
Cooperative Error Handling and Shallow Processing

Tanya Bowden
Computer Laboratory

University of Cambridge
Pembroke St.

Cambridge CB2 3QG
U.K.

Tanya. Bow den @ cl. cain. ac. uk

Abs t rac t
This paper is concerned with the de-
tection and correction of sub-sentential
English text errors. Previous spelling
programs, unless restricted to a very
small set of words, have operated as
post-processors. And to date, gram-
mar checkers and other programs which
deal with ill-formed input usually step
directly from spelling considerations to
a full-scale parse, assuming a complete
sentence. Work described below is aimed
at evaluating the effectiveness of shal-
low (sub-sentential) processing and the
feasibility of cooperative error checking,
through building and testing appropri-
ately an error-processing system. A sys-
tem under construction is outlined which
incorporates morphological checks (us-
ing new two-level error rules) over a di-
rected letter graph, tag positional tri-
grams and partial par~tng. Intended
testing is discussed.

Unless a keyboard user is particularly proficient,
a frustrating amount of time is usually spent back-
tracking to pick up mis-typed or otherwise mis-
taken input. Work described in this paper started
from an idea of an error processor that would sit
on top of an editor, detecting/correcting errors
just after entry, while the user continued with
further text, relieved from tedious backtracking.
Hence 'co-operative' error processing. But if a
program is to catch such errors very soon after
they are entered, it will have to operate with less
than the complete sentence.

Work underway focuses on shallow processing:
how far error detection and correction can proceed
when the system purview is set to a stretch of text
which does not admit complete sentential analysis.
To date, grammar checkers and other programs.
which deal with illformed input usually step di-
rectly from spelling considerations to a full-scale
sentence parse. However treating the sentence as
a basic unit loses meaning when the 'sentence' is
incomplete or illformed. Shallow processing is also

interesting because it should be cheaper and faster
than a complete analysis of the whole sentence.

To investigate issues involved in shallow pro-
cessing and cooperative error handling, the pet
(processing errors in text) system is being built.
The focus is on these two issues; no a t tempt is
being made to produce a complete product 1. Pet
operates over a shifting window of text (it can be
attached simply and asynchronously to the Emacs
editor). One word in this purview is in focus at a
time. Pet will give one of three responses to this
word; it will accept the word, suggest a correc-
tion, or indicate that it found an error it couldn't
correct. Below follow an outline and discussion of
the (linguistic) components of pet and discussion
of testing and evaluation of the system.

: / P e t S y s t e m

Morphological Processing ~ Spelling Checking
The word in focus is first passed through a two-

level morphological analysis stage, based on an
adaption of (Pulman, 1991). Two purposes are
served here: checking the word is lexica] (i.e. in
the lexicon or a permissible inflection of a word in
the lexicon) and collecting the possible categories,
which are represented as sets of feature specifica-
tions (Grover, 1993).

This morphological lookup operates over a char-
acter trie which has been compressed into a (di-
rected) graph. Common endings are shared and
category information is stored on the first unique
transition. The advantages of this compression
are that (1) a word/morpheme is recognised (and
category affixation rules (Grove L 1993) checked)
as soon as the initial letters allow uniqueness,
rather than at the end of the word, and (2) there
is an immense saving of space. There was a reduc-
tion of over half the transitions on the trie formed
from the Alvey lexicon.

If the word is unknown, the system reconsiders
analysis from the point where it broke down with

1In particular, there axe many HCI issues associ-
ated with such a system, which are beyond the scope
of this paper.

297

the added possibility of an error rule. There are
currently four error rules, corresponding to the
four Damerau transformations: omission, inser-
tion, transposition, substitution (Damerau, 1964)
- considered in that order (Pollock, 1983). The
error rules are in two level format and integrate
seamlessly into morphological analysis.

~k_ X _ $_..+ ~ _ _ •

This says that any letter ('X') can be inserted, with
asterisks indicating that it can occur in any context
(compare with (Pulman, 1991)). The right hand side
represents the 'error surface' and the left hand side
the surface with error removed.

If this doesn't succeed, it backtracks to try an er-
ror rule at an earlier point in the analysis. At
present it will not apply more than one error rule
per word, in keeping with findings on error fre-
quencies (Pollock, 1983).

As an alternative, a program was developed
which uses positional binary trigrams (Rise-
man,1974) (p.b.t. 's) to spot the error position and
to check candidate corrections generated by re-
verse Damerau transformations. This should have
the advantage over the two level error rules in that
it uses a good method of calculating likely error
positions and because a set of correction possibil-
ities can be generated fairly cheaply. (Correction
possibilities are ranked using frequency informa-
tion on Damerau errors and by giving preference
to very common words.) However initial tests over
a small file of constructed errors showed that the
error rules did just as well (slightly better in fact)
at choosing the 'correct correction'.

The error rules are applied when ordinary mor-
phological rules fail - which is usually a place
p.b.t. 's would mark as in error - but the rules
don't ignore error locations p.b.t. 's accept as al-
lowable letter combinations. Most importantly,
the error rules operate over a letter graph of the
lexicon, so only ever consider lexical words (un-
known letters are instantiated to the letters as-
sociated with the transition options). The dis-
advantage remains that generating many correc-
tion possibilities (with SICStus backtracking) is
time-consuming. At present this phase postulates
only one grapheme at a time, although all its
possible categories are passed along together to
later stages. If all of these categories eventually
fail analysis, backtracking to alternative correc-
tion candidates (different graphemes) will occur.

Tag Checking 8J Partial Parsing
The Alvey features are mapped on to the

CLAWS tagset used in the LOB corpus (Garside,
1987). Tag transitions are checked against an oc-
currence matrix of the tagged LOB corpus using
positional binary trigrams similar to those used in
the spelling checks mentioned above. Tag checks
though the current set of categories stop when

one category passes, but backtrack and continue
if parsing then fails.

The Core Language Engine (CLE) is an ap-
plication independent, unification based "general
purpose device for mapping between natural lan-
guage sentences and logical form representations"
(Alshawi, 1992). Its intermediate syntactic stages
involve phrasal parsing followed by full syntactic
analysis (top-down, left-corner). If the latter stage
fails, CLE invokes partial parsing.

The phrasal phase and partial parsing have
been extracted and are being adapted to the
present purpose. After mapping onto CLE
tags, application of the phrasal phase, which im-
plements bottom-up parsing, is straightforward.
CLE partial parsing, using left-corner analysis
combined with top-down prediction on the results
of the phrasal phase, looks for complete phrases
and breaks down a wordstring into maximal seg-
ments.

(a) the the brown bear ~ the I the brown bear
(b) ate the nice friendly --~ ate I the I nice] friendly

For example, (a) produces 1 segment and (b) pro-
duces 4 segments- whereas "ate the nice friendly
cat" would produce 1 segment.

Partial parsing needs to be adapted to support
the idea of the pet purview; partial parsing that
accepts any string likely to constitute part of a
sentence. To achieve this the ends of the word-
string delimited by the purview need to be treated
differently. On the right hand end, 'can start rule'
possibilities of words can be considered, using the
prediction facility already built into the parsing
process. The left hand side could be treated by
'can end' possibilities, but a better idea should
be to keep within the purview ('remember') pre-
viously derived constituents that involve current
words.

There is a phase to be added after detection
of a tag or partial parsing error. Currently pro-
cessing will just backtrack to the intraword cor-
rection level, but particularly if there has been no
correction yet made, pet should consider here the
possibility of a simple phrase error. Examples are
word doubling and omission of a common function
word.

Various Extensions
Damerau transformations involving the space

character (e.g. splitting a word) have not been
implemented yet. Handling deletion of a space,
or substitution of another character for a space,
are straightforward additions to the morpholog-
ical process. Transposition of a space could be
dealt with by setting up an expectation upon dis-
covering deletion of the last character of a word
that the 'deleted' character may be attached to
the beginning of the next word. Addition of a
space is trickier because of the focus on the word
as a processing unit, e.g. corrections for "the re"

298

could include "there" or "the red", but the present
system will not generate the former possibility.

At present the word in focus is always the
newest word in the purview. Altering this would
provide some right hand context information,
which would among other things facilitate han-
dling space addition. Allowing this change would
necessitate a more complex backtracking mecha-
nism, as there would be a focus lag between mor-
phological processing and later phases.

It would be sensible to keep a reference to the
wider context, i.e. be able to refer to earlier de-
tections/corrections. With respect to the editor
that pet is attached to, this could correspond to
a log of errors already encountered in the file be-
ing edited. A recent Microsoft product 2 keeps a
record of personal habitual mistakes. Either could
be a valuable aid in choosing the correct correc-
tion.

The system could possibly make better use of
the graph state of its lexicon. Word transforma-
tion implies either implicit or explicit string com-
parison. The advantage of a graph over a trie is
that it allows for comparison from the end of the
word and well as the beginning.

Testing and Evaluation

With the aim of evaluating the effectiveness of
shallow processing, tests will be carried out to
see what proportion of different types of errors
can be dealt with elegantly, adequately and/or
efficiently. Under examination will be the num-
ber of errors missed/caught and wrongly/rightly
corrected. Different components and configura-
tions of the system will be compared, for example
the error rules v. p.b.t.'s. Parameters of the sys-
tem will be varied, for example the breadth of the
purview, the position of the purview focus, the
number of correction candidates and the timing
of their generation. Will shallow processing miss
too many of the errors cooperative error process-
ing is aimed at?

There are two significant difficulties with col-
lecting test data. The central difficulty is finding
a representative sample of genuine errors by na-
tive speakers, in context, with the correct version
of the text attached. Apart from anything else,
'representative' is hard to decide - spectrum of er-
rors or distribution of errors ? Secondly, any cor-
pus of text usually contains only those errors that
were left undetected in the text. Cooperative pro-
cessing deals with errors that one backtracks to
catch; if not a different class or range, these at
least might have a different distribution of error
types.

The ideal data would be records of peoples'
keystrokes when interacting with an editor while
creating or editing a piece of text. This would

2Microsoft Word 6.0 Autocorrect Wizard

allow one measure of the (linguistic) feasibility
of cooperative error processing: the effectiveness
of shallow processing over errors revealed by the
keystroke-record data. There does not appear to
be an English source of this kind, so it is planned
to compile one.

For comparison, a variety of other data has been
collected. Preliminary tests used generated errors,
from a program that produces random Damerau
slips according to an observed distribution (Pol-
lock, 1983), using confusion matrices where ap-
propriate (Kernighan, 1990). Assembled data in-
cludes the Birkbeck corpus (Mitton, 1986) and
multifarious misspelling lists (without context).
Suggestions have been made to look for low fre-
quency words in corpora and news/mail archives,
and to the Longmans learner corpus (not native
speakers).

Acknowledgements

Thanks to all who offered advice on finding data,
and to Doug Mcllroy, Sue Blackwell and Neil
Rowe for sending me their misspelling lists.

This work is supported by a British Tele-
com Scholarship, administered by the Cambridge
Commonwealth Trust in conjunction with the For-
eign and Commonwealth Office.

References

Hiyan Alshawi. 1992. The Core Language Engine.
Cambridge, Massachusetts: The MIT Press.

Fred J. Damerau. 1964. "A Technique for Com-
puter Detection and Correction of Spelling Er-
rors",

Roger Garside, Geoffrey Leech and Geoffrey
Sampson, eds. 1987. The Computational Anal-
ysis of English. Longman. Commun. A CM,
7(3):171-176.

Claire Grover, John Carroll and Ted Briscoe.
1993. "The Alvey Natural Language Tools
Grammar (4th Release)", Tech. Rep. 284, Com-
puter Lab, University of Cambridge.

Mark D. Kernighan, Kenneth W. Church and
William A. Gale. 1990. "A Spelling Correction
Program Based on a Noisy Channel Model",
Proc. Coling-90, pp 205-210.

Roger Mitton, ed. 1986. A Col-
lection of Computer-Readable Corpora of En-
glish Spelling Errors (vet. 2). Birkbeek College,
University of London.

Joseph J. Pollock and Antonio Zamora. 1983.
"Collection and Characterization of Spelling
Errors in Scientific and Scholarly Text", J. Am.
Soc. Inf. Sci., 34(1):51-58.

299

Stephen G. Pulman and Mark R. Hepple. 1993. "A
feature-based formalism for two-level phonol-
ogy: a description and implementation", Com-
pufer Speech and Language, 7(4):333-358.

Edward M. Riseman and Allen R. Hanson. 1974.
"A Contextual Postprocessing System for Er-
ror Correction Using Binary n-Grams", IEEE
Trans. Comput, C-23(5):480-493.

300

