
The Problem of Comput ing  the Most Probable Tree in 
Data-Oriented Parsing and Stochastic Tree G r a m m a r s  

Rens Bod 
Institute for Logic, Language and Computation 

Department of Computational Linguistics 
University of Amsterdam 

Spuistraat 134, 1012 VB Amsterdam 
The Netherlands 

rens@mars.let.uva.nl 

Abstract 

We deal with the question as to whether there 
exists a polynomial time algorithm for computing 
the most probable parse tree of a sentence generated 
by a data-oriented parsing (DOP) model. (Scha, 
1990; Bod, 1992, 1993a). Therefore we describe 
DOP as a stochastic tree-substitution grammar 
(STSG). In STSG, a tree can be generated by 
exponentially many derivations involving different 
elementary trees. The probability of a tree is equal 
to the sum of the probabil i t ies of all its 
derivations. 

We show that in STSG, in contrast with 
stochastic context-free grammar,  the Viterbi 
algorithm cannot be used for computing a most 
probable tree of a string. We propose a simple 
modification of Viterbi which allows by means of 
a " s e l e c t - r a n d o m "  search to es t ima te  the most 
probable tree of a string in polynomial time. 

Experiments with DOP on ATIS show that 
only in 68% of the cases, the most probable 
derivation of a string generates the most probable 
tree of  that string. Therefore, the parse accuracy 
obtained by the most  probable trees (96%) is 
dramatically higher than the parse accuracy obtained 
by the most probable derivations (65%). 

It is still an open question whether the 
mos t  p robab le  tree of  a string can be 
deterministically computed in polynomial time. 

1 Data-Oriented Parsing 

A Data-Oriented Parsing model (Scha, 1990; Bod, 
1992, 1993a) is characterized by a corpus of analyzed 
language utterances, together with a set of operations 
that combine sub-analyses from the corpus into new 
analyses. We will limit ourselves in this paper to 
corpora with purely syntactic annotations. For the 
semantic dimension of DOP, the reader is referred to 
(van den Berg et al., 1994). Consider the imaginary 
example corpus consisting of only two trees in figure 
1. We will assume one operation for combining 
subtrees. This operation is called "composition", and 
is indicated by the infix operator o. The composition 

of t and u, tou, yields a copy of  t in which its 
leftmost nonterminal leaf node has been identified 

with the roof  node of u (i.e., u is subs t i tu ted  on the 
leftmost nonterminal leaf node of t). For reasons of 
simplicity we will write in the following (tou)ov as: 

louov. 

S S 

A 
NP VP 
I A  uP 

,hov I 
I ,.o w 

w = .  A v / : , ;  A 
A A  i. ,Loo.oc o.oo o . o  

the dress P NP 

I / N  on the rack 

Figure 1. Example corpus of two trees. 

Now the (ambiguous) sentence "She displayed the 
dress on the table" can be parsed by combining 
subtrees from the corpus. For instance: 

S o NP o 

A /<, "A 
ip  V ~  the dress on I the table 

she VP PP 

A 
V NP 

I 
displayed 

NP VP 

she Via pp 

/ 
displa~ the dress on the table 

Figure 2. Derivation and parse tree for "She displayed the 
dress on the table" 
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As the reader may easily ascertain, a different 
derivation may yield a different parse tree. However, a 
different derivation may also very well yield the same 
parse tree; for instance: 

S o VP o NP 

NP VP the dress 

displayed 
she VP PP 

p NP 

on the table 

Figure 3. Different derivation generating the same parse 
tree for "She displayed the dress on the table" 

Or 

S o VP o NP 

NP VP VP pp the dress 

I / x  / x ,  
she V NP p I ~ P  

displ!yed !n the t a b l e / N  

Figure 4. Another derivation generating the same parse 
tree for "She displayed the dress on the table" 

Thus, a parse tree can have several derivations 
involving different subtrees. Using the corpus for our 
stochastic estimations, we estimate the probability of 
substituting a certain subtree on a specific node as the 

p r o b a b i l i t y  of  selecting this subtree among all 
subtrees in the corpus that could be substituted on 
that node. 1 The probability of  a derivation can be 
computed as the product of  the probabilities of the 
substitutions that it involves. The probability of a 
parse tree is equal to the probability that any of its 
derivations occurs, which is the sum of  the 
probabilities of  all derivations of that parse tree. 
Finally, the probability of a word string is equal to 
the sum of the probabilities of all its parse trees. 

2 D O P  as a Stochast ic  Tree-  
Subst i tut ion  G r a m m a r  

In order to deal with the problem of computing the 
most probable parse tree of a string, it is convenient 
to describe DOP as a "Stochastic Tree-Substitution 
Grammar"  (STSG). STSG can be seen as a 
generalization over DOP, where the elementary tree S 
of STSG are the subtrees of  DOP, and the 
probabil i t ies of  the e lementary trees are the 

1Very small frequencies are smoothed by Good-Turing. 

substi tution-probabili t ies of  the corresponding 
subtrees o fDOP (Bod, 1993c). 

A Stochastic Tree-Substi tut ion G r a m m a r  G is a five- 
tuple < VN, VT-, S, R, P> where 
Vu is a finite set of nonterminal symbols. 
Vr is a finite set of terminal symbols. 
S ~ VN is the distinguished symbol. 
R is a finite set of elementary trees whose top nodes 
and interior nodes are labeled by nonterminal symbols 
and whose yield nodes are labeled by terminal or 
nonterminal symbols. 
P is a function which assigns to every elementary tree 
t ~ R a probability p( t ) .  For a tree t with a root a ,  
p(t)  is interpreted as the probability of  substituting t 
on a. We require, therefore, that 0 < p( t )  <- 1 and 

~-~t:root(t)=Ct p(t) = 1. 

If t l  and t2 are trees such that the l e f t m o s t  
nonterminal  yield node of t l  is equal to the root of t2, 

then t lot  2 is the tree that results from substituting t 2 

for this leftmost nonterminal yield node in t l .  T he  

partial function o is called le f tmost  subst i tut ion.  For 
reasons of conciseness we will use the term 
substitution for leftmost substitution. 

A leftmost derivation generated by an STSG G 
is a tuple of trees <t 1 ..... tn> such that t I ..... t n are 
elements of R, the root of t I is labeled by S and the 
yield of t l  .... otn is labeled by terminal symbols. The 

set of leftmost derivations generated by G is thus 
given by Derivat ions(G)  = { <t I ..... tn> I t l  ..... tn ~ R 

^ r o o t ( t 1 )  = S A y i e l d ( t l o . . . o t n )  ~ Vr +}. For 
convenience we will use the term derivation for 
leftmost derivation. A derivation <tl  ..... tn> is called 
a derivation of tree T, iff tlo...ot n = T. A derivation 
< t l  ..... tn> is called a derivation of  string s, iff 
yield(t1 .... °tn) = s. The  probability of  a derivation 

<t I ..... in> is defined as p ( t l )  • ... • p( tn) .  
A parse  tree generated by an STSG G is a tree 

T such that there is a derivation < t l  . . . . .  t n>  

D e r i v a t i o n s ( G )  for which t l  . . . . .  tn = T. The  set of 
parse trees, or tree language,  generated by G is given 
byParses(G) = { T I 3  <t I ..... tn> ~ Der i va t ions (G) :  

t l  . . . . .  tn = T}. For reasons of conciseness we will 
often use the terms p a r s e  or tree for a parse tree. A 
parse whose yield is equal to string s, is called a parse 
of s. The probability of  a parse is defined as the sum 
of the probabilities of all its derivations. 

A s t r i n g  generated by an STSG G is an 
element of Vr + such that there is a parse generated by 
G whose yield is equal to the string. The set of  
strings, or string language,  generated by G is given 
by Str ings(G)  = {sl  3 T :  T ~  Par se s (G)  ^ s = 
yield(T)}.  The probability of a string is defined as the 
sum of the probabilities of all its parses. This means 
that the probability of a string is also equal to the 
sum of the probabilities of all its derivations. 
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3 For the input string abcd,  the following derivation 
forest is then obtained: 

C o m p u t i n g  a most  probable  
parse  tree in S T S G  

In order to deal with the problem of computing the 
most probable parse tree of  a sentence, we will 
distinguish between parsing and disambiguation. By 
parsing we mean the creation of a parse forest for an 
input sentence. By disambiguation we mean the 
selection of the most probable parse 2 from the forest. 
The creation of a parse forest is an intermediate step 
for computing the most probable parse. 

3.1 Parsing 

From the way STSG combines elementary trees by 
means of substitution, it follows that an input 
sentence can be parsed by the same algorithms as 
(S)CFGs. Every elementary tree t is used as a 
context-free rewrite rule root(t) --~ yield(t). Given a 
chart parsing algorithm, an input sentence of length n 
can be parsed in n 3 time. 

In order to obtain a chart-like forest for a 
sentence parsed in STSG, we need to label the well- 
formed substrings in the chart not only with the 
syntactic categories of that substring but with the full 
elementary trees t that correspond to the use of the 
derived rules root(t) ---~yield(t). Note that in a chart- 
like forest generated by an STSG, different derivations 
that generate a same tree do not collapse. We will 
therefore talk about a derivation forest generated by an 
STSG (cf. Sima'an et al., 1994). 

The following formal example illustrates 
what a derivation forest of  a string may look like. In 
the example, we leave out the probabilities, which are 
needed only in the disambiguation process. The visual 
representation comes from (Kay, 1980): every entry 
(i,j) in the chart is indicated by an edge and spans the 
words between the i-th and the j - th position of a 
sentence. Every edge is labeled with the elementary 
trees that denote the underlying phrase. The example- 
STSG consists of the following elementary trees: 

S 

/Xc 
AB 

/Xc 

S S A A 

A 
d c a b 

B B C 

A A I  
a b d 

Figure 5. Elementary trees of an example-STSG 

2 Although theoretically there can be more than one 
most probable parse for a sentence, in practice a system 
that employs a non-trivial treebank tends to generate 
exactly one most probable parse for a given input 
sentence. 

s /k 

Ac.A A/k • ~ X.c C. 
/ ~  . :  • I 

• ~ " . 

tt a 1 b 2 ¢ 3 4 4 

Figure 6. Derivation forest for abed 

Note that different derivations in the forest generate 
the same tree. By exhaustively unpacking the forest, 
four different derivations generating two different trees 
are obtained. We may ask whether we can pack the 
fores t  by co l laps ing  spur ious  der iva t ions .  
Unfortunately, no efficient procedure is known that 
accomplishes this ( remember  that there can be 
exponentially many derivations for one tree). 

3.2 Disambiguation 

Cubic time parsing does not guarantee cubic time 
disambiguation, as a sentence may have exponentially 
many parses and any such parse may  have  
exponentially many derivations. Therefore, in order to 
find the most probable parse of a sentence, it is not 
efficient to compare the probabilities of  the parses by 
exhaust ively unpacking the chart. Even for 
determining the probability of one parse, it is not 
efficient to add the probabilities of all derivations of 
that parse. 

3.2.1 Viterbi optimization is not feasible 
for finding the most probable parse 

There exists a heuristic optimization algorithm, 
known as Viterbi optimization, which selects on the 
basis of an SCFG the most probable derivation of a 
sentence in cubic time (Viterbi, 1967; Fujisaki et al., 
1989; Jelinek et al., 1990). In STSG, however, the 
most probable derivation does not necessarily generate 
the most probable parse, as the probability of a parse 
is defined as the sum of the probabilities of  all its 
derivations. Thus, there is an important question as to 
whether we can adapt the Viterbi algorithm for finding 
the most probable parse. 

To understand the difficulty of  the problem, 
we look in more detail at the Viterbi algorithm. The 
basic idea of the Viterbi algorithm is the early 
pruning of low probabili ty subderivations in a 
bottom-up fashion. Two different subderivations of  
the same part of the sentence and whose resulting 
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subparses have the same root can both be developed 
(if at all) to derivations of  the whole sentence in the 
same ways.  Therefore,  if  one of  these two 
subderivations has a lower probability, then it can be 
eliminated. This is illustrated by a formal example in 
figure 7. Suppose that during bottom-up parsing of 
the string abcd the following two subderivations dl 
and d2 have been generated for the substring abc. 
(Actually represented are their resulting subparses.) 

A A 

A \ ,  a b e  
Figure 7. Two subparses for the string abcd 

If  the probability of dl is higher than the probability 
of d2, we can eliminate d2 if we are only interested in 
finding the most probable derivation of abcd. But if 
we are interested in finding the most probable parse of 
abcd (generated by STSG), we are not allowed to 
eliminate d2. This can be seen by the following. 
Suppose that we have the additional elementary tree 
given in figure 8. 

S 

a 

Figure 8. Elementary tree. 

This elementary tree may be developed to the same 
tree that can be developed by d2, but not to the tree 
that can be developed by dl. And since the probability 
of a parse tree is equal to the sum of the probabilities 
of  all its derivations, it is still possible that d 2 
contributes to the generation of the most probable 
parse. Therefore we are not allowed to eliminate d2. 

This counter-example does not prove that 
there is no heuristic optimization that allows 
polynomial time selection of the most probable parse. 
But it makes clear that a "select-best" search, as 
accomplished by Viterbi, is not adequate for finding 
the most  probable parse in STSG. So far, it is 
unknown whether the problem of finding the most 
probable parse in a deterministic way is inherently 
exponential or not (cf. Sima'an et al., 1994). One 
should of course ask how often in practice the most 
probable derivation produces the most probable parse, 
but this can only be answered by means of 
experiments on real life corpora. Experiments on the 
ATIS corpus (see session 4) show that only in 68% 
of the cases the most probable derivation of a sentence 
generates the most probable parse of that sentence. 
Moreover, the parse accuracy obtained by the most 
probable parse is dramatically higher than the parse 

accuracy obtained by the parse generated by the most 
probable derivation. 

3.2.2 Estimating the most probable parse 
by Monte Carlo search 

We will leave it as an open question whether the most 
probable parse can be deterministically derived in 
polynomial time. Here we will ask whether there 
exists a polynomial time approximation procedure 
that estimates the most probable parse with an 
estimation error that can be made arbitrarily small. 

We have seen that a "select-best" search, as 
accomplished by Viterbi, can be used for finding the 
most probable derivation but not for finding the most 
probable parse. If  we apply instead of a select-best 
search, a "select-random" search, we can generate a 
random derivation. By iteratively generating a large 
number of  random derivations we can estimate the 
most probable parse as the parse which results most 
often from these random derivations (since the 
probability of a parse is the probability that any of its 
derivations occurs). The most probable parse can be 
estimated as accurately as desired by making the 
number of  random samples as large as desired. 
According to the Law of Large Numbers, the most 
often generated parse converges to the most probable 
parse. Methods that estimate the probability of  an 
event by taking random samples are known as Monte 
Carlo methods (Hammersley & Handscomb, 1964). 3 

The selection of a random derivation is 
accomplished in a bottom-up fashion analogous to 
Viterbi. Instead of selecting the most  probable 
subderivation at each node-sharing in the chart, a 
random subderivation is selected (i.e. sampled) at each 
node-sharing (that is, a subderivation that has n times 
as large a probability as another subderivation should 
also have n times as large a chance to be chosen as 
this other subderivation). Once sampled at the S-node, 
the random derivation of the whole sentence can be 
retrieved by tracing back the choices made at each 
node-sharing. Of course, we may postpone sampling 
until the S-node, such that we sample directly from 
the distribution of  all S-derivations. But this would 
take exponential  time, since there may  be 
exponentially many derivations for the whole 
sentence. By sampling bottom-up at every node where 
ambiguity appears, the maximum number of  different 
subderivations at each node-sharing is bounded to a 
constant (the total number of rules of that node), and 
therefore the time complexity of generating a random 
derivation of an input sentence is equal to the time 
complexity of finding the most probable derivation, 
O(n3). This is exemplif ied by the following 
algorithm. 

3 Note that Monte Carlo estimation of the most probable 
parse is more reliable than the estimation of the most 
probable parse by generating the n most probable 
derivations by Viterbi, since it might be that the most 
probable parse is exclusively generated by many low 
probable derivations. The Monte Carlo method is 
guaranteed to converge to the most probable parse. 
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Sampling a random 0¢riva~ion from a derivation forest 
Given a derivation forest, of a sentence of n words, 
consisting of labeled entries (i,j) that span the words 
between the i-th and the j-th position of the sentence. 
Every entry is labeled with linked elementary trees, 
together with their probabilities, that constitute 
subderivat ions of  the underlying subsentence. 
Sampling a derivation from the chart consists of  
choosing at every labeled entry (bottom-up, breadth- 
fu'st) a random subderivation of each root-node: 

fo rk  := 1 t o n d o  
fo r i  := 0 to n-k do 

for chart-entry (i,i+k) do 
for each root-node X do 

select 4 a random subderivation of root X 
eliminate the other subderivations 

We now have an algorithm that selects a random 
derivation from a derivation forest. Converting this 
derivation into a parse tree gives a first estimation for 
the most probable parse. Since one random sample is 
not a reliable estimate, we sample a large number of  
random derivations and see which parse is generated 
most frequently. This is exemplified by the following 
algorithm. (Note that we might also estimate the 
most  probable der iva t ion  by random sampling, 
namely by counting which derivation is sampled most 
often; however, the most probable derivation can be 
more effectively generated by Viterbi.) 

Eslimating the most probable parse (MPP) 
Given a derivation forest for an input sentence: 

repeat until the MPP converges 
sample a random derivation from the forest 
store the parse generated by the random derivation 
MPP := the most frequently occurring parse 

There is an important question as to how long the 
convergence of the most probable parse may take. Is 
there a tractable upper bound on the number of 
derivations that have to be sampled from the forest 
before stability in the top of the parse distribution 
occurs? The answer is yes: the worst case time 
complexity of achieving a maximum estimation error 
e by means  of  random sampling is O(e-2), 
independently of the probability distribution. This is a 
classical result from sampling theory (cf. Hammersley 
and Handscomb, 1964), and follows directly from 
Chebyshev's inequality. In practice, it means that the 

4 Let { (e 1, Pl) ,  (e2, P2) . . . . .  (en, Pn) } be a probability 
distribution of events el ,  e2, ..., en; an event e i is said to 
be randomly selected iff its probability of being selected 
is equal to Pi. In order to allow for "direct sampling", one 
must convert the probability distribution into a 
corresponding sample space for which holds that the 
frequency of occurrence 3] of each event e i is a positive 
integer equal to Npi, where N is the size of the sample 
space. 

error e is inversely proportional to the square-root of 
the number of random samples N and therefore, to 
reduce e by a factor of k, the number of samples N 
needs to be increased k2-fold. In practical experiments 
(see §4), we will limit the number of  samples to a 
pre-determined, sufficiently large bound N. 

What is the theoretical worst case time 
complexity of parsing and disambiguation together? 
That is, given an STSG and an input sentence, what 
is the maximal time cost of finding the most probable 
parse of a sentence? I f  we use a CKY-parser,  the 
creation of a derivation forest for a sentence of n 
words takes O(n 3) time. Taking also into account the 
size G of an STSG (defined as the sum of the lengths 
of the yields of  all its elementary trees), the time 
complexi ty  of  creating a derivat ion forest  is 
proportional to Gn 3. The t ime complexi ty  of  
disambiguation is both proportional to the cost of 
sampling a derivation, i.e. Gn 3, and to the cost of the 
convergence by means of iteration, which is e -2. Tiffs 
means that the time complexity of disambiguation is 
given by O(Gn3e-2). The total time complexity of  
parsing and disambiguation is equal to O(Gn 3) + 
O(Gn3e -2) = O(Gn3e'2). Thus, there exists a tractable 
procedure that estimates the most probable parse of  an 
input sentence. 

Notice that although the Monte Carlo 
disambiguat ion algori thm est imates  the mos t  
probable parse of a sentence in polynomial time, it is 
not in the class of  polynomial  time decidable 
algorithms. The Monte Carlo algorithm cannot decide 
in polynomial time what is the most probable parse; 
it can only make the error-probability of the estimated 
most probable parse arbitrarily small. As such, the 
Monte Carlo algorithm is a probabilistic algorithm 
belonging to the class of Bounded error Probabilistic 
Polynomial time (BPP) algorithms. 

We hypo thes i ze  that  M o n t e  Car lo  
disambiguation is also relevant for other stochastic 
grammars. It turns out that all stochastic extensions 
of CFGs that are stochastically richer than SCFG 
need exponential time algorithms for finding a most 
probable parse tree (cf. Briscoe & Carroll, 1992; 
Black et al., 1993; Magerman & Weir, 1992; Schabes 
& Waters, 1993). To our knowledge, it has never 
been studied whether there exist BPP-algorithms for 
these models. Alhough it is beyond the scope of our 
research, we conjecture that there exists a Monte 
Carlo disambiguation algorithm for at least Stochastic 
Tree-Adjoining Grammar (Schabes, 1992). 

3.2.3 Psychological  re levance  of  M o n t e  
Carlo d i sambiguat ion  

As has been noted, an important difference between 
the Viterbi algorithm and the Monte Carlo algorithm 
is, that with the latter we never  have 100% 
confidence. In our opinion, this should not be seen as 
a disadvantage. In fact, absolute confidence about the 
most probable parse does not have any significance, 
as the probability assigned to a p ~ s e  is already an 
estimation of its actual probability. One may ask as 
to whether Monte Carlo is appropriate for modeling 
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human sentence perception. The following lists some 
properties of Monte Carlo disambiguation that may 
be of psychological interest: 
1. As mentioned above, Monte Carlo never provides 
100% confidence about the best analysis. This 
corresponds to the psychological observation that 
people never have absolute confidence about their 
interpretation of an ambiguous sentence. 
2. Although conceptually Monte Carlo uses the total 
space of possible analyses, it tends to sample only the 
most likely ones. Very unlikely analyses may only be 
sampled after considerable time, but it is not 
guaranteed that all analyses are found in finite time. 
This matches with experiments on human sentence 
perception where very implausible analyses are only 
perceived with great difficulty and after considerable 
time. 
3. Monte Carlo does not necessarily give the same 
results for different sequences of samples, especially if 
different analyses in the top of the distribution are 
almost equally likely. In the case there is more than 
one most probable analysis, Monte Carlo does not 
converge to one analysis but keeps alternating, 
however large the number of samples is made. In 
experiments with human sentence perception, it has 
often been shown that different analyses can be 
perceived for one sentence. And in case these analyses 
are equally plausible, people perceive so-called 
fluctuation effects. This fluctuation phenomenon is 
also well-known in the perception of ambiguous 
visual patterns. 
4. Monte Carlo can be made parallel in a very 
straightforward way: N samples can be computed by 
N processing units, where equal outputs are 
reinforced. The more processing units are employed, 
the better the estimation. However, since the number 
of processing units is finite, there is never absolute 
confidence. This has some similarity with the Parallel 
Distributed Processing paradigm for haman (language) 
processing (Rumelhart & McClelland, 1986). 

4 Experiments 

In this section, we report on experiments with an 
implementation of DOP that parses and disambiguates 
part-of-speech strings. In (Bod, 1995) it is shown how 
DOP is extended to parse word strings that possibly 
contain unknown words. 

4.1 The test environment 

For our experiments, we used a manually corrected 
version of the Air Travel Information System (ATIS) 
spoken language corpus (Hemphill et al., 1990) 
annotated in the Pennsylvania Treebank (Marcus et 
al., 1993). We employed the "blind testing" method, 
dividing the corpus into a 90% training set and a 10% 
test set by randomly selecting sentences. The 675 
trees from the training set were converted into their 
subtrees together with their relative frequencies, 
yielding roughly 4"105 different subtrees. The 75 
part-of-speech sequences from the test set served as 

input strings that were parsed and disambiguated using 
the subtrees from the training set. As motivated in 
(Bed, 1993b), we use the notion of parse accuracy as 
our accuracy metric, defined as the percentage of the 
test strings for which the most probable parse is 
identical to the parse in the test set. 

4.2 Accuracy as a function of subtree-depth 

It is one of the most essential features of DOP, that 
arbitrarily large subtrees are taken into consideration 
to estimate the probability of a parse. In order to test 
the usefulness of this feature, we performed different 
experiments constraining the depth of the subtrees. 
The following table shows the results of  seven 
experiments for different maximum depths of  the 
training set subtrees. The accuracy refers to the parse 
accuracy at 400 randomly sampled parses, and is 
rounded off to the nearest integer. The CPU time 
refers to the average CPU time per string employed 
by a Spark II. 

depth of 
subtrees 

1 
_<2 
_<3 
<4 
<5 
<6 

unbounded 

parse 
accuracy 

52 % 
87 % 
92 % 
93 % 
93 % 
95 % 
96 % 

CPU time 
(hours) 

.04 h 

.21 h 

.72 h 
1.6 h 
1.9 h 
2.2 h 
3.5 h 

Table 1. Parse results on the ATIS corpus 

The table shows a dramatic increase in parse accuracy 
when enlarging the maximum depth of the subtrees 
from 1 to 2. (Remember that for depth one, DOP is 
equivalent to a stochastic context-free grammar.) The 
accuracy keeps increasing, at a slower rate, when the 
depth is enlarged further. The highest accuracy is 
obtained by using all subtrees from the training set: 
72 out of the 75 sentences from the test set are parsed 
correctly. Thus, the accuracy increases if larger 
subtrees are used, though the CPU time increases 
considerably as well. 

4.3 Does the most probable derivation 
generate the most probable parse? 

Another important feature of  DOP is that the 
probability of a resulting parse tree is computed as the 
sum of  the probabilities of all its derivations. 
Although the most probable parse of a sentence is not 
necessarily generated by the most probable derivation 
of that sentence, there is a question as to how often 
these two coincide. In order to study this, we also 
calculated the derivation accuracy, defined as the 
percentage of the test strings for which the parse 
generated by the most probable derviation is identical 
to the parse in the test set. The following table shows 
the derivation accuracy against the parse accuracy for 
the 75 test set strings from the ATIS corpus, using 
different maximum depths for the corpus subtrees. 
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depth of 
subtrees 

1 
-<2 
-<3 
-<4 
-<5 
-<6 

unbounded 

derivation 
accuracy 

52% 
47% 

49% 
57% 
60% 
65% 
65% 

parse 
accuracy 

52% 
87% 

92% 
93% 
93% 
95% 
96% 

Table 2. Derivation accuracy vs. parse accuracy 

The table shows that the derivation accuracy is equal 
to the parse accuracy if the depth of the subtrees is 
constrained to 1. This is not surprising, as for depth 
1, DOP is equivalent with SCFG where every parse is 
generated by exactly one derivation. What is 
remarkable, is, that the derivation accuracy decreases if 
the depth of the subtrees is enlarged to 2. If the depth 
is enlarged further, the derivation accuracy increases 
again. The highest derivation accuracy is obtained by 
using all subtrees from the corpus (65%), but remains 
far behind the highest parse accuracy (96%). From 
this table we conclude that if we.are interested in the 
most probable analysis of a string we must not look 
at the probability of the process of achieving that 
analysis but at the probability of the result of that 
process. 

4.4 The significance of once-occurring 
subtrees 

There is an important question as to whether we can 
reduce the "grammar constant" of DOP by eliminating 
very infrequent subtrees, without affecting the parse 
accuracy. In order to study this question, we start with 
a test result. Consider the test set sentence "Arrange 
the flight code of the flight from Denver 

to Dallas Worth in descending order", which 

has the following parse in the test set: 

(s (NP *) 
(VP VB/Arrange 

(NP (NP DT/the NN/flight NN/code) 
(PP IN/of 

(NP (NP DT/the NN/flight) 
(PP (PP IN/from 

(NP NP/Denver)) 
(PP TO/to 

(NP NP/Dallas 
NP/Worth)))))) 

(PP IN/in 
(NP (VP VBG/descending) 

NN/order))) 
. ))  

The corresponding p-o-s sequence of this sentence is 
the test set string "vB DT NN NN IN DT NN IN NP 

TO NP NP IN VBG NN". At subtree-depth < 2, the 

following most probable parse was estimated for this 
string (where for reasons of readability the words are 
added to the p-o-s tags): 

(s (NP *) 
(VP VB/Arrange 

(NP (Np DT/the NN/flight NN/code) 
(PP IN/of 

(NP (NP DT/the NN/flight) 
(PP (PP IN/from 

(NP NP/Denver)) 
(PP TO/to 

(NP NP/Dallas 
NP/Worth))) 

(PP IN/in 
(NP (VP VBG/descending) 

NN/order)))))) 
. ))  

In this parse, we see that the prepositional phrase " in  
descending order" is incorrectly attached to the NP 
"the f l i g h t "  instead of to the verb "arrange".  This 
wrong attachment may be explained by the high 
relative frequencies of the following subtrees of depth 
2 (that appear in structures of sentences like "Show me 
the transportation from SFO to downtown San 

Francisco in August", where the PP "in August" 

is attached to the NP "the transportation", and 
not to the verb "show"): 

NP NP NP NP 
PP PP PP 
PP IN PP 

NP PP IN 
NP 

Only if the maximum depth was enlarged to 4, 
subtrees like the following were available, which led 
to the estimation of the correct tree. 

VP VB 
NP NP 

PP 
PP IN 

NP VP VBG 
NN 

It is interesting to note that this subtree occurs only 
once in the training set. Nevertheless, it induces the 
correct parsing of the test string. This seems to 
contradict the fact that probabilities based on sparse 
data are not reliable. Since many large subtrees are 
once-occumng events (hapaxes), there seems to be a 
preference in DOP for an occurrence-based approach if 
enough context is provided: large subtrees, even if 
they occur once, tend to contribute to the generation 
of the correct parse, since they provide much 
contextual information. Although these subtrees have 
low probabilities, they tend to induce the correct parse 
because fewer subtrees are needed to construct a parse. 

Additional experiments seemed to confirm 
this hypothesis. Throwing away all hapaxes yielded 
an accuracy of 92%, which is a decrease of 4%. 
Distinguishing between small and large hapaxes, 
showed that the accuracy was not affected by 
eliminating the hapaxes of  depth 1 (however, as an 
advantage, the convergence seemed to get slightly 
faster). Eliminating hapaxes larger than depth 1, 
decreased the accuracy. The following table shows the 
parse accuracy after eliminating once-occurring 
subtrees of different maximum depths. 
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depth of 
hapaxes 

1 
<2 
_<3 
_<4 
<_5 
<_6 

unbounded 

parse 
accuracy 

96% 
95% 

95% 
93% 
92% 
92% 
92% 

Table 3. Parse accuracy after eliminating once-occurring 
subtrees 

Conclusions 

We have shown that in DOP and STSG the Viterbi 
algorithm cannot be used for computing a most 
probable tree of a string. We developed a modification 
of Viterbi which allows by means of an iterative 
Monte Carlo search to estimate the most probable tree 
of a string in polynomial time. Experiments on ATIS 
showed that only in 68% of the cases, the most 
probable derivation of a string generates the most 
probable tree of that string, and that the parse accuracy 
is dramatically higher than the derivation accuracy. 
We conjectured that the Monte Carlo algorithm can 
also be applied to other stochastic grammars for 
computing the most probable tree of a string. The 
question as to whether the most probable tree of a 
string can also be deterministically derived in 
polynomial time is still unsolved. 
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