
Proceedings of EACL '99

Full Text Parsing using Cascades of Rules:
an Information Extraction Perspective

F a b i o C i r a v e g n a a n d A l b e r t o L a v e l l i

ITC-i rs t Cent ro per la Ricerca Scientifica e Tecnologica

via Sommarive , 18

38050 Povo (TN)
ITALY

{cirave[lavelli} Qirst . i tc . i t

A b s t r a c t

This paper proposes an approach to full
parsing suitable for Information Extrac-
tion from texts. Sequences of cascades of
rules deterministically analyze the text,
building unambiguous structures. Ini-
tially basic chunks are analyzed; then ar-
gumental relations are recognized; finally
modifier attachment is performed and
the global parse tree is built. The ap-
proach was proven to work for three lan-
guages and different domains. It was im-
plemented in the IE module of FACILE,
a EU project for multilingual text classi-
fication and !E.

1 I n t r o d u c t i o n

Most successful approaches in IE (Appelt et al.,
1993; Grishman, 1995; Aone et al., 1998) make a
very poor use of syntactic information. They are
generally based on shallow parsing for the anal-
ysis of (non recursive) NPs and Verba~ Groups
(VGs). After such step regular patterns are ap-
plied in order to trigger primitive actions that fill
template(s); meta-rules are applied to patterns to
cope with different syntactic clausal forms (e.g.,
passive forms). If we consider the most com-
plex MUC-7 task (i.e., the Scenario Template task
(MUC7, 1998)), the current technology is not able
to provide results near an operational level (ex-
pected F(1)=75%; the best system scored about
50% (Aone et al., 1998)). One of the limita-
tions of the current technology is the inability
to extract (and to represent) syntactic relations
among elements in the sentence, i.e. grammati-
cal functions and thematic roles. Scenario Tem-
plate recognition needs the correct treatment of
syntactic relations at both sentence and text level
(Aone et al., 1998). Full parsing systems are gen-
erally able to correctly model syntactic relations,

but they tend to be slow (because of huge search
spaces) and brittle (because of gaps in the gram-
mar). The use of big grammars partially solves the
problem of gaps but worsens the problem of huge
search spaces and makes grammar modifications
difficult (Grishman, 1995). Grammar modifica-
tions are always to be taken into account. Many
domain-specific texts present idiosyncratic phe-
nomena that require non-standard rules. Often
such phenomena are limited to some cases only
(e.g., some types of coordinations are applied to
people only and not to organizations). Inserting
generic rules for such structures introduces (use-
less) extra complexity into the search space and
- when applied indiscriminately (e.g., on classes
other than people) - can worsen the system re-
sults. It is not clear how semantic restrictions can
be introduced into (big) generic grammars.

In this paper we propose an approach to full
parsing for IE based on cascades of rules. The
approach is inspired by the use of finite-state cas-
cades for parsing (e.g., (Abney, 1996) uses them
in a project for inducing lexical dependencies from
corpora). Our work is interesting in an IE per-
spective because it proposes:

• a method for efficiently and effectively per-
forming full parsing on texts;

• a way of organizing generic grammars that
simplifies changes, insertion of new rules
and especially integration of domain-oriented
rules.

The approach proposed in this paper for parsing
has been extended to the whole architecture of an
IE system. Also lexical (lexical normalization and
preparsing), semantic (default reasoning and tem-
plate filling) and discourse modules are based on
the same approach. The system has been devel-
oped as part of FACILE (Ciravegna et al., 1999),
a successfully completed project funded by the
European Union. FACILE deals with text clas-
sification and information extraction from text in

102

Proceedings of EACL '99

the financial domain. The proposed approach has
been tested mainly for Italian, but proved to work
also for English and, as of the t ime of this writing,
partially for Russian. Applications and demon-
strators have been built in four different domains.

In this paper we first introduce the adopted for-
malism and then go into details on g rammar orga-
nization and on the different steps through which
parsing is accomplished. Finally we present some
experimental results.

2 Representat ion and Rules

Every lexical element a in the input sentence w
is abstractly represented by means of elementary
objects, called t okens . A token T is associated
with three structures:

• [T]dep is a dependency tree for a, i.e. a tree
representing syntactic dependencies between
a and other lexical elements (its dependees)
in w.

• [T]leat is a feature structure representing syn-
tactic and semantic information needed to
combine a with other elements in the input.

• [T]zy is a Quasi Logical Form (QLF) providing
a semantic interpretation for the combination
of a with its dependees.

Rules operate on tokens, therefore they can access
all the three structures above. Rules incremen-
tally build and update the above structures. Lex-
ical, syntactic and semantic constraints can then
be used in rules at any level. The whole IE ap-
proach can be based on the same formalism and
rule types, as both lexical, syntactic and semantic
information can be processed uniformly.

The general form of a r u l e is a triple

(Ta~, FT, FA>,

where

• 7c~d is a non-empty string of tokens, called
the rule p a t t e r n ; cr is called the rule co re
and is non-empty, 7, fi are called the rule con-
t e x t and may be empty;

• FT is a set of boolean predicates, called rule
t e s t , defined over tokens in the rule pattern;

• FA is a set of elementary operations, called
rule a c t i o n , defined over tokens in the sole
rule core.

The postfix, unary operators " ," (Kleene star)
and "?" (optionality operator) can be used in the
rule patterns.

A basic data structure, called t o k e n c h a r t , is
processed and dynamically maintained. This is
a directed graph whose vertices are tokens and
whose arcs represent binary relations from some
(finite) basic set. Initially, the token chart is a
chain-like graph with tokens ordered as the corre-
sponding lexical elements in w, i.e. arcs initially
represent lexical adjacency between tokens. Dur-
ing the processing, arcs might be rewritten so that
the token chart becomes a more general kind of
graph.

For a rule to apply, a path cr must be found
in the token chart that, when viewed as a string
of tokens, satisfies the two following conditions:
(i) ~ is matched by 7a~; and (ii) all the boolean
predicates in FT hold when evaluated on c~.

When a rule applies, the elementary operations
in FA are executed on the tokens of ¢ matching
the core of the rule. The effect of action execution
is that [T]dep, IT]lear and [Tit /are updated for the
appropriate matching tokens.

Rules are grouped into c a s c a d e s that are fi-
nite, ordered sequences of rules. Cascades rep-
resent elementary logical units, in the sense that
all rules in a cascade deal with some specific con-
struction (e.g., subcategorization of verbs). From
a functional point of view, a cascade is composed
of three segments:

• s l contains rules that deal with idiosyncratic
cases for the construction at hand;

• s2 contains rules dealing with the regular
cases;

• s3 contains default rules that fire only when
no other rule can be successfully applied.

3 Parsing

The parsing model is strongly influenced by IE
needs. Its aim is to build the sufficient IE ap-
proximation (SIEA) of the correct parse tree for
each sentence, i.e. a complete parse tree where
all the relations relevant for template filling are
represented, while other relations are left implicit.
The parser assumes that there is one and only one
possible correct parse tree for each sentence and
therefore also only one SIEA.

Parsing is based on the application of a fixed
sequence of cascades of rules. It is performed in
three steps using different grammars:

* chunking (analysis of NPs, VGs and PPs);

. subcategorization frame analysis (for verbs,
nominalizations, etc.);

• modifier attachment.

103

Proceedings of EACL '99

[ACME] np
A CME
[iniziare] vg
start
[in raodo da]compt
so to

[ha dec i so]vg ,
has decided,
[1' emis s lone] np
the issue
[divers if icare] vg
diversify

[informa] vg
tells
[di obbligazioni] pp
of bonds
[il proprio impegno]np
its obligation

[una nora] np, [d i] eompt
a press release, to
[per 12 milioni di Euro]pp

for 1~ million (o]) Euro
[nel mercato]pp.
in the market.

Figure 1: The Italian sentence used as an example.

The first two steps are syntax driven and based on
generic grammars. Most rules in such grammars
are general syntactic rules, even if they strongly
rely on the semantic information provided by a
foreground lexicon (see also Section 3.2). Dur-
ing modifier attachment, mainly semantic pat-
terns are used. At the end of these three steps
the SIEA is available.

We use deterministic dependency parsing 1 op-
erating on a specific linear path within the to-
ken chart (the parsing path); at the beginning the
parsing path is equal to the initial token chart.
When a rule is successfully applied, the parsing
path is modified so that only the head token is
visible for the application of the following rules;
this means that the other involved elements are
no longer available to the parser.

3.1 Chunking

Chunking is accomplished in a standard way.
In Figure I an example of chunk recognition is
shown. 2

3.2 A-structure Analysis

A-structure analysis is concerned with the
recognition of argumental dependencies between
chunks. All kinds of modifier dependencies (e.g.,
PP attachment) are disregarded during this step.

More precisely: let w be the input sentence.
A dependency tree for w is a tree represent-
ing all predicate-argument and predicate-modifier
syntactic relations between the lexical elements in
w. The A-structure for w is a tree forest ob-
tained from the dependency tree by unattaching
all nodes that represent modifiers. A-structures
are associated with the token that represents the
semantic head of w (Tsent in the following). A-
structure analysis associates to Ts~nt:

• [Tsent]dep: the A-structure spanning the
whole sentence;

t Even if we use dependency parsing, in this paper
we will make reference to constituency based struc-
tures (e.g., PPs) because most readers are more ac-
quainted with them than with dependency structures.

2In this paper we use literal English translations of
Italian examples.

* [Ts~.t]f~,t: its feature structure;

• [Tsent]tf: its QLF.

A-structure analysis is performed without recur-
sion by the successive application of three se-
quences of rule cascades: 3

. The first sequence of cascades performs anal-
ysis of basic (i.e., non-recursive) sentences.
It does so using the subcategorization frames
of available chunks. Three cascades of rules
are involved: one for the subcategorization
frames of NP and PPs, one for those of VGs,
and one for combining complementizers with
their clausal arguments.

• The second sequence of cascades performs
analysis of dependencies between basic sen-
tences. This sequence processes all sentential
arguments and all incidentals by employing
only two cascades of rules, without any need
for recursion. This sequence is applied twice,
i.e. it recognizes structures with a maximum
of two nested sentences.

* The third sequence of cascades performs re-
covery analysis. During this step all tree frag-
ments not yet connected together are merged.

Tokens not recognized as arguments at the end of
A-structure analysis are marked as modifiers and
left unattached in the resulting A-structure. They
will be attached in the parse tree during modifier
attachment (see Section 3.3).

We adopt a highly lexicalized approach. In
a pure IE perspective the information for A-
structure analysis is provided by a foreground lex-
icon (Kilgarriff, 1997). Foreground lexica pro-
vide detailed information about words relevant
for the domain (e.g., subcategorization frame, re-
lation with the ontology); for words outside the
foreground lexicon a large background lexicon pro-
vides generic information. The term subcatego-
rization frame is used here in restricted sense: i t

3The order of the cascades in the sequences de-
pends on the intrasentential structure of the specific
language coped with.

104

Proceedings of EACL '99

PATTERN T E S T ACTION Matched Input

T1

T2*

T3

[T1]yeat.cat=NP

[T2]/eat.cat=ld j unct

[T3]yeat.cat=PP
[T3]]eat=[T1]]e~t.subcat.int-arg

Depend ant (IT1] aep, [T3] aep)
[T1]yeat.subcat.int-arg=[T3]yeat
[T1]t/.patient =[7"3]ty.head

"the issue"

" o f b o n d s "

Figure 2: The rule that recognizes [the i s su e of bonds]np.

generally includes subject, object and - possibly -
one indirect complement. The information in the
foreground lexicon allows to classify known tokens
as arguments of other known tokens with high re-
liability. Let's go back to our example. The first
sequence of cascades recognizes:

* [the i s sue of bonds]np: the rule in Figure
2 recognizes [of bonds]pp as internal argu-
ment of [the issue]np; the rule uses the in-
formation associated with i s s u e in the fore-
ground lexicon, i.e. that it is the nominal-
ization of "to issue". The subcategorization
frame of such verb specifies its arguments
and their semantic restrictions. The syntactic
rule adds the condition that - being a nomi-
nalization - the internal argument is realized
as a PP marked by of;

- [ACME has decided]ip: [ACME]np is the ex-
ternal argument of [has decided]vg;

• [tells a press release]ip: [a press
release]np is the external argument of
[tells]vg;

• [start the issue of bonds for 12

million Euro]ip: [issue]np is the internal
argument of [start]v9; [for 12 million
Euro]pp is a modifier (as it is not subcatego-
rized by other tokens) and is unattached in
the A-structure;

- [diversify its obligation in the
market]ip: [its obligation]np is the
internal argument of [diversify]v9; [in

the market]pp is a modifier;

• [to start the issue of bonds for 12

million Euro]ep: [tO]compl gets its argu-
ment [start ...lip;

• [so to diversify its obligation in

the market]cp: [so tO]compl gets its
argument [diversify . . .]ip.

The result after the application of the first se-
quence is:
[ACME has decided]ip
[tells a press release]ip
[to start the issue of bonds for 12
million Euro] cp
[so to diversify its obligation in the
market] cp

The second sequence recognizes that [ACME has
decided]@ still needs a sentential argument, i.e.
a subordinate clause introduced by t o (such infor-
mation comes from the foreground lexicon). Such
argument is found after the incidental [t e l l s
a p r e s s r e l e a s e] : it is the CY headed by [to
s t a r t] . The result of the second phase is:
[ACME has decided, tells a press release,

to start the issue of bonds for 12

million Euro] sentence
[so to diversify its obligation in the
market] ep

Finally, the recovery sequence collapses the two
constituents above into a single sentence struc-
ture; the CP is considered a clausal modifier (as
it was not subcategorized by anything) and is left
unattached in the A-structure.

At the end of the A-structure recognition Tsent
is the token associated with [has decided'].
[Tsent]dep is integrated with the search space for
each unattached modifier (see Section 3.3).

The way A-structures are produced is interest-
ing for a number of reasons.

First of all generic grammars are used to cope
with generic linguistic phenomena at sentence
level. Secondly we represent syntactic relations
in the sentence (i.e., grammatical functions and
thematic roles); such relations allow a better
treatment of linguistic phenomena than possi-
ble in shallow approaches (Aone et ah, 1998;

105

Proceedings of EACL '99

Kameyama, 1997).
The initial generic grammar is designed to cover

the most frequent phenomena in a restrictive
sense. Additional rules can be added to the gram-
mar (when necessary) for coping with the un-
covered phenomena, especially domain-specific id-
iosyncratic forms. The limited size of the gram-
mar makes modifications simple (the A-structure
grammar for Italian contains 66 rules).

The deterministic approach combined with the
use of sequences, cascades and segments makes
grammar modifications simple, as changes in a
cascade (e.g., rule addition/modification) influ-
ence only the following part of the cascade or the
following cascades. This makes the writing and
debugging of grammars easier than in recursive
approaches (e.g., context-free grammars), where
changes to a rule can influence the application of
any rule in the grammar.

The grammar organization in cascades and seg-
ments allows a clean definition of the grammar
parts. Each cascade copes with a specific phe-
nomenon (modularity of the grammar). All the
rules for the specific phenomenon are grouped to-
gether and are easy to check.

The segment/cascade structure is suitable for
coping with the idiosyncratic phenomena of re-
stricted corpora. As a matter of fact domain-
oriented corpora can differ from the standard use
of language (such as those found in generic cor-
pora) in two ways:

• in the frequency of the constructions for a
specific phenomenon;

• in presenting different (idiosyncratic) con-
structions.

Coping with different frequency distributions is
conceptually easy by using deterministic parsing
and cascades of rules, as it is just necessary to
change the rule order within the cascade coping
with the specific phenomenon, so that more fre-
quently applied rules are first in the cascade. Cop-
ing with idiosyncratic constructions requires the
addition of new rules. Adding new rules in highly
modularized small grammars is not complex.

Finally from the point of view of grammar or-
ganization, defining segments is more than just
having ordered cascades. Generic rules ~in s2) are
separated from domain specific ones (in sl); rules
covering standard situations (in s2) are separated
from recovery rules (in s3). In s2, rules are generic
and deal with unmarked cases. In principle s2
and s3 are units portable across the applications
without changes. Domain-dependent rules are
grouped together in sl and are the resources the

application developer works on for adapting the
grammar to the specific corpus needs (e.g., cop-
ing with idiosyncratic cases). Such rules generally
use contexts and/or introduce domain-dependent
(semantic) constraints in order to limit their ap-
plication to well defined cases. S1 rules are ap-
plied before the standard rules and then idiosyn-
cratic constructions have precedence with respect
to standard forms.

Segments also help in parsing robustly. $3 deals
with unexpected situations, i.e. cases that could
prevent the parser from continuing. For example
the presence of unknown words is coped with after
chunking by a cascade trying to guess the word's
lexical class. If every strategy fails, a recovery
rule includes the unknown word in the immedi-
ately preceding chunk so to let the parser con-
tinue. Recovery rules are applied only when rules
in sl and s2 do not fire.

3.3 Mod i f i e r a t t a c h m e n t

The aim of modifier attachment is to find the cor-
rect position for attaching relevant modifiers in
the parse tree and to add the proper semantic
relations between each modifier and its modifiee
in [Tsent]ty. [Tsent]dep and [Tsent]t$ are used to
determine the correct attachments and are also
modified during this step. Modifier at tachment
is performed in two steps: first all the possible
attachments are computed for each modifier (its
search space, SP). Here mainly generic syntac-
tic rules are used. Then the correct attachment in
the search space is determined for each modifier,
applying domain-specific rules. The rules always
modify both [Tsent]dep and [Tsent]ty. Only modi-
fiers relevant for the IE task are attached in the
proper position. Other modifiers are attached in
a default position in [T~ent] d~p.

Initially modifiers are attached in the lowest po-
sition in [Tsent]dep. No semantic relation is hy-
pothesized between each modifier and the rest of
the sentence in [Ts~nt]t/. Given:

• T~: a modifier token derived from chunk n,

• Tn-l: the token, derived from chunk n - 1,
immediately preceding n in the sentence,

in right branching languages (such as Italian) the
lowest possible attachment for T,~ is in the position
of modifier of Tn-x.

Afterwards, the possible SP for each modifier is
computed. The SP for a modifier Tn is a path in
the token chart connecting T,~ with other elements
in [Zsent]dep that - from a syntactic point of view
- can be modified by Tn. The initial SP for Tn
is given by the path in [T~nt]d~p connecting Ta-1

106

Proceedings of EACL '99

PATTERN

TI

T2*

T3

T4*

T5

TEST

[T1] t/.head=TO-INCREASE

[T2]/eat.cat =Adjunc t

[T3]i/.head=PROFIT
[T3]/oor.cat=VV
[Ta]/~,~t.marked=' ' o f "

[T4]Ieat.Cat : A d j u n c t

[Tb] I/.head:PERCENTAGE
[Tb]/eat.cat=PP
[Ts]feat.marked: " o f / b y ' '

ACTION

Dependant ([T1] dev, [Tb] dev)
[T1] l] .increased-by=[Ta]t/.head

Matched Input

" a n i n c r e a s e "

" o f p r o f i t s "

" o f / b y 2 0 % "

Figure 3: An example of modifier attachment rule.

with Tsent. Then rules are applied to filter out
elements in SPs according to syntactic constraints
(e.g., NPs or PPs can be modified by a relative
clause, but VGs can not).

After SPs have been computed, modifiers are
attached using a sequence of cascades of rules.

A first cascade, mainly composed by generic
syntactic rules, attaches subordinates (e.g., rela-
tive clauses). Many of these rules are somehow
similar to A-structure recognition rules. They are
truly syntactic rules recognizing part of the sub-
categorization frame of subordinated verbs, using
semantic information provided by the foreground
lexicon. Note however that they are applied onto
SPs not on the parsing path (as A-structure rules
are).

Other cascades are used to attach different
types of modifiers, such as PPs. Such rules
mainly involve semantic constraints. For exam-
ple, the rule shown in F igu re 3 can recognize
una crescita dei profitti del 20Y, (lit. an
increase of profits of/by 20%).4

4Generally rules involve two elements (i.e. the
modifier and the modifiee), taking into account in-
tervening elements (such as other adjuncts) that do
not have further associated conditions. The example
above, instead, is more complex as it introduces con-
straints also on one of the intervening adjuncts (i.e., on
T3). Such domain-oriented rule solves a recurring am-
biguity in the domain of company financial results. As
a matter of fact of/by 20% could modify both nouns
from a syntactic and semantic point of view. The rule

Rules for modifier at tachment are easy to write.
The SP allows to reduce complex cases to simple
ones. For exampl e the rule in Figure 3 also applies
to:

• an increase in 1997 of profits of/by
20Z

• an increase, news report, of profits

of/by 20Z

• an increase, considering the

inflation rate, of profits (both
gross and net) of/by 20~

Patterns are usually developed having in mind
the simplest case, i.e. a sequence of contiguous
chunks in the sentence (such as in [an i n c r e a s e]
[of p r o f i t s] [o f / b y 20%]) that can be inter-
leaved by other non relevant chunks.

Conceptually this step is very similar to that
used by shallow parsing approaches such as in
(Grishman, 1997). Note however that rules are
not applied on a list of contiguous chunks, but
on the search space (where the parse tree and re-
lated syntactic relations are available). Parse-tree
based modifier at tachment is less error prone than
attachment performed on fiat chunk structures (as
used in shallow parsing). For example it is possi-
ble to avoid cases of attachments violating syntac-
tic constraints, as it would be the case in attaching

allows to solve the ambiguity attaching o f /by 20% to
increase.

107

Proceedings of EACL '99

NP

~ p p "..

,,,

an increase, considering the inflation rate, of profits (both gross and net) of/by 20%

Figure 4: Violation of syntactic constraints

(in the third example above) profit to i n c r e a s e
and 20% to i n f l a t i o n r a t e (see Figure 4).

At the end of modifier at tachment the final
parse tree is available in [T~ent] aep, together with
[Tse,~t]feat and [Tsent]g. The syntactic informa-
tion in [Tse,,t]aep and [Tsent].feat is useful in the
steps following parsing because, for example, the
availability of syntactic relations increases the ac-
curacy in determining discourse relations. As a
matter of fact at discourse level it is possible to
adopt strategies to compute salience for corefer-
ence resolution that take into account both the
syntactic relations among constituents and the ar-
gumental structure of the sentence. Shallower ap-
proaches do not produce anything similar either to
[Tse,~t]aep or to [Tse,~t]yeat. They generally adopt
heuristics such as linear ordering and recency of
basic chunks: such heuristics have been shown not
as effective as those based on full syntactic rela-
tions, even if for some languages they represent an
acceptable approximation (Kameyama, 1997).

The obtained final parse tree is very close to
the SIEA mentioned at the beginning of Section
3. In this tree all the A-structures are correctly
built and all the modifiers are attached. Modi-
fiers relevant for the IE application are attached
in the correct position in the tree and a valid se-
mantic relation is established with the modifiee
in [Tsent]g. Irrelevant modifiers are attached in
a default position in the tree (the lowest possi-
ble attachment) and a null semantic relation is
established with the modi f i ee . The only differ-
ence between the produced tree and the SIEA
is in the A-structure, where all the relations are
captured (and not only those relevant for the do-
main). Modeling also the argumental structures
of irrelevant constituents can be useful in order to
correctly assign salience at discourse level. For ex-
ample when interesting relations involve elements
that are dependees of irrelevant verbs.

4 Remarks and Conclusions

The approach to parsing proposed in this paper
was implemented in the IE module of FACILE
(Ciravegna et al., 1999), a EU project for multi-
lingual text classification and IE. It was tested on
four domains and in three languages. In particular
for Italian one application (about bond issues) has
been fully developed and two others have reached
the level of demonstration (management succes-
sion and company financial results). For English
a demonstrator for the field of economic indica-
tors was developed. A Russian demonstrator for
bond issues was developed till the level of modi-
fier attachment. The approach to rule writing and
organization adopted for parsing '(i.e., the type of
rules, cascades, segments, and available primitives
and rule interpreter) was extended to the whole
architecture of the IE module. Also lexical (lexi-
cal normalization and preparsing), semantic (de-
fault reasoning and template filling) and discourse
levels are organized in the same way.

Provided that the approach to parsing proposed
in this paper is strongly influenced by IE needs,
it is difficult to evaluate it by means of the stan-
dard tools used in the parsing community. Ap-
proximate indications can be provided by the ef-
fectiveness in recognizing A-structures and by the
measures on the overall IE tasks.

Effectiveness in recognizing A-structures was
experimentally verified for Italian on a corpus of
95 texts in the domain of bond issue: 33 texts
were used for training, 62 for test. Results were:
P=97, R=83 on the training corpus, P=95, R=71
on the test corpus. In our opinion the high preci-
sion demonstrates the applicability of the method.
The lower recall shows difficulties of building com-
plete foreground lexica, a well known fact in IE.

Concerning the effectiveness of the IE process,
in the Italian application on bond issues the sys-
tem reached P=80, R--72, F(1)=76 on the 95

108

Proceedings of EACL '99

texts used for development (33 ANSA agency
news, 20 "II Sole 24 ore" newspaper articles, 42
Radiocor agency news; 10,472 words in all). Ta-
ble 4 shows the kind of template used for this ap-
plication. Effectiveness was automatically calcu-
lated by comparing the system results against a
user-defined tagged corpus via the MUC scorer
(Douthat, 1998). The development cycle of the
template application was organised as follows: re-
sources (grammars, lexicon and knowledge base)
were developed by carefully inspecting the first 33
texts of the corpus. Then the system was com-
pared against the whole corpus (95 texts) with
the following results: Recall=51, Precision=74,
F(1)=60. Note that the corpus used for train-
ing was composed only by ANSA news, while the
test corpus included 20 "I1 Sole 24 ore" newspa-
per articles and 42 Radiocor agency news (i.e.,
texts quite different from ANSA's in both termi-
nology and length). Finally resources were tuned
on the whole corpus mainly by focusing on the
texts that did not reach sufficient results in terms
of R&P. The system analyzed 1,125 word/minute
on a Sparc Ultra 5, 128M RAM (whole IE pro-
cess).

issuer
kind of bond
amount
currency
announcement date
placement date
interest date
maturity
average duration
global rate
first rate

a template element
a label
a monetary amount
a string from the text
a temporal expression
a temporal expression
a temporal expression
a temporal expression
a temporal expression
a string from the text
a string from the text

Table 1: The template to be filled for bond issues.

A c k n o w l e d g m e n t s

Giorgio Satta has contributed to the whole work
on parsing for IE via cascades of rules. The au-
thors would like to thank him for the constant help
and the fruitful discussions in the last two years.
He also provided useful comments to this pa-
per. The FACILE project (LE 2440) was partially
funded by the European Union in the framework
of the Language Engineering Sector. The En-
glish demonstrator was developed by Bill Black,
Fabio Rinaldi and David Mowatt (Umist, Manch-
ester) as part of the FACILE project. The Russian
demonstrator was developed by Nikolai Grigoriev
(Russian Academy of Sciences, Moscow).

R e f e r e n c e s

Steven Abney. 1996. Partial parsing via finite-
state cascades. In Proceedings of the ESSLI '96
Robust Parsing Workshop.

Chinatsu Aone, Lauren Halverson, Tom Hamp-
ton, and Mila Ramos-Santacruz. 1998.
SRA: description of the IE 2 system used
for MUC-7. In Proceedings of the Seventh
Message Understanding Conference (MUC-7),
http://www.muc.saic.com/.

Douglas E. Appelt, Jerry R. Hobbs, John Bear,
David Israel, and Mabry Tyson. 1993. FAS-
TUS: A finite-state processor for information
extraction from real-world text. In Proceed-
ings of the Thirteenth International Joint Con-
ference on Artificial Intelligence, Chambery,
France.

Fabio Ciravegna, Alberto Lavelli, Nadia Mann,
Luca Gilardoni, Silvia Mazza, Massimo Ferraro,
Johannes Matiasek, William J. Black, Fabio Ri-
natdi, and David Mowatt. 1999. FACILE: Clas-
sifying texts integrating pattern matching and
information extraction. In Proceedings of the
Sixteenth International Joint Conference on Ar-
tificial Intelligence, Stockholm, Sweden.

Aaron Douthat. 1998. The message un-
derstanding conference scoring software user's
manual. In Proceedings of the Seventh
Message Understanding Conference (MUC- 7},
http://www.muc.saic.com/.

Ralph Grishman. 1995. The NYU system for
MUC-6 or where's syntax? In Sixth mes-
sage understanding conference MUC-6. Morgan
Kaufmann Publishers.

Ralph Grishman. 1997. Information extraction:
Techniques and challenges. In M. T. Pazienza,
editor, Information Extraction: a multidisci-
plinary approach to an emerging technology.
Springer Verlag.

Megumi Kameyama. 1997. Recognizing referen-
tial links: An information extraction perspec-
tive. In Mitkov and Boguraev, editors, Proceed-
ings of ACL/EACL Workshop on Operational
Factors in Practical, Robust Anaphora Resolu-
tion for Unrestricted Texts, Madrid, Spain.

Adam Kilgarriff. 1997. Foreground and back-
ground lexicons and word sense disambiguation
for information extraction. In International
Workshop on Lexically Driven Information Ex-
traction, Frascati, Italy.

MUC7. 1998. Proceedings of the Seventh Message
Understanding Conference (MUC-7}. SAIC,
http://www.muc.saic.com/.

109

