
A fas t p a r t i a l p a r s e o f n a t u r a l l a n g u a g e s e n t e n c e s
u s i n g a c o n n e c t i o n i s t m e t h o d

Carol ine Lyon
Division of Computer Science

University of Hertfordshire
Hatfield ALl0 9AB, UK
comrcml@herts, ac. uk

Bob Dickerson
Division of Computer Science

University of Hertfordshire
Hatfield ALl0 9AB, UK
comqrgd@hert s. ac. uk

Abstract

The pat tern matching capabilities of
neural networks can be used to loc-
ate syntactic constituents of natural lan-
guage. This paper describes a fully auto-
mated hybrid system, using neural nets
operating within a grammatic frame-
work. It addresses the representation
of language for connectionist processing,
and describes methods of constraining
the problem size. The function of the
network is briefly explained, and results
are given.

1 Introduction

The pat tern matching capabilities of neural net-
works can be used to detect syntactic constituents
of natural language. This approach bears compar-
ison with probabilistic systems, but has the ad-
vantage that negative as well as positive inform-
ation can be modelled. Also, most computation
is done in advance, when the nets are trained,
so the run time computational load is low. In
this work neural networks are used as part of a
fully automated system that finds a partial parse
of declarative sentences. The connectionist pro-
cessors operate within a grammatic framework,
and are supported by pre-processors that filter the
data and reduce the problem to a computation-
ally tractable size. A prototype can be accessed
via the Internet, on which users can t ry their own
text (details from the authors). It will take a sen-
tence, locate the subject and then find the head of
the subject. Typically 10 sentences take about 2
seconds, 50 sentences about 4 seconds, to process
on a Sparcl0 workstation. Using the prototype on
technical manuals the subject and its head can be
detected in over 90% of cases (See Section 7).

The well known complexity of parsing is ad-
dressed by decomposing the problem, and then

locating one syntactic constituent at a time. The
sentence is first decomposed into the broad syn-
tactic categories

pre-subject - subject - predicate

by locating the subject. Then these constituents
can be processed further. The underlying prin-
ciple employed at each step is to take a sentence,
or part of a sentence, and generate strings with
the boundary markers of the syntactic constituent
in question placed in all possible positions. Then
a neural net selects the string with the correct
placement.

This paper gives an overview of how natural
language is converted to a representation that the
neural nets can handle, and how the problem is
reduced to a manageable size. It then outlines
the neural net selection process. A comprehensive
account is given in (Lyon, 1994); descriptions of
the neural net process are also in (Lyon, 1993;
Lyon and Frank, 1992). This is a hybrid sys-
tem. The core process is data driven, as the para-
meters of the neural networks are derived from
training text. The neural net is trained in super-
vised mode on examples that have been manually
marked "correct" and "incorrect". It will then be
able to classify unseen examples. However, the ini-
tial processing stages, in which the problem size is
constrained, operate within a skeletal grammatic
framework. Computational tractabili ty is further
addressed by reducing data through the applica-
tion of prohibitive rules as local constraints. The
pruning process is remarkably effective.

2 The corpus of sentences f rom
technical manuals

This work has principally been developed on text
of technical manuals from Perkins Engines Ltd.,
which have been translated by a semi-automatic
process (Pyre, 1993). Now, a partial parse can
support such a process. For instance, frequently
occurring modal verbs such as "must" are not dis-

215

20

18

16

14

12

10

8

6

4

2

0

Number of

occurrences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of words before the subject Number of words in the subject

80

72

64

56

48

40

32

24

16

8

Figure I: The frequency of constituent length for pre-subject and subject in 351 sentences

tinguished by number in English, but they are in
many other languages. It is necessary to locate
the subject, then identify the head and determ-
ine its number in order to translate the main verb
correctly in sentences like (1) below.

If a cooler is fitted to the geaxl~ox, [the pipe
[connections] of the cooler] must be regu-
laxly checked for corrosion. (1)

This parser has been trained to find the syntactic
subject head that agrees in number with the main
verb. The manuals are written using the PACE
(Perkins Approved Clear English) guidelines, with
the aim of producing clear, unambiguous texts.
AlI declarative sentences have been extracted for
processing: about half were imperatives. This
level of classification can be done automatically
in future. Table 1 and Figure 1 show some of the
characteristics of the corpus.

Number of sentences 351
Average length 17.98 words
No. of subordinate clauses
In pre-subject 65
In subject 19
In predicate 136
Co-ordinated clauses 50

Punctuation marks are counted as words, formulae as
1 word.

Table 1: Corpus statistics

3 Language representation (I)
In order to reconcile computational feasibility to
empirical realism an appropriate form of language

representation is critical. The first step in con-
straining the problem size is to part i t ion an unlim-
ited vocabulary into a restricted number of part-
of-speech tags. Different stages of processing place
different requirements on the classification system,
so customised tagsets have been developed. For
the first processing stage we need to place the sub-
ject markers, and, as a further task, disambiguate
tags. It was not found necessary to use number
information at this stage. For example, consider
the sentence:

Still waters run deep. (2)
The word "waters" could be a 3rd person, singu-
lar, present verb or a plural noun. However, in
order to disambiguate the tag and place the sub-
ject markers it is only necessary to know tha t it is
a noun or else a verb. The sentence parsed at the
first level returns:

[Still waters] run deep. (2.1)

The tagset used at this stage, mode 1, has 21
classes, not distinguished for number. However,
the head of the subject is then found and num-
ber agreement with the verb can be assessed. At
this stage the tagset, mode 2, includes number in-
formation and has 28 classes. Devising optimal
tagsets for given tasks is a field in which further
work is planned. We need larger tagsets to cap-
ture more linguistic information, but smaller ones
to constrain the computational load. Information
theoretic tools can be used to find the entropy of
different tag sequence languages, and support de-
cisions on representation.

A functional approach is taken to tagging:
words are allocated to classes depending on their
syntactic role. For instance, superlative adjectives
can act as nouns, so they are initially given the 2
tags: noun or adjective. This approach can be ex-
tended by taking adjacent words which act jointly
as single lexical items as a unit. Thus the pair

216

"most <adject ive>" is taken as a single superlat-
ive adjective.

Text is automatically tagged using the first
modules of the CLAWS program (1985 version), in
which words are allocated one or more tags from
134 classes (Garside, 1987). These 134 tags are
then mapped onto the small customised tagsets.
Tag disambiguation is part of the parsing task,
handled by the neural net and its pre-processor.
This version of CLAWS has a dictionary of about
6,300 words only. Other words are tagged using
suffix information, or else defaults are invoked.
The correct tag is almost always included in the
set allocated, but more tags than necessary are of-
ten proposed. A larger dictionary in later versions
will address this problem.

R e p r e s e n t i n g syntact ic b o u n d a r y markers

In the same way that tags are allocated to words,
or to punctuation marks, they can represent the
boundaries of syntactic constituents, such as noun
phrases and verb phrases. Boundary markers can
be considered invisible tags, or hypertags, which
have probabilistic relationships with adjacent tags
in the same way that words do. (Atwell, 1987)
and (Church, 1989) have used this approach. If
embedded syntactic constituents are sought in a
single pass, this can lead to computational over-
load (Pocock and Atwell, 1994). Our approach
uses a similar concept, but differs in that embed-
ded syntactic constituents are detected one at a
time in separate steps. There are only 2 hyper-
tags - the opening and closing brackets marking
the possible location(s) of the syntactic constitu-
ent in question. Using this representation a hier-
archical language structure is converted to a string
of tags represented by a linear vector.

4 Constraining the generation of
candidate strings

This system generates sets of tag strings for each
sentence, with the hypertags placed in all possible
positions. Thus, for the subject detection task:

Then the performance of the pump must be
monitored. (3)

will generate strings of tags including:

[Then] the performance of the pump must
be monitored. (3.1)
[Then the] performance of the pump must
be monitored. (3.2)

Then [the performance of the] pump must
be monitored. (3.n)
Then [the performance of the pump] must
be monitored. (3.n + 1)

Hypertags are always inserted in pairs, so that
closure is enforced. There were arbi t rary limits of
a maximum of 10 words in the pre-subject and 10
words within the subject for the initial work de-
scribed here. These are now extended to 15 words
in the pre-subject, 12 in the subject - see Section
7. There must be at least one word beyond the
end of the subject and before the end-of-sentence
mark. Therefore, using the initial restrictions, in
a sentence of 22 words or more (counting punc-
tuation marks as words) there could be 100 al-
ternative placements. However, some words will
have more than one possible tag. For instance,
in sentence (1) above 5 words have 2 alternative
tags, which will generate 25 possible strings be-
fore the hypertags are inserted. Since there are
22 words (including punctuation) the total num-
ber of strings would be 25 * 100 -- 3200. It is not
feasible to detect one string out of this number: if
the classifier marked all strings incorrect the per-
centage wrongly classified would only be 0.03%,
yet it would be quite useless. In order to find the
correct string most of the outside candidates must
be dropped,

The skeletal grammat ic framework

A minimal grammar, set out in (Lyon, 1994) in
EBNF form, is composed of 9 rules. For instance,
the subject must contain a noun-type word. Ap-
plying this particular rule to sentence (3) above
would eliminate candidate strings (3.1) and (3.2).
We also have the 2 arbitrary limits on length of
pre-subject and subject. There is a small set of
4 extensions to the grammar, or semi-local con-
straints. For instance, if a relative pronoun oc-
curs, then a verb must follow in that constituent.
On the technical manuals the constraints of the
grammatic framework put up to 6% of declarative
sentences outside our system, most commonly be-
cause the pre-subject is too long. A small number
are excluded because the system cannot handle a
co-ordinated head. With the length of pre-subject
extended to 15 words, and subject to 12 words, an
average of 2% are excluded (7 out of 351).

Proh ib i t i on tables

The grammatic framework alone does not reduce
the number of candidate strings sufficiently for
the subject detection stage. This problem is ad-
dressed further by a method suggested by Bar-
ton et al. (Barton, Berwick and Ristad, 1987)
that local constraints can rein in the generation
of an intractable number of possibilities. In our
system the local constraints are prohibited tag
pairs and triples. These are adjacent tags which
are not allowed, such as "determiner - verb" or

217

INPUT SENTENCE

generate input 1
prune ~

mode l tags ~ find subject _ j i ne a, e wo l
~ e n t e n ~ ~generate inp~

(fin:e2:~dn::::~J:gt

mode 2 tags ~ KEY with numger
O process
I I data store

)

)

- -) neural network

HEAD OF SUBJECT SUBJECT
FOUND FOUND

Figure 2: Overview of the syntactic pat tern recognition process

"start of subject - verb". If during the genera-
tion of a candidate string a prohibited tuple is en-
countered, then the process is aborted. There are
about 100 prohibited pairs and 120 triples. By us-
ing these methods the number of candidate strings
is drastically reduced. For the technical manu-
als an average of 4 strings, seldom more than 15
strings, are left. Around 25% of sentences are left
with a single string. These filters or "rules" differ
fundamentally from generative rules that produce
allowable strings in a language. In those cases
only productions that are explicitly admitted are
allowed. Here, in contrast, anything that is not
expressly prohibited is allowed. At this stage the
data is ready to present to the neural net. Figure
2 gives an overview of the whole process.

5 Language representation (II)

Different network architectures have been invest-
igated, but they all share the same input and out-
put representation. The output from the net is a
vector whose 2 elements, or nodes, represent "cor-
rect" and "incorrect", "yes" and "no" - see Figure
3. The input to the net is derived from the candid-
ate strings, the sequences of tags and hypertags.
These must be converted to binary vectors. Each
element of the vector will represent a feature that
is flagged 0 or 1, absent or present.

Though the form in which the vector is written
may give an illusion of representing order, no se-

quential order is maintained. A method of repres-
enting a sequence must be chosen. The sequential
order of the input is captured here, partially, by
taking adjacent tags, pairs and triples, as the fea-
ture elements. The individual tags are converted
to a bipos and tripos representation. Using this
method each tag is in 3 tripos and 2 bipos ele-
ments. This highly redundant code will aid the
processing of sparse data typical of natural lan-
guage.

For most of the work described here the sen-
tence was dynamically t runcated 2 words beyond
the hypertag marking the close of the subject.
This process has now been improved by going fur-
ther along the sentence.

6 The function of the net

The net that gave best results was a simple single
layer net (Figure 3), derived from Wyard and
Nightingale's Hodyne net (Wyard and Nightin-
gale, 1990). This is conventionally a "single layer"
net, since there is one layer of processing nodes.
Multi-layer networks, which can process linearly
inseparable data, were also investigated, but are
not necessary for this particular processing task.
The linear separability of data is related to its
order, and this system uses higher order pairs
and triples as input. The question of appropriate
network architecture is examined in (Pao, 1989;
Widrow and Lehr, 1992; Lyon, 1994).

218

yes

(noun,verb,noun) (adj,noun) (' [' det)

. output nodes

. weighted links

~ input nodes

('[' prep)

'[' represents the start of the subject. The node ('[' determiner) would occur
often in both correct and incorrect strings. The node ('[' preposition) would not
occur in a correct string, so it is not connected to the "yes" output node.
2~ represents summing function.

Figure 3: The single layer net: showing the feed forward process

The training process

The net is presented with training strings whose
desired classification has been manually marked.
The weights on the connections between input and
output nodes are adjusted until a required level
of performance is reached. Then the weights are
fixed and the trained net is ready to classify un-
seen sentences. The prototype accessible via the
Internet has been trained on sentences from the
technical manuals, slightly augmented.

Initially the weighted links are disabled. When
a string is presented to the network in training
mode, it activates a set of input nodes. If an
input node is not already linked to the output
node representing the desired response, it will be
connected and the weight on the connection will
be initialised to 1.0. Most input nodes are con-
nected to both outputs, since most tuples occur
in both grammatical and ungrammatical strings.
However, some will only be connected to one out-
put - see Figure 3.

The input layer potentially has a node for each
possible tuple. With 28 tags, 2 hypertags and a
start symbol the upper bound on the number of
input nodes is 313 + 312. In practice the max-
imum activated is currently about 1000. In test-
ing mode, if a previously unseen tuple appears it
makes zero contribution to the result. The activ-
ations at the input layer are fed forward through
the weighted connections to the output nodes;
where they are summed. The highest output

marks the winning node. If the desired node wins,
then no action is taken. If the desired node does
not win, then the weight on connections to the de-
sired node are incremented, while the weights on
connections to the unwanted node are decremen-
ted.

This algorithm differs from some commonly
used methods. In feed forward networks trained
in supervised mode to perform a classification task
different penalty measures can be used to trigger a
weight update. Back propagation and some single
layer training methods typically minimise a met-
ric based on the least squared error (LSE) between
desired and actual activation of the output nodes.
The reason why a differentiable error measure of
this sort is necessary for multi-layer nets is well
documented, for example see (Rumelhart and Mc-
Clelland, 1986). However, for single layer nets we
can choose to update weights directly: the error at
an output node can trigger weight updates on the
connections that feed it. Solutions with LSE are
not necessarily the same as minimising the num-
ber of misclassifications, and for certain types of
data this second method of direct training may be
appropriate. Now, in the natural language domain
it is desirable to get information from infrequent
as well as common events. Rare events, rather
than being noise, can make a useful contribution
to a classification task. We need a method that
captures information from infrequent events, and
adopt a direct measure of misclassification. This

219

may be bet ter suited to data with a "Zipfian" dis-
tr ibution (Shannon, 1951).

The update factor is chosen to meet several re-
quirements. It should always be positive, and
asymptotic to maximum and minimum bounds.
The factor should be greatest in the central re-
gion, least as it moves away in either direction.
We are currently still using the original Hodyne
function because it works well in practice. The
update factor is given in the following formula. If
5-- +1 for strengthening weights and ~ = -1 for
weakening them, then

wn~,o = l + l + (~ , Wold) 4 wo~d

Recall tha t weights are initialised to 1.0. After
training we find that the weight range is bounded
by

10 -3 < w < 5.0

Total t ime for training is measured in seconds.
The number of iterative cycles tha t are necessary
depends on the threshold chosen for the trained
net to cross, and on details of the vector represent-
ation. The demonstrat ion prototype takes about
15 seconds. With the most recent improved rep-
resentation about 1000 strings can be trained in 1
second, to 97%. The results from using these nets
are given in Table 3. It was found that triples
alone gave as good results as pairs and triples to-
gether. And though the nets easily train to 99%
correct, the lower threshold gives slightly better
generalisation and thus gives better results on the
test data.

T h e t e s t i n g p r o c e s s

When the trained net is run on unseen data the
weights on the links are fixed. Any link that is
still disabled is activated and initialised to 0, so
that tuples which have not occurred in the train-
ing corpus make no contribution to the classific-
ation task. Sentences are put through the pre-
processer one at a time and the candidate strings
which are generated are then presented to the net-
work. The output is now interpreted differently.
The difference between the "yes" and "no" activ-
ation levels is recorded for each string, and this
score is considered a measure of grammaticality,
P. The string with the highest I" score is taken as
the correct one.

For the results given below, the networks were
trained on par t of the corpus and tested on an-
other par t of the corpus. For the prototype in
which users can process their own text, the net
was trained on the whole corpus, slightly augmen-
ted.

7 Resul t s

There are several measures of correctness tha t can
be taken when results are evaluated. The most
lenient is whether or not the subject and head
markers are placed correctly - the type of measure
used in the IBM/Lancaster work (Black, Garside
and Leech, 1993). Since we are working towards a
hierarchical language structure, we may want the
words within constituents correctly tagged, ready
for the next stage of processing. "correct- A" also
requires tha t the words within the subject are cor-
rectly tagged. The results in Tables 2 and 3 give
an indication of performance levels.

8 Using negative information

When parses are postulated for a sentence negat-
ive as well as positive examples are likely to occur.
Now, in natural language negative correlations are
an important source of information: the occur-
rence of some words or groups of words inhibit
others from following. We wish to exploit these
constraints. (Brill et al. , 1990) recognised this,
and introduced the idea of dis t i tuents . These are
elements of a sentence that should be separated,
as opposed to elements of cons t i tuen t s tha t cling
together. Brill addresses the problem of finding
a valid metric for distituency by using a gener-
alized mutual information statistic. Distituency
is marked by a mutual information minima. His
method is supported by a small 4 rule grammar.

However, this approach does not fully capture
the sense in which inhibitory factors play a neg-
ative and not just a neutral role. We want to dis-
tinguish between items that are unlikely to occur
ever, and those that have just not happened to
turn up in the training data. For example, in sen-
tence (3) above strings 3.1, 3.2 and 3.n can never
be correct. These should be distinguished from
possibly correct parses tha t are not in the train-
ing data. In order tha t "improbabilities" can be
modelled by inhibitory connections (Niles and Sil-
verman, 1990) show how a Hidden Markov Model
can be implemented by a neural network.

The theoretical ground for incorporating negat-
ive examples in a language learning process ori-
ginates with Gold's work (Gold, 1967; Angluin,
1980). He examined the process of learning the
grammar of a formal language from examples. He
showed that , for languages at least as high in the
Chomsky hierarchy as CFGs, inference from pos-
itive data alone is strictly less powerful than in-
ference from both positive and negative da ta to-
gether. To illustrate this informally consider a
case of inference from a number of examples: as
they are presented to the inference machine, pos-

220

no. of no. of % sents with % sents % sents with
training sents, test sents, subject correct subject and head

found measure A found
220 42 100 100 95
198 63 97 97 90
204 58 95 95 93
276 50 94 94

Table 2: Performance on text from Perkins manuals after 6% sentences have been excluded

no. of no. of % sents with % sents % sents with
training seats, test sents, subject correct subject and head

found measure A found t
309 42 100 97.6 97.6
288 63 98.4 96.8 96.8
292 59 98.3 98.3 96.6
284 67 94.0 94.0 94.0

Table 3: Performance on text from Perkins manuals, using improved representation and larger training
set, after 2% sentences have been excluded

sible grammars are postulated. However, with
positive data alone a problem of over generaliz-
ation arises: the postulated grammar may be a
superset of the real grammar, and sentences that
are outside the real grammar could be accepted.
If both positive and negative data is used, counter
examples will reduce the postulated grammar so
that it is nearer the real grammar. Gold developed
his theory for formal languages: it is argued that
similar considerations apply here. A grammar
may be inferred from positive examples alone for
certain subsets of regular languages (Garcia and
Vidal, 1990), or an inference process may degen-
erate into a look up procedure if every possible
positive example is stored. In these cases negat-
ive information is not required, but they are not
plausible models for unbounded natural language.
In our method the required parse is found by infer-
ring the grammar from both positive and negative
information, which is effectively modelled by the
neural net. ~-hture work will investigate the effect
of training the networks on the positive examples
alone. With our current size corpus there is not
enough data.

R e l a t i o n s h i p b e t w e e n t h e n e u r a l ne t a n d
p r o h i b i t i o n t a b l e

The relationship between the neural net and the
rules in the prohibition table should be seen in
the following way. Any single rule prohibiting
a tuple of adjacent tags could be omitted and
the neural network would handle it by linking
the node representing that tuple to "no" only.
However, for some processing steps we need to re-

duce the number of candidate tag strings presen-
ted to the neural network to manageable propor-
tions (see Section 4). The data must be pre-
processed by filtering through the prohibition rule
constraints. If the number of candidate strings is
within desirable bounds, such as for the head de-
tection task, no rules are used. Our system is data
driven as far as possible: the rules are invoked if
they are needed to make the problem computa-
tionally tractable.

9 C o n c l u s i o n

Our working prototype indicates tha t the methods
described here are worth developing, and that con-
nectionist methods can be used to generalise from
the training corpus to unseen text. Since data
can be represented as higher-order tuples, single
layer networks can be used. The traditional prob-
lems of training times do not arise. We have also
used multi-layer nets on this data: they have no
advantages, and perform slightly less well (Lyon,
1994).

The supporting role of the grammatic frame-
work and the prohibition filters should not be un-
derestimated. Whenever the scope of the system
is extended it has been found necessary to enhance
these elements.

The most laborious part of this work is prepar-
ing the training data. Each time the representa-
tion is modified a new set of strings is generated
that need marking up. An autodidactic check is
now included which speeds up this task. We run
marked up training data through an early version

221

of the network trained on the same data, so the
results should be almost all correct. If an "incor-
rect" parse occurs we can then check whether that
sentence was properly marked up.

Some of the features of the system described
here could be used in a stochastic process.
However, connectionist methods have low compu-
tational loads at runtime. Moreover, they can util-
ise more of the implicit information in the training
data by modelling negative relationships. This is
a powerful concept that can be exploited in the ef-
fort to squeeze out every available piece of useful
information for natural language processing.

Future work is planned to extend this very lim-
ited partial parser, and decompose sentences fur-
ther into their hierarchical constituent parts. In
order to do this a number of subsidiary tasks will
be addressed. The system is being improved by
identifying groups of words that act as single lex-
ical items. The decomposition of the problem can
be investigated further: for instance, should the
tag disambiguation task precede the placement of
the subject boundary markers i.n a separate step?
More detailed investigation of language represent-
ation issues will be undertaken. And the critical
issues of investigating the most appropriate net-
work architectures will be carried on.

Trans. on Pattern Analysis and Machine Intel-
ligence, 12.

R Garside. 1987. The CLAWS word-tagging sys-
tem. In R Garside, G Leech, and G Sampson,
editors, The Computational Analysis of English:
a corpus based approach. Longman.

E M Gold. 1967. Language identification in the
limit. Information and Control, 10.

C

C

Lyon. 1994. The representation of natural lan-
guage to enable neural networks to detect syn-
tactic features. PhD thesis.

R e f e r e n c e s

D Angluin. 1980. Inductive inference of formal
languages from positive data. Information and
Control, 45. p

E Atwell. 1987. Constituent-likelihood grammar.
In 1~ Garside, G Leech, and G Sampson, edit-
ors, The Computational Analysis of English: a
corpus-based approach. Longman.

G E Barton, R C Berwick, and E S Ristad.
1987. Computational Complexity and Natural
Language. MIT Press.

E Black, R Garside, and G Leech. 1993. Statistic-
ally driven computer grammars of English: the
IBM/Lancaster approach. R0dopi. B

E Brill, D Magerman, M Marcus and B Santorini.
1990. Deducing linguistic structure from the
statistics of large corpora. In DARPA Speech
and Natural Language Workshop. P

K W Church, Bell Laboratories. 1989. A
stochastic parts program and noun phrase
parser for unrestricted text. In IEEE confer-
ence record of ICASSP.

P Garcia and E Vidal. 1990. Inference of k-
testable languages in the strict sense and applic-
ation to syntactic pattern recognition. IEEE

Lyon I993. Using neural networks to infer
grammatical structures in natural language. In
Proe. of IEE Colloquium on Grammatical In-
~erence.

C Lyon and R Frank 1992. Detecting structures
in natural language using a neural net with
rules. In Proc. of International Conference on
Artificial Neural Networks (ICANN).

L Niles and H Silverman. 1990. Combining Hid-
den Markov Models and Neural Network Clas-
sifters. In IEEE conference record of ICASSP.

Yoh-Han Pao. 1989. Adaptive Pattern Recogni-
tion and Neural Networks. Addison Wesley.

R Pocock and E Atwell. 1994. Treebank trained
probabilistic parsing of lattices. School of Com-
puter Studies, Leeds University. In The Speech-
Oriented Probabilistic Parser Project: Final
Report to MoD.

Pym. 1993. Perkins Engines and Publications.
In Proceedings of Technology and Language in
Europe 2000. DGXIII-E of the European Com-
mission.

D Rumelhart and J McClelland. 1986. Parallel
Distributed Processing MIT.

C E Shannon 1951. Prediction and Entropy
of Printed English. In Bell System Technical
Journal.

Widrow and M Lehr. 1992. 30 years of adaptive
neural networks. In Neural networks: theoret-
ical foundations and analysis edited by CLau .
IEEE press.

Wyard and C Nightingale. 1990. A Single Layer
Higher Order Neural Net and its Application to
Context Free Grammar Recognition In Con-
nection Science, 4.

222

