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Abstract 

We provide a constraint based compu- 
tational model of linear precedence as 
employed in the HPSG grammar formal- 
ism. An extended feature logic which 
adds a wide range of constraints involv- 
ing precedence is described. A sound, 
complete and terminating deterministic 
constraint solving procedure is given. 
Deterministic computational model is 
achieved by weakening the logic such 
that  it is sufficient for linguistic appli- 
cations involving word-order. 

S u b j e c t  areas :  feature logic, constraint based 
grammars 

1 Introduction 
Within HPSG (Pollard and Sag, 1987) (Pollard 
and Sag, 1994) the constituent ordering princi- 
ple given in (1) is intended to express the rela- 
tion between the value of the PHON attribute and 
the DTRS attribute which contains the hierarchical 
structure of the derivation. 

[DTRS rPHON ] (1) phrasal_sign = ~der_constituent([~) 

(2) Linear Precedence Constraint 1 (LP1): 
HEAD[LEX+]  < [] 

However, it is not entirely clear how or- 
der_constituent is supposed to interpret various 
linear precedence statements such as LP1. 

1.1 R e a p e ' s  a p p r o a c h  

The idea taken in Reape's approach (Reape, 1993) 
is to suggest that  word-order is enforced between 
locally definable word order domains which are or- 
dered sequences of constituents. Word order do- 
mains in Reape's approach are totally ordered se- 
quences. A domain union operation as given in (3) 
is then employed to construct word order domains 
locally within a HPSG derivation step. 

(3) 0(,1, ,1, ,7). 

0(o~,= o ,~ ,=  o oD ~ O(,,,,,,~,,,~). 

If A is the string < a,b > and B is the 
string < c,d >, their domain union C given by 
O ( A , B , C )  will produce all the sequences in 
which a precedes b and c precedes d i.e. the fol- 
lowing sequences: 

< a , b , c , d >  < a , c , b , d >  
< a,c,d,b > < c,d,a,b > 
< c,d,a,b > < c,a,b,d > 

However in this system to encode the property 
that  {x, y, z} is a domain in which the ordering is 
arbitrary (i.e. free) then one needs the following 
disjunctive statements: 

< x , y , z  > U < x , z , y  > H 

< y , x , z  > U < y , z , x  > H 

< z , x , y  > U < z , y , x  > 

It is simply not possible to be agnostic about 
the relative ordering of sequence elements within 
Reape's system. 

We identify two deficiencies in Reape's ap- 
proach namely: 

• System is non-deterministic (generate and 
test paradigm) 

• Not possible to be agnostic about order 

This is so since domain union is a non- 
deterministic operation and secondly underspec- 
ification of ordering within elements of a domain 
is not permitted. 

In the following sections we describe a con- 
straint language for specifying LP constraints that  
overcomes both these deficiencies. Additionally 
our constraint language provides a broad range of 
constraints for specifying linear precedence that  
go well beyond what is available within current 
typed feature formalisms. Our approach is in the 
spirit of Reape's approach but improves upon it. 

Furthermore, a sound, complete and terminat- 
ing consistency checking procedure is described. 
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Our constraint solving rules axe de t e rmin i s t i c  and 
i ncremen ta l .  Hence these do not introduce costly 
choice-points. These constraint solving rules can 
be employed for building an efficient implementa- 
tion. This is an impor tant  requirement for prac- 
tical systems. Indeed we have successfully ex- 
tended the P r o F I T  typed feature formalism (Er- 
bach, 1995) with the constructs described in this 
paper.  

2 O u t l i n e  of  an  a l t e r n a t i v e  
a p p r o a c h  

To motivate  our approach we star t  with an exam- 
ple on scrambling in German subordinate clauses. 

(4) dab er einen Mann in der Strafle lanfen 
tha t  he a man in the street walking 

sah. 
s a w .  

tha t  he saw a man walking in the street. 

(5) dab er in der Strafle einen Mann laufen sah. 

(6) daft einen Mann er in der Stral3e lanfen sah. 

(7) daft einen Mann in der Stral]e er lanfen sah. 

(8) daft in der Stral]e er einen Mann laufen sah. 

(9) daft in der Strai]e einen Mann er laufen sah. 

The above da ta  can be captured precisely if we 
can s tate  tha t  sah requires-both its verbal argu- 
ment lau fen  and its NP argument  er to precede it. 
Similarly, lau fen  would require both  its arguments  
e inen  M a n n  and  in der  Straf le  to precede it. This 
is i l lustrated schematically in (10) below. 

(10) { e r }  { sah}  

/ 
{ einen mann, in der strasse} { laufen } 

Our idea is to employ a specification such as the 
one given in (11) which is a partial  specification 
of the lexical entry for the verb sah. The specifi- 
cation can be thought  of as a formal specification 
of the intuitive description given in (12). 

(11) 
V [3 phon  : < sah > 13 

f i e l d  : F ie ld  [3 
s y n  : ( cat : v [3 

subcat : { N P  [3 dora : N P d o m ,  
V i  [3 dora : V i d o m }  [3 

dora :D N P d o m  [3 
dora :D V i d o m  ) [3 

V i d o m  < dora {V}  [3 
N P d o m  < do,n {Vi} [3 
V i < V  

For space reasons, our t rea tment  is necessar- 
ily somewhat  superficial since we do not take 
into account other interacting phenomena such as 
f ron t ing  or extraposi t ion.  

The definition in (11) does not make specific as- 
sumption about  whether a context-free backbone 
is employed or not. However, if a CFG back- 
bone is employed then we assume tha t  the value 
of the subcat  at t r ibute  is t reated as an unordered  
sequence (i.e. a set) as defined in (11). 

(12) N P d o m  V 

Vidom 

/ 
V~ 

The essential idea is to use set-valued descrip- 
tions to model word-order domains. In paxticu- 
lax subset constraints (Manandhar ,  1994) are em- 
ployed to construct larger domains from smaller 
ones. Thus in example (11) the domain of the verb 
is constructed by including the domains of the 
subcategorised arguments  (enforced by the con- 
straints dora :D N P d o m f 3 d o m  :D V i D o m ) .  Note 
tha t  in this example the verb itself is not par t  of its 
own domain. The binary constraint  Vi < V en- 
forces precedence ordering between the s igns  V i  

and V. The constraint V ~ d o m  < do,~ {V} en- 
sures tha t  every element of the set V i D o m  pre- 
cedes the sign V. In other words, the set V i D o m  

is in the d o m a i n  precedence relation with the sin- 
gleton {V}. 

However there are strong constraints on order- 
ing in the middle field. For instance, when prono- 
mial complements are involved then not all per- 
mutat ions are acceptable. Examples  such as (13) 
are considered ungrammatical .  

(13) *dab in der Strafle ihn er laufen sah. 

According to Uszkoreit (Uszkoreit, 1985), order- 
ing of arguments in the middle field is governed by 
the following set of LP constraints given in (14) 
which axe to be interpreted disjunctively. 

(14) P P R N  : + < P P R N  : - 
T R  : agent  < T R  : t h e m e  
T R  : agent  < T R  : goal 
T R  : goal < T R  : t h e m e  
F O C U S : -  < F O C U S : +  

The LP constraint in (14) states tha t  for every 
pair of constituents in the middle field at  least one 
of the conditions should apply otherwise the sen- 
tence is considered ungrammatical .  A related but  
more elaborate LP rule mechanism is considered 
in (Steinberger, 1994). 
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To approximate this complex LP constraint em- 
ploying the kind of logical machinery described in 
this paper, we can use a description such as the 
one given in (15). The definition given in (15) 
extends the description given in (11). 

(15) s y n  : d o m  : M F  f3 
3 x 3 y  i f  x E M F  A y E M F  A x < y 

t h e n  
i f  x = p p r n :  + A y = p p r n : - -  

t h e n  T 
else  
i f  x ---- t r  : a g e n t  A y = t r  : t h e m e  

t h e n  T 
e lse  
i f  x = t r  : a g e n t  A y = t r  : goal 

t h e n  T 
e lse  
i f  x = t r  : goal  A y = t r  : t h e m e  

t h e n  T 
else  

x = f o c u s  : - A y -= f o c u s  : + 

The definition in (15) can be understood as fol- 
lows. The feature constraint s y n  : dora : M F  co- 
instantiates the middle field domain to the vari- 
able M F .  To keep the example simple, we assume 
that  the whole domain is in the middle field and 
we ignore f r o n t i n g  or ex t r apos i t i on .  A more com- 
plex condition would be needed to handle these. 

The rest of the definition in (15) ensures that  for 
every pair of elements x and y such that  x and y 
are both members of M F  and x precedes  y at least 
one of the LP constraints hold. If every LP con- 
straint is violated then an inconsistency results. 
The constraints in (15) is a weaker representation 
of the disjunctive specification given in (16). 

(16) S x ~ y  i f  (x e M F  A y e M F  A x < y) 

t h e n  

x = t r  : a g e n t A  y = t r  : t h e m e  
V x = t r  : a g e n t  A y = t r  : goal 

x = t r  : g o a l A  y = t r  : t h e m e  
x = f o c u s  : - A y = f o c u s  : + 

The description in (16) non-deterministicaily re- 
quires that  at least one of the LP constraints hold. 
On the other hand, the description in (15) w a i t s  

until either one of the LP constraints is satisfied 
(in which case it succeeds) or all the LP con- 
straints are violated (in which case it fails). Thus 
the description in (15) can be solved determinis- 
tically. 

Thus (15) should rule out the ungrammatical 
example in (13) if the assumptions regarding f o c u s  

are made as in (17). 

(17) *dab in der Strafle ihn er laufen sah. 
pprn:- focus:- 
t h : t h e m e  pprn :  + 

tw. a g e n t  

Note that  it is not necessary to know whether the 
PP  i n  d e r  S t ra f l e  is focussed to rule out (17) since 
the fact that  the pronoun i h n  is f ocus : -  is enough 
to trigger the inconsistency. 

3 Some generic LP constraints 

As suggested by the example in (11), in general 
we would want support within typed feature for- 
malisms for at least the following kinds of LP con- 
straints. 

1. Sign1 < Signs 

2. Doml < d o m  Dom~ 
(Dotal and Dom~ are set-valued) 

3. Doml is  i n c l u d e d  in  Dom~ 

The constraint Sign1 < Sign~ states that  Sign1 
precedes  Signs. The constraint Dom~ < dora Dom2 
states that  every element of the set described by 
Doml precedes every element of the set described 
by Dom=. Constraints such as Doml is  i n c l u d e d  

in  Dora2 essentially builds larger domains from 
smaller ones and can be thought of as achieving 
the same effect as Reape's domain union oper- 
ation. Note crucially that  within our approach 
the specification of precedence constraints (such 
as Sign1 < Sign~ and Dom~ < ~om Dom2) is in- 
dependent of the domain building constraint ( i .e .  

the constraint Doml is  i n c l u d e d  in  Dom=). This 
we believe is a generaiisation of Reape's approach. 

Other constraints such as the following involv- 
ing i m m e d i a t e  p recedence  and f i r s t  e l e m e n t  o f  a 

d o m a i n  are of lesser importance. However, these 
could be of the form: 

1. Sign1 i m m e d i a t e l y - p r e c e d e s  Sign= 

2. F i r s t  d a u g h t e r  o f  Dom~ is Sign1 

To be able to state descriptions such as in (15), 
we also want to introduce g u a r d e d  (or c o n d i t i o n a l )  

LP constraints such the following: 

1. i f  Sign~ is NP[acc] A Sign2 is NP[dat] 
t h e n  Sign, < Sign= 

( Guards on Feature constraints) 

2. if Sign~ < Sign2 t h e n  . . . . . .  

( Guards on precedence constraints) 

3. 3 x 3 y  (/fx:NP[acc] E Dom A 
y:NP[dat] E Dom 

t h e n  x < y) 
( Guards on set members) 

Guarded constraints can be thought of as c o n d i -  

t i o n a l  c o n s t r a i n t s  whose execution depends on the 
presence of other constraints. The condition part  
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G of a guarded constraint i f  G then S else T is 
known as a guard. The consequent S is executed if 
the current set of constraints entail the guard G. 
The consequent T is executed if the current set 
of constraints disentail the guard G. If the cur- 
rent set of constraints neither entail nor disentail 
G then the execution of the whole guarded con- 
straint is blocked until more information is avail- 
able. 

The application of guarded constraints within 
computat ional  linguistics has not been well ex- 
plored. However, the Horn extended feature struc- 
tures described in (Hegner, 1991) can be thought 
of as adding guards to feature structures. On the 
other hand, within logic programming guarded 
logic programming languages have a longer his- 
tory originating with committed-choice languages 
(Ueda, 1985) and popularised by the concurrent 
constraint programming paradigm due to Saraswat 
(Saraswat and Rinard,  1990) (Saraswat, 1993). 

For space reasons, we do not cover the logic of 
guarded feature constraints, guards on set mem- 
bership constraints and guards o.n precedence con- 
straints. Guarded  feature constraints have been 
extensively studied in (Ait-Kaci et al., 1992) 
(Smolka and Treinen, 1994) (Ait-Kaci and Podel- 
ski, 1994). 

4 A fea ture  logic wi th  LP 
cons t ra in t s  

In this section we provide formal definitions for 
the syntax and semantics of an extended feature 
logic tha t  directly supports  linear precedence con- 
straints as logical primitives. The logic described 
in this paper  is a further development of the one 
described in (Manandhar ,  1993). 

The syntax of the constraint language is defined 
by the following BNF definitions. 

Syntax 
Let ~ be the set of relation symbols and let 79 

be the set of irreflexive relation symbols. We shall 
require tha t  :7- and 79 are disjoint. 

¢, ¢ ~ x = f : y feature constraint 
x = 3 f  : y set-membership 
x = 31o + : y transitive closure 
x = 3p* : y reflex-trans closure 
x = f :D g(y) subset inclusion 
x = [f  p 1]y first daughter 
f ( x )  : p+ : g(y) domain precedence 
f ( x )  : p* : g(y) domain prec. equals 
¢ & ¢ conjunction 

where f E .7- and p E 79 

The constraint  x = f : y specifies tha t  y is the 
only f -value  of x. The constraint x = 3 f  : y 

states tha t  y is one of the f -values  of x. 

The constraint x = 3p + : y just  says tha t  
x is related to y via the transit ive closure of p. 
The precedence constraint such as Sign1 precedes 
Sign= is intended to be captured by the constraint  
Sign1 = 3p + :Sign= where p denotes the (user cho- 
sen) immediate precedence relation. 

Similarly, x = 31o* : y states tha t  x is related 
to y via the transitive, reflexive closure of p. This 
constraint is similar to the constraint  x = 3p + : y 
except tha t  it permits  x and y to be equal. 

The constraints f ( x )  : p+ : g(y) and f ( x )  : p* : 
g(y) are intended to enforce precedence between 
two word-ordering domains. The constraint  f ( x )  : 
p+ : g(y) states tha t  every f -value  of x precedes 
(i.e. is in the p+ relation with) every g-value of y. 
The constraint f ( x )  : p* : g(y) is analogous. 

The constraint x = I f  p 1]y states tha t  y is the 
first daughter amongst  the f-values of x (i.e. is in 
the p* relation with every f -value  of x). 

Since our language supports  both  feature con- 
straints and set-membership constraints the con- 
ventional semantics for feature logic (Smolka, 
1992) needs to be extended. The  essential differ- 
ence being tha t  we interpret  every feature/ re la t ion 
as a binary relation on the domain of interpreta-  
tion. Feature constraints then require tha t  they 
behave functionally on the variable upon which 
the constraint is expressed. 

A precise semantics of our constraint language 
is given next. 

Semantics 
An interpretat ion s tructure 27 = < / / z ,  .I > is a 

structure such that:  

• / / / i s  an arbi t rary  non-empty set 

• .i is an interpretat ion function which maps: 

- every relation f E ~- to a binary relation: 
/ I  _c///x U I 

- every relation p E 79 to a binary relation: 
pi C / / i  X / / I  with the added condition 
tha t  (pZ)+ is irreflexive 

A variable assignment ~ is a function 
c~:12 ~/ /J .  

We shall write f I ( e )  to mean the set: 

i f ( e )  = {e' e / / I  I (e ,e ' )  E f i }  

We say tha t  an interpretat ion 27 and a variable as- 
signment a satisfies a constraint ¢ wri t ten Z, a 
¢ if the following conditions are satisfied: 
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z, ~ ~ x = f :  ~ ~ #( ,~(z) )  = {~(~)} 
z,  ~ ~ z = 3 f :  y ¢=~ (~(x), a(y)) e f1 
Z , a  ~ x = 3p+ :  y ~ ( a (x ) , a (y ) )  e (pl)+ 
z, ~ ~ x = 3p*: y ¢=~ (~(x), ~(y)) e (# )*  
:r, ~ ~ x = f :D_ g(y) ~ f l ( a ( x ) )  D_ gl(a(y))  

Z, c~ ~ x = [f p 1]y ~ o~(y) e fz(t~(x))A 
Ve E/.t z 

(e e f ( ~ ( = ) )  
(~(y),e) e (# )*)  

Z,c~ ~ f ( x )  :p+ : g(y) ~ Vel ,% e Ll I 
( (~  e f z (~(~) )^  
~ e # ( ~ ( u ) ) )  

(e~, e~) e ( # ) + )  
Z , a  ~ f ( x )  : p* : g(y) ¢==~ Ve~,% ELI I 

((el ~ f ( a ( x ) ) ^  
e~ e # (~(~) ) )  

(e~, e~) e (# )*)  
Given the above semantics, it turns out that  the 

first-daughter constraint can be defined in terms 
of other constraints in the logic. Let f_p_l be a 
distinct relation symbol then we can equivalently 
define the first-daughter constraint by: 

• x = [ f p l ] y ~ x = f _ p _ l : y A  
x = 3 f :  y A f_p_l (x ) :p*:  f ( x )  

The translation states that  y (which is the f_p_l- 
value of x) precedes or is equal to every f-value 
of x and y is a f-value of x. For this to work, we 
require that  the feature symbol f_p_l appears only 
in the translation of the constraint x = [f p 1]y. 

4.1 T w o  R e s t r i c t i o n s  

The logic we have described comes with 2 limita- 
tions which at first glance appears to be somewhat 
severe, namely: 

• N O  atomic values 

• N O  precedence as a feature 

This is so because it turns out that  adding both 
functionM precedence and atoms in general leads 
to a non-deterministic constraint solving proce- 
dure. To illustrate this, consider the following 
constraints: 

x =  f : y A y = a A x = 3 f *  : z  

where a is assumed to be an atom. 
The above constraints state that  y is the f-value 

of x and y is the atom a and z is related to x by 
the reflexive-transitive closure of f .  

Determining consistency of such constraints in 
general involves solving for the following disjunc- 
tive choices of constraints. 

x = z o r y = z  

(Equals) x = y A Ca 
= = ~ ^ [ = / ~ ] c i  
if x # y and x occurs in Cs 

- " A x = , f : z h C ~  

x =  f : y A x = 3 f  : z A C s  
(FeatExists) x = f : y A x = B f : z A y = z A C s  

(Subset) 
x = f :2 g(Y) A y  = G:  z A  C~ 

x = 3 f :  y A x =  f :D g(y) A y  = G : z A C ~  
if x = 3 f  : y ([ Cs 
where G ranges over g, 3g 

Figure 1: Constraint Solving - I 

However for practical reasons we want to eliminate 
any form of backtracking since this is very likely 
to be expensive for implemented systems. On the 
other hand, we certainly cannot prohibit atoms 
since they are crucially required in grammar spec- 
ification. But disallowing functional precedence 
is less problematic from a grammar development 
perspective. 

4.2 I m p o s i n g  t h e  r e s t r i c t i o n  

We note that  precedence can be restricted to non- 
atomic types such as HPSG signs without com- 
promising the grammar in any way. We then need 
to ensure that  precedence constraints never have 
to consider atoms as their values. This can be 
easily achieved within current typed feature for- 
mglisms by employing appropriateness conditions 
(Carpenter,  1992). 

An appropriateness condition just  states that  
a given feature (in our case a relation) can only 
be defined on certain (appropriate) types. The 
assumption we make is that  precedence is specified 
in such a way that  is appropriate only for non- 
atomic types. This restriction can be imposed by 
the system (i.e. a typed feature formalism) itself. 

5 C o n s t r a i n t  S o l v i n g  

We are now ready to consider consistency checking 
rules for our constraint language. To simplify the 
presentation we have split up the rules into two 
groups given in figure 1 and figure 2. 

The constraint solving rules given in figure 
1 deal with constraints involving features, set- 
memberships, subset and first daughter. Rules 
(Equals) and (Feat) are the usual feature logic 
rules (Smolka, 1992) that  deal with equality and 
features. By [x/y]Cs we mean replacing every 
occurrence of x with y in Cs. Rule (FeatEx- 
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(TransConj) x = 3 p * : y A x = 3 p  + : y A C s  
x = 3 p  + : y A C s  

(TransClos) x = S R 1  : y A y = 3 R = : z A C 8  
X =  3(R1 X R2) :zA 

x = 3 R I  : y A y = ~ R 2 : z A C s  
if x = Sp+ : z ~ C~A 
x = 3(R~ × R~) : z  ¢ C ~  
where R~ x R= is computed from: 

x p* p+ 
p* p* p+ 
p+ p+ p+ 

(Cycle) x = 3p* : y  
X 

f ( x )  : R : g(y) A x = 3 f  : x l A  
y ---- 3g : yl AC8 

(DomPrec) 
xl  = 3 R :  y~ A f ( x )  : R : g(y)A 
x = 3 f  : x l  A y = 3 g : y l  A C s  

i fx~ = 3 p  + : y l  ¢ C ~ A  
x~ = 3R  : y~ ¢_ Cs 

where R ranges over p+, p* 

Figure 2: Constraint  Solving - I I  

ists) deals with the interaction of feature and 
set-membership constraint. Rule (Subset) deals 
with subset constraints and adds a new constraint 
x = 5 f  : y in the presence of the subset constraint 
x = f :D g(y) and the constraint y = G : z (where 
G ranges over g, 3g). 

The constraint  solving rules given in figure 
2 deal with constraints involving the precedes 
and the precedes or equal to relations and do- 
main precedence. Rule (TransConj) eliminates 
the weaker constraint  x = 3 p * : y  when both  
x = 2 p * : y  A x = 3 p  + : y  hold. Rule (TransC- 
los) effectively computes the transitive closure of 
the precedence relation one-step at a time. Rule 
(Cycle) detects cyclic relations tha t  are consis- 
tent, namely, when x precedes or equals y and 
vice versa then x = y is asserted. Finally rule 
(DomPrec) propagates  constraints involving do- 
main precedence. 

We say tha t  a set of constraints are in n o r m a l  
f o r m  if no constraint  solving rules are applicable 
to it. We say tha t  a set of constraints in normal 
form contains a c l a sh  if it contains constraints of 
the form: 

x = Bp+ : x 

In the following sections we show tha t  our con- 
straint  solving rules are sound and every c lash-  
f ree  constraint  system in normal  form is consis- 
tent. 

5.1 Soundness, Completeness and 
Termination 

Theorem 1 (Soundness) Let Z,o~ be any inter- 
pretation, assignment pair and let Cs be any set 
of constraints. I f  a constraint solving rule trans- 
forms Cs to Crs then: 

z , a  ~ C, iffz,  a ~ C', 
Proof Sketch: The soundness claim can be verified 
by checking tha t  every rule indeed preserves the 
interpretation of every variable and every relation 
symbol. 

Let succ(x , f )  and succ(x,p) and denote the 
sets: 

• succ(x , f )  = 

{ y i x = ~ f : y e C s V  x = f : y e C s }  

• succ(x,p) = { , I  
x = 3R : y 6 Csh  
- , 3 z : ( x = 3 R ,  : z A z = 3 R 2 : y )  6 C s }  
where R, R1, R2 6 {p+,p*} 

Theorem 2 (Completeness) A constraint sys- 
tem Cs in normal form is consistent iff Cs is 
clash-flee. 

Proof Sketch: For the first part ,  let Cs be a con- 
straint system containing a clash then it is clear 
from the definition of clash tha t  there is no in- 
terpretat ion E and variable assignment a which 
satisfies Cs. 

Let Cs be a clash-free constraint sys tem in nor- 
mal form. 

We shall construct an interpretat ion 
7¢ =< L/n, .n > and a variable assignment a such 
tha t  TO, a ~ Cs. 

Let L/R = Y. 
The assignment function a is defined as follows: 

• if x does not occur in Cs then a (x)  = x 

• if x is such tha t  x occurs exactly once in x = 
y 6 C~ then a(x)  = x 

• if x = y 6 Cs then a(y) = a(x)  

Note that  for constraints in normal  form: if x = 
y 6 C8 then either x is identical to y or x occurs 
just once in C~ (in the constraint x = y). Other-  
wise Rule (Equals) is applicable. 

The interpretat ion function .R is defined as fol- 
lows: 

• fa((x(x))  = succ(a(x),  f )  

• p ~ ( ~ ( x ) )  = succ(~(x),p) 

It  can be shown by a case by case analysis tha t  
for every constraint K in C, :  
~ , a ~ K .  

Hence we have the theorem. 
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(Initial Description) 

Figure 3: Linearisation of precedence ordered 
DAGs 

Theorem 3 (Termination) 
The consistency checking procedure terminates in 
a finite number of steps. 

Proof Sketch: The termination claim can be easily 
verified if we first exclude rules (Subset), (TransC- 
los) and (DomPrec) from consideration. Then for 
the remainder of the rules termination is obvious 
since these rules only simplify existing constraints. 
For these rules: 

1. Rule (Subset) increases the size of succ(x, f )  
but since none of our rules introduces new 
variables this is terminating. 

2. Rules (TransClos) and (DomPrec) asserts a 
relation R between pairs of variables x, y. 
However, none of these rules apply once x = 
3p + : y is known. Furthermore, if x = 3p + : y 
is known it is never simplified to the weaker 
x = 3p* : y. This means that these rules 
converge. 

6 L i n e a r i s a t i o n  of p r e c e d e n c e  
o r d e r e d  D A G s  

The models generated by the completeness theo- 
rem interpret (the map of) every precedence re- 
lation p as a directed acyclic graph (DAG) as de- 
picted in figure 3. However sentences in natural 
languages are always totally ordered (i.e. they are 
strings of words). This then raises the question: 

Is it possible to generate linearised models? 

For the logic that  we have described this is always 
possible. We only provide a graphical argument 
given in figure 3 to illustrate that  this is indeed 
possible. 

The question that  arises is then: 

What happens when we add immediate prece- 
dence? 

I A I B o I o I Inco-ect 
Model) 

Model) 

I A & C I B & D I  (Correct Model) 

Figure 4: Difficulty in guaranteeing linearisable 
models with immediate precedence 

6.1 P r o b l e m  w i t h  immediate precedence 

However if we add immediate precedence to our 
logic then it is not clear whether we can guarantee 
linearisable models. This is highlighted in figure 
4. 

As illustrated in this figure consistency check- 
ing of constraints involving both linear precedence 
and immediate precedence with a semantics that  
requires linearised models is not trivial. So we do 
not explore this scenario in this paper. 

However, it is possible to add immediate prece- 
dence and extend the constraint solving rules de-  
scribed in this paper in such a way that  it is sound 
and complete with respect to the current seman- 
tics described in this paper (which does not insist 
on linearised models). 

7 Handling immediate precedence 

In this section, we provide additional constraint 
solving rules for handling immediate precedence. 
The basic idea is to treat  immediate precedence 
as a functional relation whose inverse too is func- 
tional. 

In effect what we add to our logic is both prece- 
dence as a feature and a new constraint for repre- 
senting the inverse functional precedence. 

This is summarised by: 

• Represent x immediately precedes y by : 
x = p : y A y = p  -1 :x  

• Semantics: Z, a ~ y = p-1 : x 
(#)-1 (~(y)) = {~(x)} 

The additional rules given in figure below are all 
that  is needed to handle immediate precedence. 
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x = p : y A C s  
(FeatExists) x = p : y A x = 3 p : y A C s  

if x = 3p :  y ~ Cs 

(ExistsTrans) x = 3p : y A Cs 
x = 3 p : y A x  = 3p + :y  A C s  

if x = 3/) + : y ¢. Cs 

(InvIntro) x = p-1 : y A Cs 
y = 3 p : x A x = p - ~  : y A C s  
if y = 3p : x ¢ Cs 

(InvExists) x = p-1  : y A z = 3p : x A Cs 
y =  z A x = p - ~  : y A y = 3 p : x A C ~  

i f y C z  

8 Conclusions 

We have shown tha t  the logic of linear precedence 
can be handled elegantly and deterministically by 
adding new logical primitives to feature logic. Al- 
though, theoretically speaking, our logic comes 
with some restrictions these have no practical con- 
sequences whatsoever.  Our implementat ion of the 
logic as an extension to the P roF IT  typed feature 
formalism shows tha t  a reasonably efficient imple- 
mentat ion is feasible. Some further work is neces- 
sary to determine the computat ional  complexity 
of our constraint  solving procedure. However, we 
believe tha t  it is polynomial.  

The logic presented in this paper  generalises the 
approach taken in (Reape, 1993). Our approach 
demonstrates  tha t  it is not necessary to employ a 
non-deterministic operat ion such as domain union 
to manipulate  domains. Instead precedence con- 
straints are directly embedded in feature logic 
and a deterministic constraint  solving procedure 
is provided. A wide range of constraints involv- 
ing precedence is provided directly in feature logic 
ranging from constraints expressing precedence be- 
tween variables, precedence between domains to 
guards on precedence constraints. 
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