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Abstract  

In this paper  we provide a probabilis- 
tic interpretat ion for typed feature struc- 
tures very similar to those used by Pol- 
lard and Sag. We begin with a ver- 
sion of the interpretation which lacks 
a t rea tment  of re-entrant  feature struc- 
tures, then provide an extended interpre- 
tat ion which allows them. We sketch al- 
gori thms allowing the numerical param- 
eters of our probabilistic interpretations 
of HPSG to be est imated from corpora. 

1 In t roduc t i on  

The purpose of our paper  is to develop a princi- 
pled technique for at taching a probabilistic inter- 
pretat ion to feature structures. Our techniques 
apply to the feature structures described by Car- 
penter (Carpenter,  1992). Since these structures 
are the ones which are used in by Pollard and 
Sag (Pollard and Sag, 1994) their relevance to 
computat ional  g rammars  is apparent.  On the ba- 
sis of the usefulness of probabilistic context-free 
g rammars  (Charniak, 1993, ch. 5), it is plausible 
to assume that  that  the extension of probabilistic 
techniques to such structures will allow the ap- 
plication of known and new techniques of parse 
ranking and g r amm ar  induction to more interest- 
ing g rammars  than has hitherto been the case. 

The paper  is structured as follows. We start  
by reviewing the training and use of probabilis- 
tic context-free g rammars  (PCFGs) .  We then de: 
velop a technique to allow analogous probabilistic 
annotations on type hierarchies. This gives us a 
clear account of the relationship between a large 
class of feature structures and their probabilities, 
but does not t reat  re-entrancy. We conclude by 
sketching a technique which does treat  such struc- 
tures. While we know of previous work which as- 
sociates scores with feature structures (Kim, 1994) 
are not aware of any previous t rea tment  which 
makes explicit the link to classical probabil i ty the- 
ory. 

We take a slightly unconventional perspective 

on feature structures, because it is easier to cast 
our theory within the more general framework 
of incremental description refinement (Mellish, 
1988) than to exploit the usual metaphors  of 
constraint-based grammar .  In fact we can afford 
to remain entirely agnostic about  the means by 
which the HPSG grammar  associates signs with 
linguistic strings, because all that  we need in or- 
der to train our stochastic procedures is a corpus 
of signs which are known to be valid descriptions 
of strings. 

2 Probabil ist ic  interpretat ion of 
P C F G s  

We review the standard probabilistic interpreta- 
tion of PCFGs  1 

A P C F G  is a four-tuple < W,N,  N1 ,R  > 
, where W is a Set of terminal symbols 
{wl , . . . ,  w~}, N is a set of non-terminal symbols 
{ N 1 , . . . , N ~ } ,  N1 is the start ing symbol and R 
is a set of rules of the form N ~ ~ (J, where (J 
is a string of terminals and non-terminals. Each 
rule has a probabili ty P(N i --~ ~J) and the prob- 
abilities for all the rules that  expand a given non- 
terminal must  sum to one. We associate probabil- 
ities with partial phrase markers, which are sets 
of terminal and non-terminal nodes generated by 
beginning from the starting node successively ex- 
panding non-terminal leaves of the partial  tree. 
Phrase markers are those partial  phrase markers 
which have no non-terminal leaves. Probabilities 
are assigned by the following inductive definition: 

• P ( N 1 )  = 1. 

• If T is a partial  phrase marker,  and T '  is a 
partial phrase marker which differs from it 
only in that  a single non-terminal  node N k 
in T has been expanded to ~'~ in T ', then 
P(T') = P(T) × P(N~ ~ ~'~). 

In this definition R acts as a specification of 
the accessibility relationships which can hold be- 
tween nodes of the trees admit ted  by the gram- 
mar.  The rule probabilities specify the cost of 

1 Our description is closely based on that given by 
Charniak(Charniak, 1993, p. 52 if) 
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making particular choices about  the way in which 
the rules develop. It  is going to turn out that  
an exactly analogous system of accessibility rela- 
tions is present in the probabilistic type hierar- 
chies which we define later. 

L i m i t a t i o n s  o f  P C F G s  The definition of 
PCFGs  implies that  the probabil i ty of a phrase 
marker  depends only on the choice of rules used 
in expanding non-terminal  nodes. In particular,  
the probabil i ty does not depend on the order in 
which the rules are applied. This has the ar- 
guably unwelcome consequence that  PCFGs  are 
unable to make certain discriminations between 
trees which differ only in their configuration 2. 
The models developed in this paper build in simi- 
lar independence assumptions. A large part  of the 
art of probabilistic language modelling resides in 
the management  of the trade-off between descrip- 
tive power (which has the merit  of allowing us to 
make the discriminations which we want) and in- 
dependence assumptions (which have the merit  of 
making training practical by allowing us to treat  
similar situations as equivalent). 

The crucial advantage of PCFGs  over CFGs is 
that  they can be trained and/or  learned from cor- 
pora. Readers for whom this fact is unfamiliar are 
referred to Charniak 's  textbook (Charniak, 1993, 
Chapter  7). We do not have space to recapitu- 
late the discussion of training which can be found 
there. We do however illustrate the outcome of 
training. 

2.1 A p p l y i n g  a P C F G  t o  a s i m p l e  c o r p u s  

Consider the simple g rammar  in figure 1 and its 
training against the corpus in figure 2. Since there 
are 3 plural sentences and only 2 singular sen- 
tences, the opt imal  set of parameters  will reflect 
the distribution found in the corpus, as shown 
in figure 3 One might  have hoped that  the ra- 
tio P(np-sing[np)/P(np-pl[np) would be 2/3, but 
it is instead V / - ~ .  This is a consequence of the 
assumption of independence. Effectively the algo- 
r i thm is ascribing the difference in distribution of 
singular and plural sentences to the joint effect of 
two independent decisions. Wha t  we would really 
like it to do is to recognize that  the two apparently 
independent decisions are (in effect) one and the 
same. Also, because the g rammar  has no means 
of enforcing number  agreement,  the system sys- 
tematical ly prefers plurals to singulars, even when 
doing this will lead to agreement clashes. Thus 
"buses stop" has est imated 0.55 x 0.55 = 0.3025, 
"bus stop" and "buses stops" both have proba- 
bility 0.55 x 0.45 = 0.2475 and "bus stops" has 
probabil i ty 0.45 x 0.45 = 0.2025. This behaviour 
is clearly unmot ivated by the corpus, and arises 

~The most obvious case is prepositional-phrase 
attachment. 

purely because of the inadequacy of the proba- 
bilistic model. 

3 Probabilistic type hierarchies  

A L E  s i g n a t u r e s  Carpenter ' s  ALE (Carpenter,  
1993) allows the user to define the type hierarchy 
of a g rammar  by writing a collection of clauses 
which together denote an inheritance hierarchy, a 
set of features and a set of appropriateness condi- 
tions. An example of such a hierarchy is given in 
ALE syntax in figure 4. 

W h a t  t h e  A L E  s i g n a t u r e  te l l s  us  The inher- 
itance information tells us that  a sign is a forced 
choice between a sentence and a phrase, that  a 
phrase is a forced choice between a noun-phrase 
(np) and a verb-phrase (vp) and that  number  val- 
ues (num) are parti t ioned into singular ( s ing)  and 
plural (pl) .  The features which are defined are 
l e f t , r i g h t ,  and nura, and the appropriateness in- 
formation says that  the feature num introduces a 
new instance of the type num on all p h r a s e s ,  and 
that  l e f t  and r i g h t  introduce np and vp respec- 
tively on s e n t e n c e s .  

T h e  p a r a l l e l  w i t h  P C F G s  The parallel which 
makes it possible to apply the PCFG training 
scheme almost unchanged is that  the sub-types of 
a given super-type parti t ion the feature structures 
of that  type in just the same way tha t  the differ- 
ent rules which expand a given non-terminal  N of 
the P C F G  parti t ion the space of trees whose top- 
most  node is N. Equally, the features defined in 
the hierarchy act as an accessibility relation be- 
tween nodes in a way which is for our purposes 
entirely equivalent to the way in which the right 
hand sides of the rules introduce new nodes into 
partial  phrase markers 3. The hierarchy in figure 4 
is related to but not isomorphic with the g rammar  
in figure 1. 

One difference is that  num is explicitly intro- 
duced as a feature in the hierarchy, where at is 
only implicitly present in the original grammar .  
The other difference is the use of l e f t  and r i g h t  
as models of the dominance relationships between 
nodes. 

4 A probabilistic interpretation of 
typed feature-structures 

For our purposes, a probabilistic type hierarchy 
(PTH) is a four-tuple 

< MT, NT, NT1, I > 
where M T  is a set of maximal  types 4 {t 1 . . . .  ,to~}, 
N T  is a set of non-maximal types { T 1 , . . . ,  TV}, 

3Each rule of a PCFG also specifies a total ordering 
over the nodes which it introduces, but the training 
algorithm does not rely on this fact 

4We follow Carpenter's convention for types. The 
bottom node is the one containing no information, and 
the maximal nodes are the ones containing the maxi- 
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bike 
c a r  

lorry 

bikes 
c a r s  

lorries 

stops 

stop 

s ---* np vp 
np --* np-sing I np-pl 
vp --* vp-sing I vp-pl 

np-sing bus np-sing 
np-sing cat np-sing 
np-sing 

np-pl buses np-pl 
np-pl cats np-pl 
np-pl 

vp-sing crosses vp-sing 

vp-pl cross vp-pl 

Figure 1: A simple g rammar  

car stops 
bikes stop 

bus stops 
cats cross 

lorries stop 

Figure 2." A simple corpus 

P (np  vpls ) = 1.0 

P(np-singlnp ) = 0.45 

P(np-pl[np) = 0.55 

P(vp-sing[vp) = 0.45 

P(vp-pllvp ) = 0.55 

Figure 3: The results of training a PCFG 

bo t  sub [ s i g n , n u m ] .  
s i g n  sub [ s e n t e n c e , p h r a s e ] .  
sentence sub [] 

intro [left : np,right : vp]. 
phrase sub [np,vp] 

intro [num:num] . 
np sub []. 
vp sub []. 

num sub [sing,pl]. 
sing sub []. 
pl sub []. 

Figure 4: An ALE signature 
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NT1 is the s tar t ing symbol  and I is a set of in- 
troduction relationships of the form (T  ~ ~ TJ) 
~k, where ~J is a multiset  of maximal  and non- 
maximal  types. Each introduction relationship 
has a probabil i ty P ( ( T  i ~ TJ) --+ ~k) and the 
probabilities for all the introduction relationships 
tha t  apply to a given non-maximal  type must  sum 
to one. 

As things stand this definition is nearly isomor- 
phic to tha t  given for PCFGs,  with the major  dif- 
ferences being two changes which move us from 
rules to introduction relationships. Firstly, we 
relax the stipulation tha t  the i tems on the right 
hand side of the rules are strings, allowing them 
instead to be multisets. Secondly, we introduce an 
additional te rm in the head of introduction rules 
to signal the fact tha t  when we apply a partic- 
ular introduction relationship to a node we also 
specialize the type of the node by picking exactly 
one of the direct subtypes of its current type. Fi- 
nally, we need to deal with the case where TJ is 
non-maximal.  This is simply achieved by defin- 
ing the iterated introduction relationships from T i 
as being those corresponding to the chains of in- 
troduction relationships from T i which refine the 
type to a maximal  type. In the probabilistic type 
hierarchy, it is the i terated introduction relation- 
ships which correspond to the context-free rewrite 
rules of a PCFG.  A useful side-effect of this is that  
we can preserve the invariant that  all types except 
those at the fringe of the structure are maximal.  

The hierarchy whose ALE syntax is given in 
figure 4 is captured in the new notation by figure 5 

We associate probabilities with feature struc- 
tures, which are sets of maximal  and non-maximal  
nodes generated by beginning from the start-  
ing node and successively expanding non-maximal  
leaves of the partial  tree. Maximally specified lea- 
lure slruclures are those feature structures which 
have only maximal  leaves. Probabilities are as- 
signed by the following inductive definition: 

• P ( N T 1 ) =  1. 

• If  F is a feature structure, and F '  is a partial 
feature structure which differs from it only 
in tha t  a single non-maximal  node N T  k of 
type To k in F has been refined to type T1 k 
expanded to ~'~ in F ' ,  then P(F ' )  = P ( F )  x 
P((TO :=~ T1) --+ ~'~). 

Modulo notation,  this definition is identical to 
the one given earlier for PCFGs.  Given the corre- 
spondence between the definitions of a PTH and 
a P C F G  it should be apparent  that  the training 
methods  which apply to one can equally be used 
with the other. We will shortly provide an exam- 
ple. Because we have not yet treated the crucial 
ma t t e r  of re-entrancy, it would be inappropriate  
to call what  we so far have stochastic HPSG, so 
we refer to it as stochastic H P S G - .  

mum amounts of information possible. 

4.1 U s i n g  s t o c h a s t i c  H P S G -  w i t h  t h e  
c o r p u s  

Using the hierarchy in figure 4 the analyses of the 
five sentences from figure 2 are as in figure 6. 

Training is a mat te r  of counting the transitions 
which are found the observed results, then us- 
ing counts to refine initial est imates of the prob- 
abilities of particular transitions. This is entirely 
analogous to what went on with PCFGs.  The re- 
sults of training are essentially identical to those 
given earlier, with the opt imal  assignment being 
as shown in figure 7. At this point we have pro- 
vided a system which allows us to use feature 
structures instead of PCFGs,  but  we have not 
yet dealt with the question of re-entrancy, which 
forms a crucial par t  of the expressive power of 
typed feature structures. We will return to this 
shortly, but first we consider the detailed implica- 
tions of what we have done so far. The similarities 
between these results and those in figure 3 

• We still model the distribution observed in 
the corpus by assuming two independent de- 
cisions. 

• We still get a strange ranking of the parses, 
which favours number  disagreement,in spite 
of the fact that  the g rammar  which generated 
the corpus enforces number  agreement.  

The differences between these results and the ear- 
lier ones are: 

• The hierarchy uses bo t  rather than s as its 
s tar t  symbol.  The probabilities tell us that  
the corpus contains no free-standing struc- 
tures of type num. 

• The zero probabili ty of 

sign ~ phrase 

codifies a similar observation that  there are 
no free-standing structures with type p h r a s e .  

• Since items of type phrase are never intro- 
duced at that  type, but only in the form 
of sub-types, there are no transitions from 
p h r a s e  in the corpus. Therefore the initial 
estimates of the probabilities of such transi- 
tions are unaffected by training. 

• In the P C F G  the symmet ry  between the ex- 
pansions of np and vp to singular and plural 
variants is implicit, whereas in the P T H  the 
distribution of singular and plural variants is 
encoded at a single location, namely tha t  at 
which num is refined. 

The independence assumption which is built 
into the training algorithm is that  types are to be 
refined according to the same probabil i ty distribu- 
tion irrespective of the context in which they are 
expanded. We have already seen a consequence of 
this: the P T H  lumps together all occasions where 
num is expanded, irrespective of whether the en- 
closing context is np or vp. For the moment  we 
are prepared to tolerate this because: 
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M T  = 

N T  = 

N T 1  = 

I = 

{sentence, np, vp, sing, pl} 
{bot, sign, phrase, num} 
bot 
{(bot :2z sign) --* 
(bot ::~ num) --+ 

(sign ::V sentence) --+ [np, vp] 

(sign =V phrase) --~ [num] 
(phrase ::~ np) --~ [] 
(phrase ::~ vp) ~ ]] 

(num =:~ sing) --* 
(num ::~ pl) --* []} 

Figure 5: A more formal version of the simple hierarchy 

L E F T  

R I G H T  
vp 

(2 occurrences) 

L E F T  

R I G H T  
vp 

(3 occurrences). 

op[N M sin ]l 
vp[N M si g]] 

op[N M v [N M pl]J 

Figure 6: Analyses of the corpus using the ALE-hierarchy 

P (bo t  :=~ sign) = 1.0 
P (bo t  =~num) = 0.0 

P(sign ::~ sentence) = 1.0 
P(sign =~ phrase) = 0.0 

P(num==~ sing) = 0.45 

P(num:=~ pl) = 0.55 

P(phrase :=~ np) = A 
P(phrase:=~vp) = 1 - A  

Figure 7: The results of training the probabilistic type hierarchy 
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• C l a r i t y :  The decisions which we have made 
lead to a system with a clear probabilistic se- 
mantics.  

• T r a i n a b i l i t y :  the number  of parameters  
which must  be est imated for a g rammar  is a 
linear function of the size of the type hierar- 
chy 

• E a s y  e x t e n s i b i l i t y :  There is a clear route 
to a more finely grained account if we allow 
the expansion probabilities to be conditioned 
on surrounding context. This would increase 
the number  of parameters  to be estimated, 
which may  or may not prove to be a problem. 

5 Adding re-entrancies 

We now turn to an extension of the system which 
takes proper account of re-entrancies in the struc- 
ture. The essence of our approach is to define 
a stochastic procedure which simultaneously ex- 
pands the nodes of the tree in the way outlined 
above and guesses the pat tern of re-entrancies 
which relate them. I t  pays to stipulate that  the 
structures which we build are fully inequated in 
the sense defined by Carpenter  (Carpenter,  1992, 
p120). 

The essential insight is that  the choice of a 
fully inequated feature structure involving a set 
of nodes is the same thing as the choice of an 
arbi t rary equivalence relation over these nodes, 
and this is in turn equivalent to the choice of a 
part i t ion of the set of nodes into a set of non- 
empty  sets. These sets of nodes are equivalence 
classes. The  s tandard reeursive procedure for gen- 
erating parti t ions of k + 1 elements is to non- 
deterministically add the k + l thq  node to each 
of the equivalence classes of each of the parti t ions 
of k nodes, and also to nondeterministically con- 
sider the new node as a singleton set. The basis 
of the stochastic procedure for generating fully- 
inequated feature structures is to interleave the 
generation of equivalence classes with the expan- 
sion from the initial node as described above. 

For the purposes of the expansion algorithm, a 
fully inequated feature structure consists of a fea- 
ture tree (as before) and an equivalence relation 5 
over all the maximal  nodes in that  tree. The task 
of the algori thm is to generate all such structures 
and to equip them with probabilities. We proceed 
as in the case without re-entrancy, except that  we 
only ever expand sub-trees in the case where the 
new node begins a new equivalence class. This 
avoids the double counting which was a problem 
earlier. 

The remaining task is tha t  of assigning scores to 
equivalence relations. We do not have a fully sat- 

5Since maximal types are mutually inconsistent, 
this equivalence relation can be efficiently represented 
by a associating a separate partition with each maxi- 
mal type 

isfactory solution to this problem. The reason for 
this is that  we would ideally like to assign prob- 
abilities to intermediate structures in such a way 
that  the probabilities of fully expanded structures 
are independent of the route by which they were 
arrived at. This can be done, and the method 
which we adopt has the merit  of simplicity. 

5.1 S c o r i n g  r e - e n t r a n c i e s  

We associate a single probabilistic parameter  
P(T=) with each type T, and derive the probabil-  
ity of the structure in which a particular pairwise 
equation of-nodes in type T have been equated 
by multiplying the probabil i ty of the structure 
in which no decision has been made by P(T=). 
We derive the probabil i ty of the corresponding in- 
equated structure by multiplying by 1 - P(T=) in 
an entirely analogous way. This ensures that  the 
probabilities of the equated and inequated exten- 
sions of the original structure sum to the origi- 
nal probability. The cost is a deficiency in mod-  
elling, since this takes no account of the fact that  
token identity of nodes is transitive, which are 
generated. As things stand the stochastic proce- 
dure is free to generate structures where nl ~ n2, 
n2 - n3 but nl 7~ n3, which are not in fact legal 
feature structures. This leads to distortions of the 
probabili ty estimates since the training algorithm 
spends part  of its probabili ty mass on impossible 
structures. 

5.2 E v a l u a t i o n  

Even a crude account of re-entrancy is bet ter  than 
completely ignoring the issue, and the one pro- 
posed gets the right result for cases of double 
counting such as those discussed above, but it 
should be obvious that  there is room for improve- 
ment  in the t rea tment  which we provide. Intu- 
itively what is required is a parametr isable  means 
of distributing probabili ty mass among the dis- 
tinct equivalence relations which extend the cur- 
rent structure. One at tractive possibility would be 
to enumerate the relations which can be obtained 
by adding the current node to the various differ- 
ent equivalence classes which are available, apply 
some scoring function to each class, and then nor- 
malize such that  the total  score over all alterna- 
tives is one. But this might introduce unpleas- 
ant dependencies of the probabilities of feature 
structures on the order in which the stochastic 
procedure chooses to expand nodes, because the 
normalisation is carried out before we have full 
knowledge of the equivalence classes with which 
the current node might become associated. I t  may  
be that  an appropriate  choice of scoring function 
will circumvent this difficulty, but this is left as a 
mat ter  for further research. 
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6 C o n c l u s i o n s  

We have presented two proposals for the associa- 
tion of probabilities with typed feature-structures 
of the form used in HPSG. As far as we know these 
are the most detailed of their type, and the ones 
which are most likely to be able to exploit stan- 
dard training and parsing algorithms. For typed 
feature structures lacking re-entrancy we believe 
our proposal to be the simplest and most natural 
which is available. The proposal for dealing with 
re-entrancy is less satisfactory but offers a basis 
for empirical exploration, and has definite advan- 
tages over the straightforward use of PCFGs. We 
plan to follow up the current work by training and 
testing a suitable instantiation of our framework 
against manually annotated corpora. 
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