
Proceedings of EACL '99

Geometry of Lexico-Syntactic Interaction

Glyn Morrill
Departament de Llenguatges i Sistemes Informhtics

Universitat Polit~cnica de Catalunya
Jordi Girona Salgado, 1-3

E-08034, Barcelona

morrill @lsi.upc.es

Abstract

Interaction of lexical and derivational
semantics---for example substitution
and lambda conversion--- is typically
a part of the on-line interpretation
process. Proof-nets are to categorial
grammar what phrase markers are to
phrase structure grammar: unique
graphical structures underlying
equivalence classes of sequential
syntactic derivations; but the role of
proof-nets is deeper since they
integrate also semantics. In this paper
we show how interaction of lexical
and derivational semantics at the
lexico-syntactic interface can be
precomputed as a process of off-line
lexical compilation comprising Cut
elimination in partial proof-nets.

Introduction

Consider the
paraphrase:

following examples of

(1) a.
b.
C.

Frodo lives in Bag End.
Frodo inhabits Bag End.
((in b) (live]))

(2) a.
b.
C.

John tries to find Mary.
John seeks Mary.
((try (find rn)) j)

Typically, for at least (lb) and (2b) the
normalised semantic forms result from a
process of substitution and lambda
conversion subsequent to or simultaneous
with syntactic derivation. We show how
such interaction of lexical and
derivational semantics at the lexico-
syntactic interface can be precomputed as
a process of off-line lexical compilation
comprising Cut elimination in partial
proof-nets.

For accessibility, we devote in the
initial sections a considerable proportion
of space to an introduction to categorial
grammar oriented towards proof-nets; see

also Morrill (1994), Moortgat (1996) and
Carpenter (1997).

1 Categorial grammar
We consider categorial grammar with
category formulas F (categories) defined
by the following grammar:

(3) a.
b.

F : : = A IFV r l F / F I F - F
..4 ::= S I N I CN I PP I ...

The categories in A are referred to as
atomic and correspond to the kinds of
expressions which are considered to be
"complete". Fairly uncontroversially,
this class may be taken to include at least
sentences S and names N; what the class is
exactly is not fixed by the formalism.

Left division categories A~B ('A under
B') are those of expressions (functors)
which concatenate with (arguments) in A
on the left to yield Bs. Right division
categories B/A ('B over A') are those o f
expressions (functors) which concatenate
with (arguments) in A on the right
yielding Bs. Product categories A . B are
those of expressions which are the result
of concatenating an A with a B; products
do not play a dominant role here.

More precisely, let L be the set of
strings (including the empty string e) over
a finite vocabulary V and let + be the
operation of concatenation (i.e. (L, +, ~) is
the free monoid generated by V) 1 . Each
category formula A is interpreted as a
subset [[A]] of L. When the interpretation
of atomic categories has been fixed, that
of complex categories is defined by (4).

(4) [[AkB]] = {sl Vs'~ [[A]], s'+s~ [[B]] }
[[B/A]] = {sl Vs'~ [[A]], s+s'~ [[B]] }
[[A.B]] = {Sl+S21Sle [[,4]] & s2~ [[B]] }

1 In fact Lambek (1958) excluded the empty
string ---and hence empty antecedents in the
calculus of (5)--- but it is convenient to include
it here.

61

Proceedings of EACL '99

In general, given some type assignments
others may be inferred. Such reasoning is
precisely formulated in the Lambek
calculus L.

2 L a m b e k sequent ca lculus

In the sequent calculus of Lambek (1958)
a sequent F ~ A consists of a sequence F
of 'input' category formulas (the
antecedent) and an 'output' category
formula A (the succedent). A sequent
states that the ordered concatenation of
expressions in the categories F yields an
expression of the category A. The valid
sequents are the theorems derivable from
the following axiom and rule schemata)

(5) a.
id

A ~ A

F ~ A A1 ,A , A 2 ~ C

A1,F , A 2 ~ C

b.

A , F :=~ B kR

F ~ A\B

Cut

F ~ A A I , B , A 2 ~ C

A1, F, AkB, A2 ~ C

C.

F , A ~ B /R

F ~ B/A

F ~ A A1,B, A2 ~ C /L

A1, B/A, F, A2 ~ C

d.

F1 ~ A F 2 ~ B
oR

F1, F2 ~ AoB

F 1 , A , B , F 2 ~ C

F1,AoB, F2 ~ C
. L

ZThe completeness of the calculus with respect
to the intended interpretation was proved in
Pentus (1994).

62

F(n) and A(n) range over context
sequences of category formulas; A, B, and
A*B are referred to as the active
formulas. The calculus L lacks the usual
structural rules of permutation,
contraction and weakening. Adding
permutation collapses the two divisions
into a single non-directional implication
and yields the multiplicative fragment of
intuitionistic linear logic, known as the
Lambek-van Benthem calculus LP. 3

The validity of the id axiom and the
Cut rule follows from the reflexivity and
the transitivity respectively of set
containment. The calculus enjoys the
property of Cut elimination whereby
every proof has a Cut-free equivalent
(indeed, one in which only atomic id
axioms are used: what we shall call [3rl-
long sequent proofs). 4 Thus, processing
can be performed using just the left (L)
and right (R) rules. These rules all
decompose active formulas A*B in the
left or the right of the conclusions into
subformulas A and B in the premises, and
have exactly one connective occurrence
less in the premises than in the
conclusion; therefore one can compute all
the (Cut-free) proofs of any sequent by
traversing the finite space of proof search
without Cut.

By way of illustration of the sequent
calculus, the following is a proof of a
theorem of lifting, or (subject) type
raising:

(6)

N ~ N S ~ S k L

N, N\S ~ S /R

N ~ S/(N\S)

Where a labels the antecedent, the coding
of this proof as a lambda term ---what we

3Adding also contraction and weakening we
obtain the implicational and conjunctive
fragment of intuitionistic logic. Thus every
Lambek proof can be read as an intuitionistic
proof and has a constructive content which can
be identified with its intuitionistic normal form
natural deduction proof (Prawitz 1965) or, what
is the same thing under the Curry-Howard
correspondence, its normal form as a typed
lambda term.
4By 'equivalent' we mean a proof of the same
theorem with the same constructive content (fn.
3).

Proceedings of EACL '99

shall call the derivational semantics--- is
Xx(x a). The converse of lifting, lowering,
in (7) is not derivable. A proof of a
theorem of composition (it has as its
semantics functional composition) is
given in (8).

(7) S/(N~S) ~ N

(8)
B ~ B C ~ C

A ~ A B, B i C ~ C kL

A, A ~ , BiC ~ C iR

A ~ , BiC ~ AiC

kL

A grammar contains a set of lexical
assignments ¢x: A. An expression
wl+...+Wm is of category A just in case
wl +...+win is the concatenation
oq+...+CCn of lexical expressions such
that ai: Ai, l<i<n, and A1 An ~ A is
valid. For instance, assuming the expected
lexical type assignments to proper names
and intransitive and transitive verbs, there
are the following derivations:

(9)

N ~ N S ~ S k L

N,N~S ~ S

john+runs: S

(10)

N ~ N

N ~ N S ~ S ~

N, NiS ~ S /L

N, (NiS)/N, N ~ S

john+finds+mary: S

Ungrammaticality occurs when there is
no validity of the sequents arising by
lexical insertion, as in the following:

(11)

NiS, N ~ S

runs+john: S

3 Ambiguity and spurious
ambiguity
The sentence (12) is structurally
ambiguous.

(12) Sometimes it rains surprisingly.

There is a reading "it is surprising that
sometimes it rains" and another
"sometimes the manner in which it rains
is surprising". As would be expected
there are in such a case distinct
derivations corresponding to alternative
scopings of the adverbials:

(13) a.

S/S, S, SiS ~ S

sometimes+it+rains+surprisingly:S

b.

S ~ S S ~ S ~
S ~ S S / S , S ~ S ~

S/S, S, SiS ~ S

C.

S ~ S

S ~ S S ~ S k L

S, SiS ~ S / L

S/S, S, SiS ~ S

However, sometimes a non-ambiguous
expression also has more than one
sequent proof (even excluding Cut); thus
the sequent in (14a) has the proofs (14b)
and (14c).

(14) a.
N/CN, CN, NiS ~ S

the+man+runs: S

b.

CN ~ CN

N ~ N S ~ S k L

N, NiS ~ S /L

N/CN, CN, NiS ~ S

C.

CN ~ CN N ~ N / L

N/CN, CN ~ N S ~ S £ L

N/CN, CN, NiS ~ S

As the reader may check, N/CN, c N
S/(N~S) has three Cut-free proofs; in
general the combinatorial possibilities
multiply exponentially. This feature is
sometimes referred to as the problem of
spurious ambiguity or derivational
equivalence. It is regarded as problematic
computationally because i tmeans that in
an exhaustive traversal of the proof search
space o n e must either repeat

63

Proceedings of EACL '99

subcomputations, or else perform book-
keeping to avoid so doing.

The problem is that different [3rl-long
sequent derivations do not necessarily
represent different readings, and this is
the case because the sequent calculus
forces us to choose between a
sequentialisation of inferences ---in the
case of (14)/L and kL--- when in fact they
are not ordered by dependency and can
be performed in parallel.

The problem can be resolved by
defining stricter normalised proofs which
impose a unique ordering when
alternatives would otherwise be available
(K6nig 1990, Hepple 1990, Hendriks
1993). However, while this removes
spurious ambiguity as a problem arising
from independence of inferences, it
signally fails to exploit the fact that such
inferences can be parallelised. Thus we
prefer the term 'derivational equivalence'
to 'spurious ambiguity' and interpret the
phenomenon not as a problem for
sequentialisation, but as an opportunity
for parallelism. This opportumty is
grasped in pro@nets.

b.
B+ A-

N i /

A\B+

A+ B-

\ ii /

AkB-

A- B+

\ i /

B/A+

B- A+

\ ii /

B/A-

B+ A+

\ ii /

A.B+

A- B-

\ i /

A.B-

i- and ii-tinks:
two premises,
one conclusion

4 L a m b e k p r o o f - n e t s

Proof-nets for L were developed by
Roorda (1991), adapting their original
introduction for linear logic in Girard
(1987). In proof-nets, the opposition of
formulas arising from their location in
either the antecedent or the succedent of
sequents is replaced by assignment of
polarity: input (negative) for antecedent
and output (positive) for succedent. A In the id and Cut links X and -X
proof-net is a kind of graph of polar schematise over occurrences of the same
formulas, category with opposite polarity. Note that

the nodes of links are also marked
First we define a more general concept (implicitly) as being either conclusions

of proof structure. These are graphs (looking down) or premises (looking up).
assembled out of the following links: In the i- and ii-links the middle nodes are

the conclusions and the outer nodes the
(15) a. premises. The i-links correspond to unary

I I sequent rules and the ii-links to binary
I I sequent rules. Observe that in the output,

but not in the input, unfoldings the order
X -X of subformulas is switched between

id link: premises and conclusion; this is essential
zero premises, to the characterization of ordering by
two conclusions graph planarity.

X -X

t 1
Cut link:
two premises,
zero conclusions

Proof structures are assembled by
identifying nodes of the same polar
category which are the premises and
conclusions of d i f f e r e n t c o m p o n e n t s ;
premises and conclusions not fused in this
way are the premises and conclusions of

64

Proceedings of EACL '99

the proof structure as a whole. For
example, in (16a) four links are
assembled into a proof structure (16b)
with no premises and two conclusions, N-
and S/(N~S)+:

(16) a.

I I
N+ S-

N_

N+ S-

\ ii /

NkS- S+

N\S- S+

\ i /

S/(N~S)+

b.

N_

I
N+

\

I
S-

ii /

N\S- S+

\ i /

S/(N\S)+

Proof-nets are proof structures which
arise, essentially, by forgetting the
contexts of the sequent rules and keeping
only the active formulas, but not all proof
structures are well-formed as proofs.
There must exist a global synchronization
of the partitioning of contexts by rules
(the long trip condition of Girard 1987).
Eschewing the (somewhat involved)
details (Danos and Regnier 1990; Bellin
and Scott 1994) it suffices here to state
that a proof structure is well-formed, a
module (partial proof-net), iff every cycle
crosses both edges of some i-link. A
module is a proof-net iff it contains no
premises. The structure (16b) is a proof-
net, in fact it is the proof-net for our
instance (6) of lifting since its conclusions
are the polar categories for this sequent:

(17)
N- S/(N\S)+

N ~ S/(N\S)

The structure in (18) is not a module
because it contains the circularity
indicated: it corresponds to the lowering
(7), which is invalid.

(18)

S+

N\S+

\ ii /

S/(N\S)-

m

N-
/

N+

s / (~ s) ~ S

The structure of figure 1 is a module with
two premises and three conclusions; the
latter are the polar categories of our
composition theorem (8). Adding the
remaining id axiom link makes it a proof-
net for composition.

For L, proof-nets must be planar, i.e.
with no crossing edges. This corresponds
to the non-commutativity of L. In LP,
linear logic, which is commutative, there is
no such requirement.

Like the sequent calculus, proof-nets
enjoy the Cut elimination property
whereby every proof has a Cut-free
equivalent. The evaluation of a net to its
Cut-free normal form is a process of
graph reduction. The reductions are as
shown in figure 2.

5 Language processing
As is the case for the sequent calculus,
with proof-nets every proof has a Cut-free
equivalent in which only atomic id axiom
links are used: what we shall call [3q-long
proof-nets. However, whereas some ~r I-
long sequent proofs are equivalent,
leading to spurious ambiguity/derivational
equivalence, distinct [3q-long proof-nets
always have distinct readings.

The analysis of an expression as search
for [3rl-long proof-nets can be construed
in three phases, 1) selection of lexical
categories for elements in the expression,
2) unfolding of these categories into a
.fi'ame of trees of i- and ii-links with
atomic leaves (literals), and 3) addition of
(planar) id axiom links to form proof-
nets. For example, 'John walks' has the
following analysis:

65

Proceedings of EACL '99

(19)

I
N+

\

N-

ii

NiS-

I
S-

/

S+

N, N~S ~ S

j o h n + w a l k s : S

The ungrammaticality of 'walks John' is
attested by the non-planarity of the p roof
structure (20).

(20)

N+
\ ii /

N\S -

I
S-

N- S+

N~S,N ~ S

w a l k s + j o h n : S

As expected, where there is structural
ambiguity there are multiple derivations;
see figure 3. But now also, when there is
no structural ambiguity there is only one
derivation, as in figure 4. This property is
entirely general: the problem of spurious
ambiguity is resolved.

6 P r o o f - n e t s e m a n t i c e x t r a c t i o n

Until now we have not been explicit about
how a proof determines a semantic
reading. We shall show here how to
extract from a proof-net a functional term
representing the semantics (see de Groote
and Retor6 1996, who reference
Lamarche 1995). This is done by
travelling through a proof-net and
constructing a lambcla term following
deterministic instructions. (The proof-nets
are the proof structures m which
following these instructions visits each
node exactly once.)

First one assigns a distinct variable
index to each i-link; then one starts
travelling upwards through the unique

positive conclusion. Thereafter the
function L mapping proof-nets to lambda
terms is as follows (for brevity we exclude
product):

(21) a .

Going up through the conclusion
of a i-link, make a functional
abstraction for the corresponding
variable and continue upwards through
the positive premise:

L() =)~xnL (

L(=)

b.
Going up through one id conclusion,
go down through the other:

L() = L()

) = L(

C,

Going down through one premise
of Cut, go up through the other:

d.
Going down through one premise
of a \i-link, make a functional
application and continue going
down through the conclusion
(function) and going up through
the other (argument):

,4,- > L() = (L() L(~))

ii ii

L() = (L (~) L (~))

66

Proceedings of EACL '99

e .

Going down through the premise
of a i-link, put the corresponding
variable:

¥ ; .

L (k , ~) = xn

L (~) = Xn

f .
Going down through a terminal
node, substitute the associated
lexical semantics:

T
L (~) =qo

Let us observe that the following
lexical type assignments capture the
paraphrasing of (la) and (lb); a -¢ := A
signifies the assignment to category A of
expression a with lexical semantics ¢.

(22)
frodo f

:= N
lives live

:= N~S
in in

:= (S\S)/N
bag+end b

:= N
inhabits)vx)vy((in x) (live y))

:= (N~S)/N

Then (la) has the analysis given in figure
5, with semantic extraction (23), where *
marks the point at construction and
Roman numerals indicate the argument
traversals, performed after the function
traversals, triggered by entry into ii-links.

(23) (* I)
((* II) I)
((in *) I)
((in b) *)
((in b) (* III))
((in b) (live *))
((in b) (lived'))

Example (lb) has the analysis given in
figure 6, for which the semantic
extraction is (24).

(24) (* I)
((* II) I)
(()vx)vy((in x) (live y)) *) I)
(()vx)vy((in x) (live y)) b) *)
(()Vx)vy((in x) (live y)) b)f)

67

This is not the same semantic term as that
in (23) but it reduces to the same by 13-
conversion, showing that the semantic
content in the two cases is identical, that is,
that there is paraphrase:

(25) (()vx)vy((in x) (live y)) b) f) =
)vy((in b) (live y)) f) =
((in b) (live]))

Although such lambda conversion only
calculates what the grammar defines and
is not part of the grammar itself,
computationally it is an on-line process.
The following section shows how this can
be rendered, in virtue of proof-nets, an
off-line process of lexical compilation.

7 Off-line semantic evaluation

In the processing as presented so far
semantic evaluation is, as is usual,
normalisation of the result of substituting
lexical semantics into derivational
semantics. Logically speaking, this
substitution at the lexico-syntactic
interface is a Cut, and the normalisation is
a process of Cut elimination. Currently
the substitution and Cut elimination is
executed after the proof search. However,
if lexical semantics is represented as a
proof-net, one can calculate off-line the
module resulting from connecting the
lexical semantics with a Cut to the module
resulting from the unfolding of the
lexical " categories.

Lexical semantics expressed as a linear
(=single bind) tambda term is unfolded
into an (unordered) proof-net by the
algorithm (26):

(26) a°

Start with the)v-term go at a + node: q~+.

b.
To unfold Kxnq)+, make it the
conclusion of a i-link with index n
and unfold ¢p+ at the positive premise:

, +

in 4

kxn¢+

5 Lecomte and Retor6 (1995) propose to use the
expressivity of modules in general to classify
words rather than just category formulas
(=modules without id or Cut links). Our method
provides semantic motivation for modules at the
machine level but we propose to maintain the
less unwieldy categories at the user level.

Proceedings of EACL '99

C,

To unfold Xxncp-, make it a Cut
premise and unfold)~Xn(P+ at the
other premise:

Xxn¢- Lxn¢+

d .

To unfold (q0 ~)-, make it the
premise of a ii-link and unfold q0-
at the conclusion and gt+ at the
other premise:

• ii ,!¢'

e .

To unfold (~0 gt)+ make it the
conclusion of an id link and unfold
(q0 ~)- at the other conclusion:

(¢t¢)+ (¢V)-

f .

At a constant k- unfolding stops;
to unfold a constant k+ make it an id
premise first:

I *
k+ k-

g .

To unfold a bound variable xn- make
it the other premise of the i-link with
index n:

X/'/-

• in.

to unfold xn+ make it an id premise first:

xr l - xr l +

• in

For example, the lexical semantics of
'inhabits' can be unfolded as shown in
figure 7. The result of such unfolding of
lexical semantics can be substituted into
the unfolded lexical category by a Cut,
and the resulting module normalised by
Cut elimination in a precompilation. This
is illustrated for the 'inhabits' example in
figure 8.

In this way, rather than starting the
proof search with a frame comprising just
the unfolding of lexical categories, one
starts with a frame comprising the pre-
evaluated modules resulting from lexical
substitution. Let us consider again (lb)
from this point of view. First note, as well
as figure 8, the precompilation of a
proper name lexical assignment as in
figure 9. The proof frame prior to p roof
search is that in figure 10. Adding axiom
links yields the same net, and thus the
same semantics, as that obtained for (1 a)
in figure 5.

A slightly more involved illustration o f
the same point is provided by the
following lexical assignments for the
paraphrases (2a) and (2b).

(27)
john - j

:= N
tries - try

:= (N~S)/(N~S)
to - Xxx

: = (N~S)/(N~S)
find - f i n d

:= (N~S)/N
m a r y - m

:= N
seeks -)~x(try (x f i n d))

:=

These assign semantics (2c) to both (2a)
and (2b) and, as the reader may check, by
partially evaluating lexical modules in a
precompilation, normal form semantics is
obtained directly in both cases.

C o n c l u s i o n

In both the example worked out
explicitly and the one left to the reader,
we deal with words which are synonyms
of continuous expressions: 'inhabits' =
'lives in' and 'seeks' = 'tries to f ind ' .
This enables us to represent the evaluated
lexical modules as planar. However it
should be noted that in general lexical
substitution involves linking syntactic
modules which are ordered with lexical
semantic modules which are not ordered,
and which could be multiple-binding, and
Cut elimination has to be performed in a
hybrid architecture which must preserve
the linear precedence of syntactic literals.
It is therefore of importance to the future
generalization of the method we propose
to investigate the precise nature of such
hybrid architectures.

68

Proceedings of EACL '99

Acknowledgements
My thanks to Josep Mafia Merenciano for
discussions relating to this work.

R e f e r e n c e s

Bellin G. and Scott P. J. (1994) On the re-
Calculus and Linear Logic. Theoretical
Computer Science, 135, pp. 11--65.

Carpenter B. (1998) Type-Logical Semantics.
MIT Press, Cambridge, Massachusetts.

Danos R. and Regnier L. (1990) The structure
of muhiplicatives. Archive for Mathematical
Logic 28, pp. 181--203.

de Groote Ph. and Retor~ C. (1996) On the
Semantic Readings of Proof-Nets. In
"Proceedings of Formal Grammar 1996", G.J.
Kruijff, G. Morrill & D. Oehrle, ed., Prague,
pp. 57--70.

Girard J.-Y. (1987) Linear Logic. Theoretical
Computer Science, 50, pp. 1--102.

Hendriks H. (1993) Studied Flexibility:
Categories and Types in Syntax a"d
Semantics. Ph.D. thesis, Universiteit van
Amsterdam.

Hepple M. (1990) Normal form theorem
proving for the Lambek calculus. Proceedings
of COLING 1990, Stockholm.

K6nig E. (1989) Parsing as natural deduction.
Proceedings of the 27th Annual Meeting of
the Association for Computational
Linguistics, Vancouver.

Lamarche F. (1995) Games semantics for full
propositional linear logic. In "Ninth Annual
IEEE Symposium on Logic in Computer
Science", IEEE Press.

Lambek J. (1958) The mathematics of sentence
structure. American Mathematical Monthly,
65, pp. 154--170.

Lecomte A. and Retor6 C. (1995) Pomset logic
as an alternative categorial grammar. In
"Proceedings of Formal Grammar 1995", G.
Morrill & D. Oehrle, ed., Barcelona, pp. 181-
-196.

Morrill G. (1994) Type Logical Grammar:
Categorial Logic of Signs. Kluwer Academic
Publishers, Dordrecht.

Moortgat M. (1996) Categorial type logics. In
"Handbook of Logic and Language", J. van
Benthem & A. ter Meulen, ed., Elsevier,
Amsterdam, pp. 93--177.

Pentus M. (1994) Language completeness of
the Lambek calculus. Proceedings of the
Eight Annual IEEE Symposium on Logic in
Computer Science.

Roorda D. (1991) Resource Logics: Proof-
theoretical Investigations. Ph.D. thesis,
Universiteit van Amsterdam.

o

o~

N

/

\

/

\

/

\

/

\

N

I
t'q

$

/

\

~t7 / +

,~ =:

\

/

+

\

+

,>

69

S-
\ il

S/S-

S+ S+ S-
/ \ " /

S- S- S+

S/S. S. SLS ~ S

sometimes+it+rains+surprisingly: S

S- S+ | S+ S-
N ii / | \ .i /

S/S- S- S- S+

{ I { l
S- S+ S+ S-

\ fi / \ " /

S/S- S- S- S+

Figure 3: MultiplicRy of structural ambigully

I , I ,]
N- CN+ N+ S-

\ ii / \ , /
N/CN- CN- N~- S+

NICN, CN, N~ ~ S

the+man+hillS: $

Figure 4: Non-existence of spurious ambiguity

Proceedings of EACL '99

i
,

N-

/

I
N+

\ i i

N~-

live

S÷
\

S-
/

S-

ii / I

S~'S - N+

\ 5 /

(S~S)/N- N-

in b
S+

N, N~S, (S~S)/N. N : S

frodo+lives+in+bag+cnd: S

Figure 5: Proof-net for 'Frodo lives m Bag End"

I I
N* S-

\ ii / [

NLS- N+

\ ii /

N- (NLS)/N- N- S+

f ~.x3..K(in x) (live y)) b

N. (N'LS)/N. N =:. S

frodo-t-inhabits+bag+end: S

Figure 6: Proof-net for 'Frodo inhabits Bag End'

e e ~g
? +

~ w e x2)+ ((i~,tl)(livex2))-((iaxl)llivex2)) x2-

~ . i i ~ d a ~ i2 ~ r""-~ g
x2+ (livex2). (inxl)- xi+x'l-).x2((inxl)(livex2))+

~ . i i ~d d ~ ii • ~ il 4 ' a

live- in- ~,.,xl),x2((in xl) (live x2))+

Figure 7: Unfolding of texical semantics of 'inhabits' into a proof-net

, V==l i N " /

b

\ / \ / i
c,

/ \ ,~/-
d.

r ,

e

N*

1 I - N+ S-

I " ' ~ N~ S-

LI
N÷

N+

L

N+

J

~ = l X i i /S-

- N+ ~'\,,/ \ , , /
Figure 8: Partial evaluation of [mica[substitution for 'inhabits'

I i N N
b- b+ N- [~ b

I 1
Figure 9: Parhal evaluation of [exlcal subslltullon for 'Bag Fnd'

N+ N+ \ , , / \ . /
N- N- S+
i hve In h

N. (N',S)/N. N ~ S

frodo+inhabits+bag+cnd: S

F~gure IO: Proof frame for 'Frodo mhabit~ Bag End' following lex~cat pre¢ompdalmn

70

