-free techniques. 
They use N P rules of a pruned treebank grammar. 
For processing, each point of a text is matched 
against the treebank rules and the longest match 
is chosen. Cascades of automata and transducers 
can also be found in speech processing, see e.g. 
(Pereira et al., 1994; Mohri, 1997). 

Contrary to finite-state transducers, Cascaded 
Markov Models exploit probabilities when pro- 
cessing layers of a syntactic structure. They do 
not generate longest matches but most-probable 
sequences. Furthermore, a higher layer sees dif- 
ferent alternatives and their probabilities for the 
same span. It can choose a lower ranked alterna- 
tive if it fits better into the context of the higher 
layer. An additional advantage is that  Cascaded 
Markov Models do not need a "stratified" gram- 
mar (i.e., each layer encodes a disjoint subset of 
phrases). Instead the system can be immediately 
trained on existing treebank data. 

The rest of this paper is structured as follows. 
Section 2 addresses the encoding of parsing pro- 
cesses as Markov Models. Section 3 presents Cas- 
caded Markov Models. Section 4 reports on the 
evaluation of Cascaded Markov Models using tree- 
bank data. Finally, section 5 will give conclusions. 

2 E n c o d i n g  of Syntact ica l  
Informat ion  as Markov Mode l s  

When encoding a part-of-speech tagger as a 
Markov Model, states represent syntactic cate- 

gories 1 and outputs represent words. Contex- 
tual probabilities of tags are encoded as transi- 
tion probabilities of tags, and lexical probabilities 
of the Markov Model are encoded as output  prob- 
abilities of words in states. 

We introduce a modification to this encoding. 
States additionally may represent non-terminal 
categories (phrases). These new states emit par- 
tial parse trees (cf. figure 2). This can be seen as 
collapsing a sequence of terminals into one non- 
terminal. Transitions into and out of the new 
states are performed in the same way as for words 
and parts-of-speech. 

Transitional probabilities for this new type of 
Markov Models can be estimated from annotated 
data in a way very similar to estimating proba- 
bilities for a part-of-speech tagger. The only dif- 
ference is that sequences of terminals may be re- 
placed by one non-terminal. 

Lexical probabilities need a new estimation 
method. We use probabilities of context-free par- 
tim parse trees. Thus, the lexical probability of 
the state NP in figure 2 is determined by 

P(NP ~ ART ADJA NN, 

ART ~ ein, ADJA --~ enormer, NN ~ Posten) 

= P(NP ~ ART ADJA NN) 

• P(ART ~ ein)- P(ADJA --+ enormer) 

• P(NN -+ Posten) 

Note that the last three probabilities are the same 
as for the part-of-speech model. 

1Categories and states directly correspond in bi- 
gram models. For higher order models, tuples of cat- 
egories are combined to one state. 
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ein enormer Posten Arbeit und Geld von den 37 beteiligten Vereinen 

Figure 2: Part of the Markov Models for layer I that is used to process the sentence of fignre 1. Contrary 
to part-of-speech tagging, outputs of states may consist of structures with probabilities according to a 
stochastic context-free grammar. 

3 C a s c a d e d  M a r k o v  M o d e l s  

The basic idea of Cascaded Markov Models is to 
construct the parse tree layer by layer, first struc- 
tures of depth one, then structures of depth two, 
and so forth. For each layer, a Markov Model de- 
termines the best set of phrases. These phrases 
are used as input for the next layer, which adds 
one more layer. Phrase hypotheses at each layer 
are generated according to stochastic context-free 
grammar rules (the outputs of the Markov Model) 
and subsequently filtered from left to right by 
Markov Models. 

Figure 3 gives an overview of the parsing model. 
Starting with part-of-speech tagging, new phrases 
are created at higher layers and filtered by Markov 
Models operating from left to right. 

3.1 Tagging Lat t ices  

The processing example in figure 3 only shows the 
best hypothesis at each layer. But there are alter- 
native phrase hypotheses and we need to deter- 
mine the best one during the parsing process. 

All rules of the generated context-free grammar 
with right sides that are compatible with part of 
the sequence are added to the search space. Fig- 
ure 4 shows an example for hypotheses at the first 
layer when processing the sentence of figure 1. 
Each bar represents one hypothesis. The position 
of the bar indicates the covered words. It is la- 
beled with the type of the hypothetical phrase, 
an index in the upper left corner for later ref- 
erence, the negative logarithm of the probability 
that this phrase generates the terminal yield (i.e., 
the smaller the better; probabilities for part-of- 
speech tags are omitted for clarity). This part is 
very similar to chart entries of a chart parser. 

All phrases that are newly introduced at this 
layer are marked with an asterisk (*). They are 
produced according to context-free rules, based 
on the elements passed from the next lower layer. 
The layer below layer 1 is the part-of-speech layer. 

The hypotheses form a lattice, with the word 
boundaries being states and the phrases being 
edges. Selecting the best hypothesis means to find 
the best path from node 0 to the last node (node 
14 in the example). The best path can be effi- 
ciently found with the Viterbi algorithm (Viterbi, 
1967), which runs in time linear to the length of 
the word sequence. Having this view of finding the 
best hypothesis, processing of a layer is similar to 
word lattice processing in speech recognition (cf. 
Samuelsson, 1997). 

Two types of probabilities are important when 
searching for the best path in a lattice. First, 
these are probabilities of the hypotheses (phrases) 
generating the underlying terminal nodes (words). 
They are calculated according to a stochastic 
context-free grammar and given in figure 4. The 
second type are context probabilities, i.e., the 
probability that some type of phrase follows or 
precedes another. The two types of probabilities 
coincide with lexical and contextual probabilities 
of a Markov Model, respectively. 

According to a trigram model (generated from 
a corpus), the path in figure 4 that is marked grey 
is the best path in the lattice. Its probability is 
composed of 

Pbesf 
P(NP[$, $)P(NP ~* ein enormer Posten) 
• P(APPRI$, NP)P(APPR ~ an) 
• P(CNPINP, APPR)P(¢NP ~* Arbeit und Geld) 
• P(VAFINIAPPR , CNP)P(VAFIN --+ wird) 
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Z @art-of-Speech Tagging~ ( Gramma"t~al ) 
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Kronos haben mit ihrer MusikBrOckengeschlagen ~!~:!:~:~:~ '~!~ 
Kronos haben mit ihrer MusikBrOckengeschlagen 

Kronos have w i t h  their music bridges built 

"Kronos built bridges with their music" 

Figure 3: The combined, layered processing model. Starting with part-of-speech tagging (layer 0), pos- 
sibly ambiguous output  together with probabilities is passed to higher layers (only the best hypotheses 
are shown for clarity). At each layer, new phrases and grammatical functions are added. 

-P(PPICNP, VAFIN) 
P(PP =~* yon den 37 beteiligten Vereinen) 

• P(VVPP]VAFIN, PP)P(VVPP --+ aufgebracht )  
• P($1PP, VVPP). 

Start and end of the path are indicated by a 
dollar sign ($). This path is very close to the cor- 
rect structure for layer 1. The CNP and PP are 
correctly recognized. Additionally, the best path 
correctly predicts that  APPR, VAFIN and VVPP 
should not be attached in layer 1. The only error 
is the NP ein enormer Posten. Although this is on 
its own a perfect NP, it is not complete because 
the PP an Arbeit und Geld is missing. ART, ADJA 
and NN should be left unattached in this layer in 
order to be able to create the correct structure at 
higher layers. 

The presented Markov Models act as filters. 
The probability of a connected structure is de- 
termined only based on a stochastic context-free 
grammar. The joint probabilities of unconnected 
partial structures are determined by additionally 
using Markov Models. While building the struc- 
ture bottom up, parses that are unlikely according 
to the Markov Models are pruned. 

3.2 T h e  M e t h o d  

The standard Viterbi algorithm is modified in or- 
der to process Markov Models operating on lat- 
tices. In part-of-speech tagging, each hypothesis 
(a tag) spans exactly one word. Now, a hypothesis 
can span an arbitrary number of words, and the 

same span can be covered by an arbi t rary num- 
ber of alternative word or phrase hypotheses. Us- 
ing terms of a Markov Model, a state is allowed 
to emit a context-free partial parse tree, starting 
with the represented non-terminal symbol, yield- 
ing part of the sequence of words. This is in con- 
trast  to standard Markov Models. There, states 
emit atomic symbols. Note that  an edge in the lat- 
tice is represented by a state in the corresponding 
Markov Model. Figure 2 shows the part  of the 
Markov Model that  represents the best path in 
the lattice of figure 4. 

The equations of the Viterbi algorithm are 
adapted to process a language model operating 
on a lattice. Instead of the words, the gaps be- 
tween the words are enumerated (see figure 4), 
and an edge between two states can span one or 
more words, such that  an edge is represented by 
a triple <t, t', q>, starting at time t, ending at t ime 
t' and representing state q. 

We introduce accumulators At,t, (q) that  col- 
lect the maximum probability of state q covering 
words from position t to t '. We use 6i,j (q) to de- 
note the probability of the deriviation emitted by 
state q having a terminal yield that  spans posi- 
tions i to j .  These are needed here as part of the 
accumulators A. 

Initialization: 

Ao,t(q) = P(qlqs)6o,t(q) (1) 
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met sten beit ligten einen bracht 

Figure 4: Phrase hypotheses according to a context-free grammar for the first layer. Hypotheses marked 
with an asterisk (*) are newly generated at this layer, the others are passed from the next  lower layer 
(layer 0: part-of-speech tagging). The best path in the lattice is marked grey. 

Recursion: 

At,t, (q) = max At,,,t(q')P(qlq')6t,t, (q), 
(t,,,t,q,>ELattice 

(2) 
for l < t  < T .  
Termination: 

max P(Q,  Lattice) = m_ax At T(q)P(qe]q). 
QEQ.* (t,T,q)eUattice ' 

(3) 
Additionally, it is necessary to keep track of the el- 
ements in the lattice that  maximized each At,r (q). 
When reaching time T, we get the best last ele- 
ment in the lattice 

(t~ n, T, q~n) = argmax At,T(q)P(qe[q). (4) 
<t,T,q>eLattice 

Setting t~ n = T, we collect the arguments 
<t", t, q') E Lattice that  maximized equation 2 by 
walking backwards in time: 

r n  r n  m (t i+i,t i  , qi+i) = 
, p  m , g ~  ~, argmax At,,,t 7 (q)  (q~ Iq ) t, ,t,_ x(q~) 

<t,',t T ,a,>•Lattice 
(5) 

for i > 1, until we reach t~ = 0. Now, q ~ . . .  q~ 
is the best sequence of phrase hypotheses (read 
backwards). 

3.3 P a s s i n g  A m b i g u i t y  to  the  N e x t  Layer 

The process can move on to layer 2 after the first 
layer is computed. The results of the first layer are 
taken as the base and all context-free rules that  
apply to the base are retrieved. These again form 
a lattice and we can calculate the best path for 
layer 2. 

The Markov Model for layer 1 operates on the 
output of the Markov Model for part-of-speech 
tagging, the model for layer 2 operates on the out- 
put of layer 1, and so on. Hence the name of the 
processing model: Cascaded Markov Models. 

Very often, it is not sufficient to calculate just  
the best sequences of words/tags/phrases.  This 
may result in an error leading to  subsequent er- 
rors at higher layers. Therefore, we not only cal- 
culate the best sequence but several top ranked 
sequences. The number of the passed hypotheses 
depends on a pre-defined threshold ~ > 1. We se- 
lect all hypotheses with probabilities P > Pbest/8. 
These are passed to the next layer together with 
their probabilities. 

3.4 Parameter  Es t ima t io n  

Transitional parameters for Cascaded Markov 
Models are estimated separately for each layer. 
Output parameters are the same for all layers, 
they are taken from the stochastic context-free 
grammar that  is read off the treebank. 

Training on annotated data is straight forward. 
First, we number the layers, starting with 0 for 
the part-of-speech layer. Subsequently, informa- 
tion for the different layers is collected. 

Each sentence in the corpus represents one 
training sequence for each layer. This sequence 
consists of the tags or phrases at that  layer. If 
a span is not covered by a phrase at a particular 
layer, we take the elements of the highest layer 
below the actual layer. Figure 5 shows the train- 
ing sequences for layers 0 - 4 generated from the 
sentence in figure 1. Each sentence gives rise to 
one training sequence for each layer. Contextual 
parameter estimation is done in analogy to models 
for part-of-speech tagging, and the same smooth- 
ing techniques can be applied. We use a linear 
interpolation of uni-, bi-, and t r igram models. 

A stochastic context-free grammar is read off 
the corpus. The rules derived from the anno- 
tated sentence in figure 1 are also shown in figure 
5. The grammar is used to estimate output  pa- 
rameters for all Markov Models, i.e., they are the 
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L.3er Sequence S 

NP VAFIN VP 
2 ART ADJA NN PP VAFIN VP 
i ART ADJA NN APPR CNP VAFIN PP VVPP 
0 ART ADJA NN APPR NN KON NN VAFIN APPR ART CARD ADJA NN VVPP 

Context-free rules and their frequencies 
S --> NP VAFIN VP (1) PP ~ APPR ART CARD ADJA NN (1) 
NP --> ART ADJA NN PP (1) ART --> Ein (1) 
PP .--)- APPR CNP (I) ADJA --). enormer (I) 
CNP ~ NN KON NN (I)  . . . . . .  
VP -+ PP VVPP (I) VVPP -+ aufgebracht ( i)  

Figure 5: Training material generated from the sentence in figure 1. The sequences for layers 0 - 4 are 
used to estimate transition probabilities for the corresponding Markov Models. The context-free rules 
are used to estimate the SCFG, which determines the output probabilities of the Markov Models. 

same for all layers. We could estimate probabil- 
ities for rules separately for each layer, but this 
would worsen the sparse data  problem. 

4 Experiments 
This section reports on results of experiments with 
Cascaded Markov Models. We evaluate chunking 
precision and recall, i.e., the recognition of kernel 
NPs and PPs. These exclude prenominal adverbs 
and postnominal PPs and relative clauses, but in- 
clude all other prenominal modifiers, which can be 
fairly complex adjective phrases in German. Fig- 
ure 6 shows an example of a complex N P and the 
output of the parsing process. 

For our experiments, we use the NEGRA corpus 
(Skut et al., 1997). It consists of German news- 
paper texts (Frankfurter Rundschau) that are an- 
notated with predicate-argument structures. We 
extracted all structures for NPs, PPs, APs, AVPs 
(i.e., we mainly excluded sentences, VPs and co- 
ordinations). The version of the corpus used con- 
tains 17,000 sentences (300,000 tokens). 

The corpus was divided into training part (90%) 
and test part (10%). Experiments were repeated 
10 times, results were averaged. Cross-evaluation 
was done in order to obtain more reliable perfor- 
mance estimates than by just one test run. Input 
of the process is a sequence of words (divided 
into sentences), output are part-of-speech tags 
and structures like the one indicated in figure 6. 

Figure 7 presents results of the chunking task 
using Cascaded Markov Models for different num- 
bers of layers. 2 Percentages are slightly below 
those presented by (Skut and Brants, 1998). But 

2The figure indicates unlabeled recall and preci- 
sion. Differences to labeled recall/precision are small, 
since the number of different non-terminal categories 
is very restricted. 

they started with correctly tagged data, so our 
task is harder since it includes the process of part- 
of-speech tagging. 

Recall increases with the number of layers. It 
ranges from 54.0% for 1 layer to 84.8% for 9 lay- 
ers. This could be expected, because the num- 
ber of layers determines the number of phrases 
that  can be parsed by the model. The additional 
line for "topline recall" indicates the percentage of 
phrases that can be parsed by Cascaded Markov 
Models with the given number of layers. All nodes 
that belong to higher layers cannot be recognized. 

Precision slightly decreases with the number of 
layers. It ranges from 91.4% for 1 layer to 88.3% 
for 9 layers. 

The F-score is a weighted combination of recall 
R and precision P and defined as follows: 

F - (/32 + 1 ) P R  
/32p -b R (6) 

/3 is a parameter encoding the importance of recall 
and precision. Using an equal weight for both 
(/3 = 1), the maximum F-score is reached for 7 
layers (F =86.5%). 

The part-of-speech tagging accuracy slightly in- 
creases with the number of Markov Model layers 
(bottom line in figure 7). This can be explained by 
top-down decisions of Cascaded Markov Models. 
A model at a higher layer can select a tag with a 
lower probability if this increases the probability 
at that  layer. Thereby some errors made at lower 
layers can be corrected. This leads to the increase 
of up to 0.3% in accuracy. 

Results for chunking Penn Treebank data  
were previously presented by several authors 
(Ramshaw and Marcus, 1995; Argamon et al., 
1998; Veenstra, 1998; Cardie and Pierce, 1998). 
These are not directly comparable to our results, 
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die von der Bundesregierung angestrebte Entlassung des Bundes aus einzelnen Bereichen 

ART APPR ART NN ADJA NN ART NN APPR ADJA NN 

the by the government intended dismissal (of) the federation f rom several areas 

'the dismissal of the federation from several areas that was intended by the government' 

Figure 6: Complex German NP and chunker output (postnominal genitive and PP are not attached). 
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N E G K A  Corpus:  Chunking  Resu l t s  
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rain = 72.6% 
max= 100.0% 
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rain = 88.3% 
max= 91.4% 

I I i I I I I 
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96.3 96 .4  96 .4  96 .5  96.5  96 .5  96.5 96.5 % POS accuracy 

Figure 7: NP/PP chunking results for the NEGI~A Corpus. The diagram shows recall and precision 
depending on the number of layers that are used for parsing. Layer 0 is used for part-of-speech tagging, 
for which tagging accuracies are given at the bottom line. Topline recall is the maximum recall possible 
for that number of layers. 

because they processed a different language and 
generated only one layer of structure (the chunk 
boundaries), while our algorithm also generates 
the internal structure of chunks. But generally, 
Cascaded Markov Models can be reduced to gen- 
erating just one layer and can be trained on Penn 
Treebank data. 

5 C o n c l u s i o n  a n d  F u t u r e  W o r k  

We have presented a new parsing model for shal- 
low processing. The model parses by represent- 
ing each layer of the resulting structure as a sep- 
arate Markov Model. States represent categories 
of words and phrases, outputs consist of partial 
parse trees. Starting with the layer for part-of- 
speech tags, the output of lower layers is passed 
as input to higher layers. This type of model is 
restricted to a fixed maximum number of layers in 
the parsed structure, since the number of Markov 
Models is determined before parsing. While the 

effects of these restrictions on the parsing of sen- 
tences and VPs are still to be investigated, we ob- 
tain excellent results for the chunking task, i.e., 
the recognition of kernel NPs and PPs. 

It will be interesting to see in future work if Cas- 
caded Markov Models can be extended to parsing 
sentences and VPs. The average number of lay- 
ers per sentence in the NEGRA corpus is only 5; 
99.9% of all sentences have 10 or less layers, thus 
a very limited number of Markov Models would 
be sufficient. 

Cascaded Markov Models add left-to-right 
context-information to context-free parsing. This 
contextualization is orthogonal to another impor- 
tant trend in language processing: lexicalization. 
We expect that the combination of these tech- 
niques results in improved models. 

We presented the generation of parameters from 
annotated corpora and used linear interpolation 
for smoothing. While we do not expect ira- 
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provements by re-estimation on raw data, other 
smoothing methods may result in better accura- 
cies, e.g. the maximum entropy framework. Yet, 
the high complexity of maximum entropy parame- 
ter estimation requires careful pre-selection of rel- 
evant linguistic features. 

The presented Markov Models act as filters. 
The probability of the resulting structure is de- 
termined only based on a stochastic context-free 
grammar. While building the structure bottom 
up, parses that are unlikely according to the 
Markov Models are pruned. We think that a 
combined probability measure would improve the 
model. For this, a mathematically motivated com- 
bination needs to be determined. 
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