
Some R e m a r k s on the Dec idab i l i t y of the G e n e r a t i o n P r o b l e m in
LFG- and P A T R - S t y l e Uni f icat ion G r a m m a r s

Jiirgen Wedekind
Institute for Natural Language Processing

University of Stuttgart
Azenbergstr. 12

D-70174 Stuttgart, FRG
juergen@ims.uni-stuttgart.de

Abstract
In this paper, we prove the decidability of
the generation problem for those unifica-
tion grammars which are based on context-
free phrase structure rule skeletons, like
e.g. LFG and PATR-II. The result shows
a perhaps unexpected asymmetry, since it
is valid also for those unification grammars
whose parsing problem is undecidable, e.g.
grammars which do not satisfy the off-line
parsability constraint. The general proof is
achieved by showing that the space of the
derivations which have to be considered in
order to decide the problem for a given in-
put is always restricted to derivations whose
length is limited by some fixed upper bound
which is determined relative to the "size" of
the input.

1 I n t r o d u c t i o n

Unification Grammars with a context-free skeleton,
like Lexical Fhnctional Grammar (LFG) and PATR-
II (cf. e.g. Kaplan and Bresnan 1982, Shieber et
al. 1983) assign to a sentence not only a constituent
structure (c-structure), but also an additional lin-
guistic entity. In the rather restricted grammars of
the early stage this entity is identified with a special
graph structure, commonly called feature structure.
Since a string is regarded as well-formed only if a
(well-formed) feature structure is assigned to it by
the grammar, two inverse decidability problems arise
which had to be solved in order to know whether we
can formulate terminating parsing and generation al-
gorithms. If we retain the terminology of the early
stages then an adequate parsing algorithm requires
that we can decide for a given grammar and a given
string whether there exists a feature structure as-
signed to it by the grammar (parsing problem) and
an adequate generation algorithm requires that we

can decide for a given grammar and a given feature
structure whether there exists a sentence to which
this structure is assigned by the grammar (genera-
tion problem).

While we already know for a long time that the
parsing problem is undecidable (cf. Kaplan and Bres-
nan 1982, Johnson 1988), we want to show in this pa-
per that the generation problem is decidable even for
unrestricted (not off-line parsable) unification gram-
mars. For the proof we first introduce in section 2 the
type of grammar we want to consider. In section 3
we then define the generation problem and show its
decidability in two steps.

2 P r e l i m i n a r i e s

The unification grammars we want to consider con-
sist of rules with a context-free skeleton and a set of
annotations associated with the constituents men-
tioned in the rules. Typical examples taken from
LFG and PATR-II are given in figure 1. For the for-

S --~ NP VP S --+ NP VP
(t SUB J) ----$ j'=$ (VP AGR) = (NP AGR)

NP -+ John NP -4 Uther
(1" PRED) = JOHN (NP AGR NUM) = SG

(NP AGR PER) ---- 3RD

Figure 1
Examples of rules in LFG (left) and PATR-II
format (right).

mal definition of those grammars we reconstruct the
annotations as formulas of a quantifier-free sublan-
guage of a classical first-order language with equality
whose (nonlogical) symbols are given by a finite set of
unary partial function symbols and a finite set of con-
stants. For the translation of LFG and PATR-II an-
notations we regard the attributes (in figure 1: SUB J,
PRED, AGR, NUM, PER) 58 unary partial function
symbols and the atomic values (in figure 1: JOHN,

45

SG, 3RD) as individual constants. Furthermore, we
assume for a context-free rule of the form A ---> w
(w e (VN U VT)*) that the variable x0 is associated
with A and that for each occurrence wi in w there
is a variable xi which is associated with wi. For the
formal reconstruction of LFG's we assume that each
occurrence of $ in the annotation of w~ corresponds
to an occurrence of xi and that each occurrence of
1" corresponds to an occurrence of x0. For grammars
in PATR-II format we suppose that occurrences of
categories in the annotations correspond to the asso-
ciated variables.

Before we give the definition of the grammars we
want to investigate, we introduce the following nota-
tion. In the following we use S[xl, .., x~] to indicate
that the variables occurring in the set of formulas S
are included in {xl, .., Xn} and S(Xl, .., xn) if the set
of variables occurring in S is exactly {Xl,.., xn}.

1. DEFINITION. A unification grammar is a tuple
(VN , VT , S, F1, V, V, R>, consisting of a finite nonter-
minal vocabulary VN, a finite terminal vocabulary
VT, a start symbol S E VN and a feature-description
language L determined by a finite set of unary par-
tial function symbols F~, a finite set of atomic values
V and a denumerable set of variables 1

V = {x~ I a e N*} with x~ # x , , for a # a ' .

All vocabularies are pairwise disjoint. R is a finite
set of rules of the form r = ((A,w),S~[xo,..,xl~l] }
(zi E 1;), with (A, w) e VN x (VN U VT)* (a context-
free phrase structure rule) and S~[x0, .., xl~l] a finite
set of (quantifier-free) literals of L. 2

According to our definition the LFG rules in figure 1
are now expressed as depicted in (la) and the PATR-
II rules as given in (lb). Note that the structure of
the terms is now "mirror imaged", since we assume
the attributes to be unary partial function symbols.

(1) (a) (S -+ NP VB, {SUBJ Xo ..~ xl,xo ~ x2})
(NP --~ John, {PRED XO ~ JOHN})

(b) (S --> NP VP, {AOa z2 ~ AGR xl})
SNUM AGR XO ~ SO,1 \

(NP --+ Uther,].PEg AOR Xo ~ 3RD~/

For the definition of the sentences derivable by a
unification grammar we have to specify first what
derivations are.

2. DEFINITION. A sequence of pairs ~r0...~rn with
7to = (Be, 01 (B 6 VN) is called derivation of length
n iff for each 7ri = (B [..A~..]~, S) (0 < i < n) there is
a rule r (A -+ w~ k = ..win, S~) such that

= .., , ~] ~ . .] ~ , S ~) .

In the definition we assume that the order of the
arcs of a tree is encoded by numbering the arcs and
that each node is identified with the sequence of in-
tegers numbering the arcs along the path from the

1The syntax and semantics of feature-description lan-
guages is given in the appendix.

2A literal is an atomic formula or the negation of an
atomic formula.

root (O) to that node. In our bracket notation we
add to a constituent its root node as the right and
its root node label as the left index. In order to be
able to refer to the c-structure derivation and to the
sequence of feature descriptions and to have access
to the nodes which are substituted in each step of a
derivation, we define for a derivation 7r three other
sequences.

3. DEFINITION. Let ~r be a derivation of length
n. We then define two sequences w and ")' for
each i=O, . . , n with lh=(Tc , S) by wi=Tc and
7i = S and a sequence w for each i - - 1, . . ,n with
w~-i = B[..A~..]O and Tc = B[..A[W~.I,..,wk.m]~..]0
by wi = #.

Let S be a set of literals and 0 a unary partial map-
ping over the set of terms. Then the expression S[0]
denotes the set of expressions obtained from S by
simultaneously replacing each occurrence of a term
~- in each formula in S by 0(T). The feature descrip-
tion derived by zr is then defined by means of the
following operation.

4. DEFINITION. If ~r is a derivation of length n then
the feature description derived by 7r from h to k
(0 <_ h < k <_ n) is given by

k

S;-~k = U 7i[{(xj,xw, j) I xj occurs in 3'i}].
i----h

EXAMPLE 1. If we start a derivation zr from (So, 0)
and apply the S-rule in (la) and the following VP-
rule

(VP -+ V VP', {xo ~ Xl,XCOMP ~0 ~ X2})

we end up with the following sequence.

~o = (So, 0)
7rl = (s[NP1, VP2]o,{SUBJ x o ~ X l , X O ~ x2})

zr2 ---- (s[NPI,vp [V2.1 ,VP'2.21210,{xo ~. Xl,XCOMP Xo ~ X2})

For the steps depicted above the sequence w is given
by wl = 0 and w2 = 2 and the feature description
derived by 7r from 0 to 2 (S~_~2) is

{SUBJ X0 ~ Xl,X0 ~ X2,X2 ~ x2.1,XCOMP x2 ~ x2.2}.

Sentences are then defined as follows.

5. DEFINITION. A terminal string w (w E V~) is
a sentence iff there is a derivation (So, 0) = r0..Trn
with Wn = S[w]0 and 3x~1 ..x,~ A S~-"~n(X~tl ' "" Z~tm)
satisfiable. 3

In the following we write S" for S~_+n if the inter-
val covers the whole derivation, i.e. if ~r is of length
n.

Since a specific reduction algorithm and a few
model-theoretic facts required in the proofs later on
can be introduced by showing how satisfiability of
such existential prenex formulas can be decided, we
will continue with a short excursion on satisfiability.

3We use s[w]o to denote an S-rooted c-structure with
yield w.

4 6

2.1 Sa t i s f i ab i l i ty
In order to test whether for a given finite set of lit-
erals S of a feature-description language (2)

(2) 3z~..zt A S(x~,.., zl)
is satisfiable, we can exploit by skolemization well-
known test procedures available for quantifier- and
variable-free sets of such literals. Let C be a set of
Skolem-constants ([{xl, ..,xz}[= ICl) and 0 be a bi-
jective function from {Xl, .., xt} to C, then (2) can be
tested by testing the set of literals (3) over L(C) 4

(3) S[0],
since (2) and (3) are equi-satisfiable. In the follow-
ing we complete the procedure by introducing a re-
duction algorithm that reduces a set of literals (3)
according to a measure in a sequence of measure
decreasing rewrite steps to a deductively equivalent
set (4) (in reduced form)

(4) (S[e])p,
which is satisfiable iff the terms 7- of all inequalities
T ~ 7- of (4) do not occur as subterms in equations
of (4).5

For the proof we first introduce a few definitions
and some notation. Let 7- be the set of terms
of a variable-free feature-description language L(C).
Then an injective function m • [7- ~ ~l*] is a mea-
sure iff it satisfies the following conditions for all
T, T' • 7" and a • FI*:
(i) if [7-[< [7-'[, then re(w) < m(7-'),

(ii) if re(r) < m(7-'), then m(aT) <_ m(a'c').
For literals and sets of literals S we extend a mea-

sure m as usual by m((.~)7- ~ 7- ')= m(7-)+ m(7-')

and re(S) = Era (C) .
Ces

In the following we use 7- ~ 7 - ' iff m(7-) > m(7-')
and 7-~7-' to denote ambiguously 7- ~ 7-' or 7-~ ~ 7-.
Let S be a set of literals then E denotes the set of
all equations in S, 7-s the set of terms occurring in
the formulas of S (7-s = {~-, 7-' [("~)7- ~ 7-' • S}) and
SUB(Ts) the set of all subterms of the terms in 7~

SUB(7~) = {7-[a7- • 7~, with a • FI*}.

For the construction of a reduced form we need a
specific partial choice function p which satisfies

p(S) • {7- ~7- ' • S IT • SVS(Ts\{r~.,.,})}
if the specified set is nonempty and undefined other-
wise.

6. DEFINITION. For a given finite set of literals S
and a choice function p we define a sequence of sets
Sp, (i > O) by induction:

Spo =S
f(Spi\{ 7-~-.7-t})[r/v'] U {7-~T t} if p(Sp,) = 7- ~7- '

Sp,+, = [So, if p(S m) undef.

aThe feature-description language which in addition
to L provides a distinct set of Skolem-constants C'. Cf.
the appendix for more details.

~The algorithm is adapted from Statman 1977 and
Knuth and Bendix 1970 and first applied to feature-
description languages by Beierle and Pletat (1988).

Since m(Sm) > m(Sp,+l) i fp is defined for Sin, the
construction terminates with a finite set of literals.
If we set

Sp = Spt ; with t = min{i [Sp, = Sin+ ~ }

the following lemma can easily be proven by induc-
tion on the construction of Sp. 6

7. LEMMA. For Sp it holds that:

(i) S ~F S o,

(ii) if T ~ T ' C S o then T ¢ SUB(Tsp\{r~r,}).

Since Sp is obviously not satisfiable if it contains
an inequality T ~ 7 and 7 occurs as a subterm in Ep,
the whole proof is completed by showing that we can
construct a canonical model satisfying Sp if Sp does
not contain such an inequality.
For the model construction we need the set

T~p = {r e SUB(TE,) [-~3T'(T ~ T ' e Ep)}

and the function h c E [SUB(7-Ep) ~ 7-~,] which is de-
fined for each 7- e SUB(TE,) by

f ,T'(7-~T' Ep) if 7- E, h e (T) = • f[T'c
[7- otherwise.

That h e is well-defined results of course from 7(ii).

8. DEFINITION. For a set of literals S o the canoni-
cal term model is given by the pair Mp = (Hp, .~p),
consisting of the universe

L t p = [7 ~ , i f E , ~ 0
[.{O} otherwise

and the interpretation function ~p, which is defined
f o r c • V U C , f • / ' l and 7 - • H p b y :

[M(c) if c • SUB(TE,)
~p(e) = I.undefined otherwise

~ h~(fT-) if fT- • SUB(TE,)
"~P(f)(7-) = [undefined otherwise.

For Mp which is well-defined the following lemma
holds:

9. LEMMA. I f 7- is a subterm of Ts, then

(i) ~p(7-) = he(7-), if 7- • SUB(TE~),

(ii) 7- • SUB(T~) , if T • Dom(.~o).

PROOF. (By induction on the length of 7-.) The
lemma is trivial for constants. By showing (i) be-
fore (ii) we get the induction step for a subterm fT-
of Ts, in both cases according to

~p(fT) = ~p(f)(-~p(7-)) = ~,(f)(hC(7-)) = ~p(f)(7-).

We get .~p(7-) = hC(T) by inductive hypothesis and
M(7-) = % since 7- ¢ Hp would imply the existence of

6In order to verify 7(i) cf. e.g. Wedekind 1991
and 1994.

47

T ~ r' • E o and fT could not be a subterm of 7~p
according to lemma 7(ii). Now, if (i) fT • SUB(TEp)
then ~p(f)(T) is defined and equal to h~(fr) and
(ii) if f r • SUB(Ts,) and .~o(fT) is defined then
f r • SUB(TE~). []

On the basis of lemma 9 it is now easy to prove:

10. LEMMA. VT ~ T • So(7" ¢ SVB("fEp)) --~PMp S O.

PROOF. (If the condition is satisfied ~M, ¢ holds for
every ¢ • So.) If ¢ = ~'~T' • S o with m(T') < m(r),
then v' • T~o by 7(ii) and hence hC(T ') = T'. We get
then h~(~ -) = T' for m(T') = m(T) by T' = T and for
m(~-') < m(~-) by the definition of h ~, since r ¢f T ~ .

Thus ~p(T) = ~p(T') by 9(i) and hence ~Mo ¢.
Assume ¢ = T C T ' . If T ~ 7 ' were satis-
fied by Mp, we would get ~ p (T) = ~p(T') and
by 9(ii) T,T ' •SUB(TE,) . Since 7(ii) ensures
he(r) = h~(~ -') = v = ~-', we would have ~- ¢ r • Sp
with T • SUB(TEo). []

Finally it should be mentioned that Mp is a unique
(up to isomorphism) minimal model for Sp, i.e. if M
is a model for So, homomorphic to Mp, then every
minimal submodel of M that satisfies S o is isomor-
phic to Mp.

3 T h e G e n e r a t i o n P r o b l e m and its
Dec idab i l i ty

Although it was not necessary for the definition of
the sentences derivable by a unification grammar, we
now have to make explicit that also a feature descrip-
tion is assigned to a sentence.

11. DEFINITION. A terminal string w (w • V~) is
derivable with feature description 3Xl..Xl¢(Xl,.., xt)
iff the feature description is satisfiable and there
is a derivation (S~, O) = ~r0..Ir,~ with w~ = s[w]~ and
¢ = A S ~.

Since deductively equivalent consistent feature de-
scriptions are assumed to describe the same set of
feature structures (models), the assignment of en-
tities to terminal strings determined by a unifica-
tion grammar is then formally given by a binary
relation A between terminal strings and sets of
classes of deductively equivalent feature descriptions
[?Xl ..Xl ~)(X l , .., Xl)]'-tF .7

12. DEFINITION. For each terminal string w • V~
and each class [Sxl..xl¢(Xl,. . , xl)]:

A(w, [3xl ..xl¢(xl,.., xl)]) iff w is derivable with
3 z l . . z l ¢ (z l , .., xt).

Definition 12 now brings us closer to the problem,
since we can for any unification grammar in rather
abstract terms specify what parsers and generators
are: a parser is a procedure which recursively enu-
merates for any given string w the set

{[~Xl..XI~)(Xl,.-, Xl)] [A (W , [3X 1..xI¢(xl,.., Xl)])}

7We omit the index of the equivalence classes in the
following.

and a generator is a procedure which recursively enu-
merates for any given class [3Xl..Xl¢(xl, .., xl)]: s

{w • y~ l A(w, [3Xl..Z,C(Xl, ..,z,)])}.
Whether adequate algorithms (effective proce-

dures) can be formulated depends on the decidability
of the corresponding parsing and generation problem.
In our case (generation), it is the problem whether

3w • y~(zx(~, [3Xl..X~¢(xl, .., x~)]))

is decidable for any given class [3xl..xl¢(xl, ..,xl)].
The decidability of the generation problem alone en-
sures the existence of algorithms which terminate in
any case with an output , although they might (of
course) not be able to produce all possible solutions.
Despite decidability, inputs can still be infinitely am-
biguous ([{w • V~ [A(w, [3xl..xl¢(Xl, ..,xl)])}] infi-
nite).

In order to prove the decidability of the generation
problem (theorem 13), we proceed in two steps.

13. THEOREM. It is decidable for each feature
description 3yl..Yk¢(Yl,..,yk) whether there is a
terminal string w • V~ which is derivable with
3Xl..Xl¢(xl,. . , Xl) and

3yl ..Yk¢(Yl,.., Yk) qF- 3Xl ..Xt¢(Xl, .., Xl).

In the first step we show that we can always shorten
a derivation of a sentence w with (consistent) fea-
ture description ¢ to a derivation of a sentence w'
with feature description ¢' and ¢ -t~- ¢' whose length
is bounded by the "size" of ¢. By showing in the
second step that two deductively equivalent consis-
tent feature descriptions have the same "size" the-
orem 13 follows, since only a finite set of deriva-
tions (those whose length does not exceed this up-
per bound) have to be inspected in order to decide
3w • V~ (A(w, [¢])) for an arbitrary consistent input
¢.

3 .1 R e d u n d a n t R e c u r s i o n s a n d P u m p i n g
For the proof that for a derivation of a sentence w
with (consistent) feature description ¢ there always
exists a short derivation of a sentence w' with fea-
ture description ¢' and ¢ -tt- ¢' we exploit the fact
that a c-structure may contain recursions of the form
depicted in figure 2 whose corresponding subderiva-
tions in ~r are eliminable. Such recursions are called
redundant.

14. DEFINITION. Let rr be a derivation of a sentence
uvzxy of length m + k + 1 whose c-structure deriva-
tion has the form ~O0..t.dm..O.~rn-t-k..Wm-l-k-bl -~ OQn with
wm= S[U, A u, Y]0 and aJm+ k : s[U, AIr, Au.~, x] , , Y]0
(reorder if necessary). If 7r' is a derivation of
uzy of length m + l which is defined for each j
(O < j < rn+l) by

{r~j if j <_ m
7r~ = (s[ury]~, S) if j > m and 7rj+k = (s[uvrxy]~,S)

SWe assume here strong reversibility, since a generator
is for a given input y simply a parser which operates on
A-I: it recursively enumerates instead of {x I A(x ,y)}
the set {x I A-I(x,Y)} •

48

\
u v z x y

Figure 2
A c-structure with recursion A[V, A~.~, x]t, (1~1 > 0).

and

, {;rj i f j < _ m
wJ = .t if j > m and wj+k = #.~.~

then 7rm+l...~m+ k is a redundant recursion iff

3x,..x~ h S~(xt , .., x~) ~ 3xl "x'k h S~' (xl, .-, x~)-

If we assume tha t a given derivation of a sentence
is already shortened to a derivation without redun-
dant recursions it remains to show that the length of
such a derivation could not exceed the upper bound
determined by the "size" of the derived feature de-
scription.

The "size" of a consistent feature description is on
the one hand determined by the size of its minimal
model, and on the other hand determined by a nor-
mal form into which every feature description can be
converted. The conversion is performed in two steps.
In the first step, we eliminate as many variables as
possible by substitution.

15. DEFINITION. If S(Xl , . . ,Xl) is a set of lit-
erals, then xi is eliminable in S (x l , . . , x l) iff
there is a term T not containing xi such that
~- 3zl..x~(A S(Xl, .., ~) ~ z~ = r).

16. NOTATION. In the following we write S[x~, .., xz]
iff each xi is not eliminable in S.

17. DEFINITION. We assign to a set of liter-
als S'(x~,..,x~,x~,..,X~k) a set R(S') which con-
tains a set S[x~, . . ,xt] iff there is a substitution
O E [{x~, ..,x~} ~-~ T(x~, ..,x,)] such tha t

~ . . ~ , ~ . . x ~ (A s ' ~ ~ ~ o(~))

for all ~ (1 < i < k) and Sfz~, . . ,~] = S'[O]?
By the substi tut ivi ty theorem we get:

18. LEMMA. I f SfXl , .., xl] E R(S'(Xl, . . , xl,X~l,.., x~k))
then 2x~ ..x~k(A S - A S').

In the second step, we make the set of literals in-
dependent, i.e. we remove those literals which are
implied by the remaining subset.

~T(x~,..,xt) denotes the set of terms over V,
{x~, .., x~} and F~.

19. DEFINITION. A set of literals S(xl , . .x~) is in-
dependent iff there is no formula ¢ E S for which
F- ~x l . . x l (A(S \ {¢}) D ¢) holds.

Normal forms are then defined as follows.

20. DEFINITION. A consistent feature description
~xl..xl A Six1, . . , xt] is in normal form (in the fol-
lowing indicated by a v index) iff S[x l , .., xl] is in-
dependent.
Furthermore, we call ~xl ..xl A S~ Ix1, .., xl] a normal
form of ~xl..xtx'~..x~ h S ' (x l , .., x~) iff S~ Ix1, .., xt]
is an independent subset of S'[O] E R(S') and
~Z1. .Xl(ASv[Xl , . . ,Xl] ~ A S t [0]) •

Lemma 18 and the condition in definition 20 ensure
that a consistent feature description and its normal
forms are deductively equivalent.

In order to be able to show the existence of
a redundant recursion, we exploit the simple fact
that the information which contributes a literal
in a normal form with a minimal model (Up, ~p}
can be specified by an equation ~-~ 1 -s where
IT[+ [rq < [Up[+ 2. A literal r ~ O ' a ' T ' t ([a I > 0)
whose terms are longer must always be reducible
by a loop 5 r t T tl ,-~ T II to a shorter equation. Since
the construction of such an information piece can be
done with a subderivation of some fixed length, there
must be a redundant recursion if the length of whole
derivation exeeds a fixed value which is dependent
on [Hp[and [S~[and exactly specified in lemma 21.1°

21. LEMMA. Suppose that w E V~ is derivable with
¢ = ~xl ..xtx'l..x'k A S~(xl , .., x'k) over ~r of length n,
that ~xl..xl A S~ Ix1,.., xl] is a normal form of ¢ and
that M o = (Up, ~o) is a minimal model of ¢. I f ~r
has no redundant recursions then each path of wn is
shorter or equal to IVN[. (3 [Hol + 1)- (IS~[+ 1).
PROOF. Suppose, one pa th of wn were longer
than IVN[. (3 [Up[+ 1). ([S~[+ 1), then more than
(3 I/~p] + 1). ([S~ I + 1) different nodes on that path
had to be labelled by the same A E VN. With-
out loss of generality we can assume that lr is a
derivation whose c-structure derivation w has the
form Wo..wm..wn with w m = s[u, A , , y]~ for each node
on that pa th which is labelled by A (reorder if
necessary). In order to exclude that complex in-
ferences are used to build up 0, we assume fur-
thermore tha t 0 is non-deterministicaUy constructed
from S ~ by recursive variable substitution, i.e. we
require for each (X, aT) E 0 either x'~aT E S ~ or
~ x ~ a y E S ' ((y ,T) E 0). Finally, let S C S ~ with
S~ = S[O]. In order to identify the redundant re-
cursion we have to consider the following cases.
1. Suppose there are more than [Sv[+ 1 A-labelled
nodes # such tha t x i, does not occur in S ", then there
must be more than [Su[non-overlapping recursions.
For at least one of those recursions ~rm+~...Trm+k it
must hold that

(S [~l S~+l_+rn_l_k) C (s~r.+rn [.J S~n+k..kl_~n).

1°The given factor [VN[. (3[//p[+ 1). ([S~[+ 1) de-
creases for more restricted grammars, like e.g. grammars
which allow only feature descriptions with single-rooted
and/or acyclic minimal models.

49

But then

Sn ~r S c_ (0-~m u S m + , + ~)

and ~rm+~...7rrn+k must be redundant.
2. If case 1 does not apply there must be more than
3 I/4p[• (]S~ I + 1) distinct A-labelled nodes # on tha t
pa th such tha t x , occurrs in S ~ and for more than
31S-I + 1 of these nodes must pairwise hold

~ . - z ~ (h s ~ ~ x, ~ ~.~).

But then there must be at least three recursions such
that

and

(S n s~+~_~+~+~+z) G ($ 8 ~ ~ s~\~+.+~+~_~.).

We can then assign to each recursion 7rm+l...Trrn+k
(m = i , k = l ; m = i + l , k = v or m = i + l + v , k = z) a
type which corresponds to the strongest of the fol-
lowing conditions the recursion satisfies.
(a) ~,~+~...~m+~ satisfies

(b) I t holds only

~- ~ . . x ~ (A S ~ + ~ + ~ ~ z,.~ ~ a x ,)

with lal > 0 and aO(x,)..~ O(x,) is implied by
~-Sxl..x'k(ASo'_,m+~ A S~) where S a is the set of
ground literals of S.
(c) Or it holds

t 7r

with]a' I > 0 and a'O(x,.~) ~ O(x,.~) is implied by
~- ~z~..z~(A S ~ + l ~ A S~).
(d) If a recursion which satisfies

([a I > O) is not of type (b) then there must be a
ground term T which is not reducible in terms of x~,
i.e. t? can not satisfy T = a'O(x,) for some non-empty
prefix a ' , and

(e) For a recursion with

which is not of type (c) we get for x , the same prop-
erty as for x, .~ in (d).
(f) If the previous cases do not apply, the recursion
might satisfy

with lal > 0 and Io'1 > 0. Since x~, is not eliminable
in terms of x , . , and vice versa, there must be ground
terms T, y' such tha t

~ . . ~ % (A s ~ 3 ~ . ~ ~ A x . .~ ~ ~' A ~ ~ ~').

(g) If a recursion is not of type (a-f) then

~- 3Xl..Xk(A Sm+l_~m+k D ax ~ x , A a'y ~ x~.~).

But then x , and x~.~ must be ground eliminable as
in (f).
Since a recursion of type (a-c) is not redundant if it
contains terms T or T' such tha t T is not reducible in
terms of x , and r ' is not reducible in terms of x~.~
and ~- or T ~ are used to eliminate x , and x , ~, there
must be at least one recursion 7r,~+l...Trm+k such tha t

and 0 still follows either by ground inferences or due
to the properties of (b) and (c). []

If lmax = max{Iw[l ((A , w) , S r l e R} then the fol-
lowing pumping lemma follows immediately as a
corollary.

22. COROLLARY. Suppose that w E V~ is deriv-
lr X I able with ¢ = ~Xl..X~X~l..X~kAS (x , . . , X k) over

of length n, that 3Xl..xl A Sv[xl , . . ,x l~ is a nor-
mal form of ¢ and that M p = (H p , ~ p) is a mini-

I ~ Iwl "- l IV~F(21U;l+l) then mal model of ¢. j j l max w has
the form uvzxy with vx > 0 and for all i > 1:

!
{~v~zx~y, [~x~ ..z~ ~'~ .. ~'k/\ ^ S" (~ , .., ~k)]) e A.

PROOF. If Iwl > lWalx (~IupI+I) then at least one pa th
ofwn is longer than [VNI" (2]Hal + 1) and more than
2[H;[+ 1 different nodes on tha t pa th are labelled
by the same A E VN. Without loss of generality
we assume again tha t 7r is a derivation whose c-
s tructure derivation w has the form w0..w,~..w,~ with
Wm = s[u, A , , Y]0 for each node p on tha t pa th which
is labelled by A, and tha t 0 is non-deterministically
constructed from S ~ by recursive variable substi-
tution, i.e. we require for each (x, a r) E 0 either
x~ffT e S ~r or 3 x ~ a y • SW((y,T) • 0). Suppose fur-
thermore tha t S C S ~ with S~ = S[0]. In order to
isolate the recursion which allows pumping we have
to distinguish the following cases.
1. If 7r contains a recursion 7~m~l...7rm+ k with
wm = s[u,A~,y]0, 03mWk = s[u, Mv, A~.~,x],,Y]V
and Ivx[> 0 and x~ and x,.~ do not occur in S ~,
we take 71"mW1...Tl'rn+k.
2. If 7r does not contain such a recursion there must
be at least three distinct A-labelled nodes ~, ~.A, ~.A.v
on tha t pa th such tha t

I ' wi = S u ,A~ ,y%,
f v I A X I~ I1 w ~ + ~ = s t u , A t , ~.X, b,YJ0,

~+~+~ = s[~', Ale, Air, A,.~.,, ~],.~, ~'1~, V']0
with Iv'x'l > O, Irsl > 0 and

~- ~z~ . . z ' k (A S '~ ~ z~ ~ z~.~, ,~ z~.x. ,) .

2.1 Suppose there is a recursion of type (a-c) (cf.
proof of l emma 21) we choose this one.
2.2 If 7r does not contain such a recursion each of
the recursions must be of type (d), (e), (f) or (g).
But then there must be one recursion "ffrn+l...'ffrn+k
(m = i , k = I o r m = i + l , k : v) with

I f f

50

for some ground terms T, T'. This recursion is
choosen for the proof.
On the basis of the recursion 7rm+i...TrmWk we can
now define derivations r i as follows. We set 7r i = r
and define ~r i+i on the basis of 7r ~ by

I(:[U,A[virxi]~.~',Y]o,S) i f j > m + i k a n d
~T~+I i = . ~ J - ~ = (s [u , A [v i - 1 , ' : ~ i - 1] , . , . , ~ , - , , y] ~ , S)

~ r j if j <_m+ik

and

zv~ if j <_ m + ik
[# .a i .~ if j > m + ik and i ~j- -k ---- ~.~i--l.t.

By induction on i it can then be shown for all possible
cases that k 3x~..x~..(A S " - A S ') . []

3.2 Invariance of t h e P a r a m e t e r s under
Deduct ive Equivalence

Since the universes of the minimal models of two de-
ductively equivalent consistent feature descriptions
must have the same cardinality, for the completion
of the proof of theorem 13 it remains to be shown
that two deductively equivalent consistent feature
descriptions have the same "information content",
i.e. that the sets of literals of their normal forms have
the same cardinality:

23. LEMMA. Suppose that 3Xl..Xi A S~rxi, . . ,xl]
and 3Yl..Yk A S~ [Yi , .., Yk] are deductively equivalent
consistent feature descriptions in normal form then

We proof lemma 23 in two steps. First, we
show that we can convert s'~rYl,..,Yk] into a set
S~[xi, . . ,xl] with the same cardinality such tha t
3xl..xl (A S~ rxl, .., Xl] -~- A S~' rxl, .., xl]) holds.

24. LEMMA. Assume that 3xi..xl A S~rxl,. . ,xl]
and qyi..Yk A S~ [Yl, .-, Yk] are deductively equivalent
consistent feature descriptions in normal form. Then

H l ---- k and there is a set S~ rXl, . . ,xl] with
H (i) IS,, rx i , . . , :clll = is,, ry l , . . , y,ql a n d

(ii) I- 3x,..xl (A S,, rxl , .., x l] _= A s~,, [x i , .., x l]) .

PROOF. Suppose tha t {x l , . . , x l} N {Yl,..,Yk} = (~

(rename if necessary), that S~[yl,..,yk] is in re-
duced form (the reduction of an independent set does
not change the cardinality) and that M = (~, ~)
is an arbi t rary model of 3xi..Xl A S . r x i , . . , x l]
and ~yl..ykAS'~ryl,.. ,yk]p. Let a and a '
be assignments such tha t a ~ M Su[Xl,. . ,xl] and
a' ~M S~[Yl,..,Yk];.
We show first that there is a bijective function
1) • [{Xl,..,Xl} ~ {yl,..,Yk}] such that for all xi
there is a a i • F~ (i = 1, ..,l) and a variable 1)(xi)
occurring in S ' with a(xi) = ~(aiO(xi))(a'). First
of all ~ is left-total, since a(x i)= ~(T) with T
variable-free would imply that xi is eliminable
in S. In order to show tha t ~ is a func-
tion, assume a(xi) = ~(ajyj)(a*) = (~(ahYh)(a') for
Yj,Yh occurring in S ' with yj ¢ Yh. Since yj
and Yh are not eliminable in S ' there must

be terms Tj, Th such tha t a'(yj)-=~(Tj)(a),
a'(Yh) = ~(Th)(OL), ~(O'jTj)(OI) ~- ~(qhrh)(O 0 and
there is no a • Fi* such tha t ~(aTj)(a) = ~(rh) (a)
or ~(aVh)(a) = ~(Tj)(a) . Thus, vj and Vh must be
terms in T({xi , . . ,Xl} \{xi}) and xi would be elim-
inable in S. Suppose now tha t yj is not in the
range of 1). Then there must be a te rm r with
.~(T)(a) ---- a'(yj). Since yj is not eliminable in S ' ,
T must be of the form axi and there must be a
te rm T' with a(xi) = .~(T')(a ') . If T' is a te rm in
T({yi , . . ,yk}\{Yj}) , yj would be eliminable. Oth-
erwise r ' is of the form a'yj and we would get
a(xi) = c3(a'yj)(a'). Hence 1) is onto. Assume fi-
nally a(xi) = ~(aiYh)(a') and a(xj) = ~(ajYh)(a')
with xi ~ xj. Then there must be a te rm r with
a'(yh) = ~(T)(a). Since xi and xj would be elim-
inable in S if T is a te rm in T({x i , . . ,xl}\{xi ,xj}) ,
T is of the form axi or axj. But then either
a (z~) = . ~ (a ~ x ~) (a) or a(x~) = ~ (m ~ x A (~) . Thus,
1) is bijective and l = k.
On the basis of 1) we then define a sequence of new
sets S~ (0 < i _< l) by induction as follows (within the
induction we assume 1)(xi) -= y):

s~ = s" ryl, .., yl] p

, [s~_,[y/~,] if a (x ,) = ~ ' (y)
Si = ((S~_l \ {y~o 'o"y})[Y/o.x,] U {x i ~ oJoxi} if (A),

where (A) means a(xi) ~ a'(y), y~aa 'y • S~_ 1 and
a(xi) = .~(a'y)(a'). In the case where the variables
refer to different nodes on a loop (a(xi) ~ a'(y)) the
definition is well-formed, since S~[yi,..,yl]p is re-
duced and normalized and thus there must be ex-
actly one equation y~aa 'y in S~_ 1 describing the
loop with the node to which xi refers. For S" = S[,
IS~ rxl , .., xl]l ~- Is~ ryl , . . , Yk]l follows immediately
by induction on the construction of S ' .
Finally we get (ii), since

3xi..xi(3xi+l..x~ A S~ [xi , .., xl] -

31)(x~+~)..1)(xl) h s~ rx~, .., :~, 1)(x~+1),.., 1)(xl)])
can easily be verified by induction on the construc-
tion of S". []

Since two deductively equivalent independent and
consistent sets of (variable-free) literals reduce to
the same set of literals in reduced form, lemma 25
follows by skolemization and completes the proof of
l emma 23.

25. LEMMA. If Bxi..xl A Sv [xi, .., xl] is a consistent
feature description m normal form
andt- 3xi . .xl(A S~rxi, . . ,xl] ---- A S'~'rxi,..,xl]) then
I&rzx,..,zlql - - -

Appendix: Syntax and Semantics of
Feature-Description Languages
A feature-descr ipt ionlanguage L(C) consists of the
logical connectives -.~ (negation), D (implication),
the equality symbol ~ , the existential quantifier 3
and the parentheses (,). The nonlogical vocabulary
is given by a finite set of constants V (atomic values),

51

a possibly empty finite set of constants C (Skolem-
constants) and a finite set of unary partial]unction
symbols F1 (V, C, F1 pairwise disjoint). The class of
terms and formulas of L(C) are recursively defined as
usual. Feature descriptions of L(C) are expressions
of the form 3xl..xl A Six1, ..,xt], where S is a finite
set of (quantifier-free) literals. (We assume tha t the
connectives v (disjunction), A (conjunction) and
(equivalence) are introduced by their usual defini-
tions.)

A model for L(C) consists of a nonempty universe
b / a n d an interpretation function ~. Since not every
te rm denotes an element in/d if the function symbols
are interpreted as unary partial functions, we gener-
alize the partial i ty of the denotation by assuming
tha t ~ itself is a partial function. I t is only required
that all Skolem-constants denote. Suppose IX ~-~ Y]
designates the set of all partial functions from X to
Y and IX ~-~ Y] the set of all total functions from X
to Y, then a model is defined as follows: 11

DEFINITION. A model for L(C) is a pair M = (b/, ~) ,
consisting of a nonempty set b / and an interpretation
function ~ = ~ v U -~c U ~F1, such tha t

(ii) ~ c • [C ~-+/d],

(iii) ~F, • IF1 ~ [U ~ / d]] ,

(iv) Vf • F l (f • Dom(~) ~ ~ (f) ¢O).

If we extend the denotation function to terms and
variable assignments c~, the definition of the satisfac-
tion relation differs only in the clause for the equa-
tions from the usual one:

O/ ~ M T ,~ T' iff ~(T)(C~) and ~(T')(C~) are defined
and ~(T)(a) = .~(T')(~).

References

Beierle, C., and U. Pletat. 1988. Feature Graphs and
Abstract Data Types: A Unifying Approach. In Pro-
ceedings of the 12th International Conference on Com-
putational Linguistics. Budapest.

Kaplan, R., and J. Bresnan. 1982. Lexical-Functional
Grammar: A Formal System for Grammatical Repre-
sentation. In J. Bresnan, ed., The Mental Represen-
tation of Grammatical Relations. Cambridge, Mass.:
The MIT Press.

Johnson, M. 1988. Attribute-Value Logic and the Theory
of Grammar. Chicago: CSLI Lecture Notes Series,
Chicago University Press.

Knuth, D., and P. Bendix. 1970. Simple Word Problems
in Universal Algebra. In J. Leech, ed., Computational
Problems in Universal Algebra. Elmsford: Pergamon
Press.

Shieber, S., H. Uszkoreit, F. Pereira, J. Robinson, and
M. Tyson. 1983. The Formalism and Implementation
of PATR-II. In B. Grosz and M. Stickel, eds., Research
on Interactive Acquisition and Use of Knowledge. SRI
Final Report 1984. SRI International, Menlo Park.

l lIf constant-consistency and constant/complex-
consistency are to be guaranteed for the atomic values
V or acyclicity has to be ensured for the models, special
conditions can be added to the definition.

Statman, R. 1977. Herbrand's Theorem and Gentzen's
Notion of a Direct Proof. In J. Barwise, ed., Handbook
of Mathematical Logic. Amsterdam: Elsevier North-
Holland.

Wedekind, J. 1991. Classical Logics for Attribute-Value
Languages. In Proceedings of the 5th Conference of
the European Chapter of the Association for Compu-
tational Linguistics. Berlin.

Wedekind, J. 1994. Some Remarks on the Logic of Uni-
fication Grammars. In C. J. Rupp, M. Rosner, and
R. Johnson, eds., Constraints, Language and Compu-
tation. London: Academic Press.

52

