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1 I n t r o d u c t i o n  

Automatic sense disambiguation has been recognised 
by the research community as very important for 
a number of natural language processing applica- 
tions like information retrieval, machine translation, 
or speech recognition. This paper describes exper- 
iments with an algorithm for lexieal sense disam- 
biguation, that is, predicting which of many possible 
senses of a word is intended in a given sentence. The 
definitions of senses of a given word are those used in 
LDOCE, the Longman Dictionary of Contemporary 
English [Procter et al., 1978]. The algorithm first as- 
signs a set of meanings or senses drawn from LDOCE 
to each word in the given sentence, and then chooses 
the combination of word-senses (one for each word in 
the sentence), yielding the maximum semantic over- 
lap. The metric of semantic overlap is based on the 
fact that LDOCE sense definitions are made in terms 
of the Longman Defining Vocabulary, effectively a 
(large) set of semantic primitives. Since the prob- 
lem of finding the word-sense-chain with maximum 
overlap can be viewed as a specialised example of 
the class of constraint-based optimisation problems 
for which Constraint Handling In Prolog (CHIP) was 
designed, we have chosen to implement our algorithm 
in CHIP. 

2 B a c k g r o u n d :  L D O C E ,  W o r d  S e n s e  
D i s a m b i g u a t i o n  a n d  r e l a t e d  w o r k  

LDOCE's important feature is that its definitions 
(and examples) are written in a controlled vocab- 
ulary of 2187 words. A definition is therefore al- 
ways written in simpler terms than the word it de- 
scribes. These 2187 words effectively constitute se- 
mantic primitives, and any particular word-sense is 
defined by a set of these primitives. 

Several researchers have been experimented with 
lexical disambiguation using MRDs, including [Lesk, 
1986; Wilks et al., 1989; McDonald et al., 1990; 
Veronis and Ide, 1990; Guthrie et al., 1991; Guthrie 
et al., 1992]. Lesk's technique decides the cor- 
rect sense of a word by counting the overlap be- 
tween a dictionary sense definition (of the word to 
be disambiguated) and the definitions of the nearby 
words in the phrase. Performance (using brief ex- 
perimentation) was reported 50-70% and the results 

*This work was supported by the Greek Employment 
Manpower Organisation (OAED), Ministry of Labour, as 
part of an 1991-93 scholarship scheme. 

were roughly comparable between Webster's 7th 
Collegiate, Collins English Dictionary and Oxford 
Advanced Learner's Dictionary of Current English. 
Methods based on co-occurence statistics have been 
used by [Wilks et al., 1989; McDonald et ai., 1990; 
Guthrie et al., 1991]. By co-occurence is meant the 
preference two words appear together in the same 
context. [Wilks c ta l . ,  1989] computed lexical neigh- 
bourhoods for all the words of the controlled vocab- 
ulary of LDOCE. This neighbourhood information 
is used for partitioning the words according to the 
senses they correspond to in order to make a clas- 
sification of the senses. Their results for using oc- 
curences of the word bank were about 53% for the 
classification of each instance into one of the thirteen 
sense definitions of LDOCE and 85-90% into one of 
the more general coarse meanings. Neighbourhoods 
were used by [McDonald et al., 1990] for expanding 
the word sense definitions. The union of neighbour- 
hoods is then intersected with the local context and 
the largest overlap gives the most likely sense. A sim- 
ilar technique is used by [Guthrie et al., 1991] except 
that they define neighbourhoods according to sub- 
ject categories (i.e engineering, economic etc.) based 
on the subject code markings of the on-line version 
of LDOCE. 

Closer to the work we describe in this paper is 
[Guthrie et al., 1992]'s. They try to deal with large- 
scale text data disambiguation problems. Their 
method is based on the idea that the correct mean- 
ing of a complete phrase should be extracted by con- 
current evaluation of sets of senses for the words to 
be disambiguated. They count the overlap between 
sense definitions of the words of the sentence as they 
appear in the on-line version of LDOCE. The prob- 
lem is that the number of sense combinations in- 
creases rapidly if the sentence contains ambiguous 
words having a considerable number of sense defini- 
tions in LDOCE (say that word A has X different 
senses in LDOCE, B has Y and C has Z, then the 
number of possible sense combinations of the phrase 
ABC is X*Y*Z, e.g if X=Y=Z=10 sense definitions 
for each word then we have 1000 possible sense com- 
binations). Simulated annealing is used by [Guthrie 
et al., 1992] to reduce the search space and find an 
optimal (or near-optimal) solution without generat- 
ing and evaluating all possible solutions, or pruning 
the search space and testing a well-defined subspace 
of reasonable candidate solutions. The success of 
their algorithm is reported 47% at sense level and 
72% at homograph level using 50 example sentences 

431 



from LDOCE. 

3 CHIP: Constraint Handling In 
Prolog 

We decided it was worthwhile investigating the use 
of a constraint handling language so that we could 
exhaustively search the space by applying CHIP's op- 
timisation procedures. A CHIP compiler is available 
from International Computers Limited (ICL) as part 
of  its DecisionPower prolog-based toolkit 1. CHIP 
extends usual Prolog-like logic programming by in- 
troducing three new computation domains of finite 
restricted terms, boolean terms and linear rational 
terms. Another feature offered by CHIP is the demon 
constructs used for user-defined constraints to imple- 
ment the local propagation. For each of them CHIP 
uses specialised constraint solving techniques: con- 
sistency techniques for finite domains, equation solv- 
ing in Boolean algebra, and a symbolic simplex-like 
algorithm. CHIP's declarations are used to define 
the domain of variables or to choose one of the spe- 
cialised unification algorithms; they can be: (1) finite 
domains (i.e. variables range over finite domains and 
terms are constructed from natural numbers, domain 
variables over natural numbers and operators); (2) 
boolean declarations or (3) demon declarations (for 
specifying a data-driven behaviour; they consist of a 
set of rules which describe how a constraint can be 
satisfied). In addition, classes of built-in predicates 
over finite domain variables exist for: (1) arithmetic 
and symbolic constraints (basic constraints for do- 
main variables), (2) choice predicates (help making 
choices), (3) higher order predicates (providing opti- 
misation methods for combinatorial problems using 
depth-first and branch and bound strategies) and 
(4) extra-logical predicates (for help in debugging 
processes). Forward checking and looking ahead in- 
ference rules are introduced for the control mecha- 
nism in the computation of constraints using finite 
domains. Auxiliary predicates to monitor or control 
the resolution process in the CHIP environment also 
exist. 

In our case we were particularly interested in 
transforming the general structure of our algorithm 
into a form usable by CHIP's choice and higher or- 
der built-in predicates. Choice predicates are used 
for the automatic generation of word-sense combina- 
tions and higher order predicates facilitate the pro- 
cess of finding the most likely combination according 
to the 'score' of overlap. To get an idea of this kind 
of implementation the main core of the optimisation 
part of our program looks like this: 

opt  i m i z e  (Words, C h o i c e ,  Cos t )  : - 
min:i~aize ( (makeChoice  ( C h o i c e ) ,  
f i n d C o s t  ( C h o i c e ,  C o s t ) ) ,  C o s t ) .  

1DecisionPower donated by ICL under the University 
Funding Council's Knowledge and Constraint Manage- 
ment (KCM) Initiative. 

Minimize is one of CHIP's optimisation built-in 
predicates. Words represents the list of am- 
biguous words submitted to the program and 
Choice  a list of domain variables for the selec- 
tion of sense definitions. Cost is a domain vari- 
able whose domain is constrained to an arithmetic 
term. For our purposes, Cost was Max-0ver lap  
where Max (a maximum possible score) is large 
enough so that Overlap (score of overlap in a 
sense definition) can never exceed it. Any answer 
substitution that causes (makeChoice(Choice), 
f indCost (Choice ,Cos t ) )  to be ground also causes 
Cost  to be ground. The search then back- 
tracks to the last choice point and continuous 
along another branch. The cost of any other 
solution found in the sub-tree must be neces- 
sarily lower (i.e Overlap must be higher) than 
the last one found, because Cost is constrained 
to that bound. This process of backtracking 
for better solutions and imposing constraints on 
Cost continues until the space has been searched 
implicitly. At the end, (makeChoice(Choice), 
f indCost (Choice ,Cost )  is bound to the last solu- 
tion found which is the optimal one. 

4 Algorithm 

Our method is based on the overlap between sense 
definitions of the words to be disambiguated. This' 
is similar to [Guthrie et hi., 1992] although there are 
distinct differences on the scoring method and the 
implementation. To illustrate our method we use 
the following example and describe each phase: 

The bank arranged f o r  an ove rd ra f t  on my 
a c c o ~ l t .  

4.1 Step 1 

All the common function words (particles) belonging 
to our 'stop list' (a set of 38 very common words) 
e.g. for our example the set of words (the, for, an, 
on, my) should be removed. Function words tend to 
appear very often both in context and in sense def- 
initions for syntactic and style reasons rather than 
pure semantics. Since our algorithm is intended to 
maximise overlap the participation of function words 
in a definition chain could lead to false interpreta- 
tion for the correct sense combination. Moreover, 
function words are usually much more ambiguous 
than content words (for example, there are 21 listed 
senses of the word the and 35 of for in LDOCE). 
Thus, the searching process could be significantly 
increased without any obvious benefit to the reso- 
lution of ambiguity of context words as explained 
above. Words of the 'stop list' have also been re- 
moved from the sense definitions and the remaining 
words are stemmed so that only their roots appear in 
the definition. With this way, derived (or inflected) 
forms of the same word can be matched together. 
For this reason, the program also uses the primitive 
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or root forms of the input words. After function- 
word-deletion the program is given the following set 
of words: 

bank a r r a n g e  o v e r d r a f t  account 

These are processed according to their stemmed 
sense definitions in LDOCE, represented as Prolog 
database structures such as: 

ba~k ( [ 
[bank, land, along, side, river, 
lake], 
[bank, earth, heap, field, garden, 
make, border, division], 

[bank, mass, snow, cloud, mud], 
[bank, slope, make, bend, road, race, 
track, safer, car, go, round], 

[bank,  sandbank] ,  
[bank, c a r ,  aircraft, move, side, 
higher, other, make, turn], 
[bank, row, oar, ancient, boat, key, 
typewriter], 
[bank, place, money, keep, pay, 
demand, relate, activity, go], 
[bank, place, something, hold, ready, 
use, organic, product, human, 
origin, medical, use], 
[bank, person, keep, supply, money, 
piece, payment, use, game, chance], 
[bank, win, money, game, chance], 
[bank, put, keep, money, bank], 
[keep, money, state, b a n k ] J ) .  

The  conventions we use are: a) Each word to be 
disambiguated is the functor of a predicate, contain- 
ing a list with stemmed sense definitions (in lists). 
b) We do not put a subject code in each sense defi- 
nition (as [Guthrie et al., 1992] do). Instead we put  
the word to be disambiguated as a member of the 
list of each sense definition. The rationale behind 
this is that  although a word put in its sense defini- 
tion cannot help with the disambiguation of itself, it 
can provide help in the disambiguation of the other 
words if it appears in their sense definitions, c) Com- 
pound words of the form 'race-track' were used as 
two words 'race' and 'track'. 

4.2 S t e p  2 

The algorithm generates sense combinations by go- 
ing through the sense definitions for each word one 
by one. For example, a sense combination can be 
called by taking the 8th sense of bank (call it b8, 
see above), the first sense of arrange (al=[arrange, 
set, good, please, order]), the definition of over- 
draft (ol-[overdraft, sum, lend, person, bank, more, 
money, have, bank]), and the seventh of account 
(cT=[accouat, sum, money, keep, bank, add, take]). 

The scoring process for this sense combination is 
given by taking the definitions pairwise and count- 
ing the overlap of words between them. Before the 
program proceeds to counting, redundancy of words 

is eliminated in each sense definition in order to pre- 
vent each word from being counted more than once. 
The algorithm checks for word overlap in advance 
and in case this constraint is not satisfied, the com- 
bination is discarded and a new one generated so 
that  only overlapping combinations are considered. 
For each combination the total score is the sum of 
all the overlaps pairwise. This means that  for n am- 
biguous words in the sentence the program counts 
the overlap for all n//(~/(n-2)/) pair combinations 
and add them together. For the above example, 

score(b8alolc7)= overlap(b8al)  
+overlap(b8ol) 
+overlap(b8c7) 
+overlap(alol) 
+overlap(alcT) 
+overlap(olcT) 
=0+2+3+0+0+3 = 8 

This scoring method is quite different to the one 
used by [Lesk, 1986]. Lesk simply counted overlaps 
by comparing each sense definition of a word with 
all the sense definitions of the other words. [Guthrie 
et al., 1992] use a similar method. It is different 
in that  if there is a subject (pragmatic) code for a 
sense definition they put this subject code as a single 
word in the definition list. Then they go through 
each list of the words, put the word in an array and 
begin a counter at 0. If the word is already in the 
list they increment the counter. So if, for example, 
three definitions have the same word they count it 2, 
while with our method this counts 3 and it seems that 
our method generally overestimates. Although no 
evidence of the best scoring scheme can be obtained 
without results we think that  our method may work 
better in chains where all definitions share a common 
word (and this overestimation goes higher compared 
to [Guthrie et al., 1992]) which may indicate a strong 
preference for that  combination. 

4.3 S t e p  3 

If a new generated combination has a higher score, 
it is considered as a better solution. This new (tem- 
porary maximum) score acts as a constraint (a lower 
minimum) to new generated combinations. At the 
end, the most likely sense combination is the one 
with the highest score. Implementation in CHIP 
guarantees to give one and only solution (or no so- 
lution if no overlapping combination exists). The 
way choices are generated is by taking at the be- 
ginning the first sense definition for each word in 
the sentence. This is because the most common or 
most typical meanings of a word are shown first in 
LDOCE. Following choices replace the definitions of 
the words one by one according to the order these 
words are submitted to the program. An example 
sentence and its output  is illustrated next [Procter 
et al., 1978]: 

Sentence: a tight feeling in the chest. 
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T o t a l  number o f  s e n s e  c o m b i n a t i o n s :  392 

Optimal solution found: 

t i g h t  : [ t i g h t ,  h a v e ,  p r o d u c e ,  
u n c o m f o r t a b l e ,  f e e l i n g ,  c l o s e n e s s ,  
p a r t ,  body] 

f e e l i n g  = [ f e e l i n g ,  c o n s c i o u s n e s s ,  
s o m e t h i n g ,  f e e l ,  mind,  body] 

c h e s t  = [ c h e s t ,  upper, f r o n t ,  p a r t ,  body,  
e n c l o s e ,  h e a r t ,  lung] 

I t s  Score  i s :  $ 

5 R e s u l t s  

Evaluation of a dictionary-based lexical disambigua- 
tion routine is difficult since the preselection of the 
correct senses is in practice very difficult and time- 
consuming. The most obvious technique would seem 
to be to start by creating a benchmark of sentences, 
disambiguating these manually using intuitive lin- 
guistic and lexicographical expertise to assign the 
best sense-number to each word. However, distinc- 
tions between senses are often delicate and fine- 
grained in a dictionary, and it is often hard to fit 
a particular case into one and only one category. It 
is typical in work of this kind that researchers use 
human choices for the words or sentences to disam- 
biguate and the senses they will attempt to recognise 
[Guthrie, 1993]. In most of the cases [Hearst, 1991; 
McDonald et al., 1990; Guthrie et al., 1991; Guthrie 
et al., 1992], the number of test sentences is rather 
small (less than 50) so that no exact comparison be- 
tween different methods can be done. Our tests in- 
cluded a set of 20 sentences, from sentences cited 
in an NLP textbook [Harris, 1985] (used to illus- 
trate non-MRD-based semantic disambiguation tech- 
niques) example sentences cited in [Guthrie et al., 
1992; Lesk, 1986; Hearst, 1991] (for comparison be- 
tween different lexical disambiguation routines) and 
examples taken from LDOCE (to assess the algo- 
rithm's performance with example sentences of par- 
ticular senses in the dictionary-this might also be 
a way of testing the consistency of the relationship 
between different senses and their corresponding ex- 
amples of a word in LDOCE). A sense chosen by our 
algorithm is compared with the 'intuitive' sense; but 
if there is not an exact match, we need to look further 
to judge how 'plausible' the predicted sense remains. 

After pruning of function words, length varied 
from 2 to 6 content words to be disambiguated, with 
an average of 3.1 ambiguous words per sentence. The 
number of different sense combinations ranged from 
15 to 126000. 

Of the 62 ambiguous words, 36 were assigned 
senses exactly matching our prior intuitions, giving 

an overall success rate of 58%. Although accuracy of 
the results is far from 100%, the method confirms the 
potential contribution of the use of dictionary defini- 
tions to the problem of lexical sense disambiguation. 

Ambiguous words had between 2 and 44 different 
senses. Investigating the success at disambiguating 
a particular word depended on the number of alter- 
native senses given in the dictionary we had the fol- 
lowing results: 

No. s e n s e s  No. words D i s a m b i g u a t e d  S u c c e s s  
per  word per  range  c o r r e c t l y  

2-5 23 16 70 
6-10 19 11 58 
11-15 II 5 45 
16-20 3 2 67 
21-44 6 2 33 

It might be expected that if the algorithm has to 
choose between a very large number of alternative 
senses it would be much likelier to fail; but in fact 
the algorithm held up well against the odds, showing 
graceful degradation in success rate with increasing 
ambiguity. Furthermore, success rate showed little 
variation with increased number of ambiguous words 
per sentence: 

No. amb. words No. s e n t e n c e s  S u c c e s s  
per sentence per range 

2 7 64 
3 8 S8 
4 2 63 
5 - 6  3 50 

This presumably indicates a balanced trade-off be- 
tween competing factors. One might expect that 
each extra word brings with it more information 
to help disambiguate other words, improving overall 
success rate; on the other hand, it also brings with 
it spurious senses with primitives which may act as 
'red herrings' favouring alternative senses for other 
words. 

The average overlap score per sentence for the best 
analysis rose in line with sentence length, or rather, 
number of ambiguous words in the sentence: 

No. ambiguous words Average  o v e r l a p  f o r  
per  s e n t e n c e  b e s t  d i s a m b i g u a t i o n  

2 2 . 2  
3 3 . 1  
4 5 . 0  
6 -6  6 . 7  
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We noticed a trend towards choosing longer sense- 
definitions over shorter ones (i.e senses defined by a 
larger set of semantic primitives tended to be pre- 
ferred); 41 out of the 62 solutions given by the pro- 
gram (66%) were longer definitions than average. 
This is to be expected in an algorithm maximising 
overlap, as there are more primitives to overlap with 
in a larger definition. However, this tendency did 
NOT appear to imply wrong long sense were being 
preferred to correct short sense leading to a wors- 
ening overall success rate: of the 41 cases, 27 were 
correct, i.e 66% compared to 58% overall. A better 
interpretation of this result might be that  longer def- 
initions are more detailed and accurate, thus making 
a better 'target'. 

Of the 26 'failures', 5 were assigned senses which 
were in fact incompatible with the syntactic word- 
class in the given sentence. This indicates that if 
the algorithm was combined with a word-tagger such 
as CLAWS [Atwell, 1983; Leech, 1983], and lexical 
senses were constrained to those allowed by the word- 
tags predicted by CLAWS, the success rate could rise 
to 66%. This may also be necessary in cases where 
LDOCE's definitions are not accurate enough. For 
example, trying to disambiguate the words show, in. 
retest and music in the sentence 'He's showing an 
interest in music' [Procter et al., 1978]. the pro- 
gram chose the eighth noun sense of show and the 
second verb sense of interest. This was because the 
occurence of the word 'do' in both definitions re- 
suited in a maximum overlap for that combination. 
However, the 'do's sense is completely different in 
each case. For the show 'do' was related to 'well 
done ~ and for interest to 'do something'. 

Optimisation with CHIP performed well in finding 
the optimal solution. In all cases no other sense com- 
bination had a better score than the one found. This 
was confirmed by testing our algorithm in a separate 
implementation without any of CHIP's optimisation 
procedures but using a conventional method for ex- 
ploring the search space for the best solution. Opti- 
misation with CHIP was found to be from 120% to 
600% faster than the conventional approach. 

6 Conc lus ions  and Future  Direc t ions  

It is difficult to make a straightforward comparison 
with other methods for lexical disambiguation, par- 
ticularly [Guthrie et al., 1992]'s and [Lesk, 1986]'s, as 
there is no standard evaluation benchmark; but this 
approach seems to work reasonably well for small 
and medium scale disambiguation problems with a 
broadly similar success rate. We could try produc- 
ing a much larger testbed for further comparative 
evaluations; but it is not clear how large this would 
have to he to become authoritative as an application- 
independent metric. Future enhancements to the ap- 
proach incorporating the automatic use of the on-line 
subject codes and cross reference and subcategorisa- 
tion systems of LDOCE can provide better results. 

Concerning CHIP, it provides a platform from 
which we can build in order to deal with large scale 
disambiguation; this could be used as an alternative 
to numerical optimisation techniques. The approach 
will involve the modelling of the problem in a com- 
binatorial form so that  constraint satisfaction logic 
programming [Van Hentenryck, 1989] can apply. For 
each sense of a word we can specify a set of con- 
straints such as its subject code(s), or part-of-speech 
information or both. Forward checkable (or looka- 
head) rules can be introduced to decrease the num- 
ber of possible senses of other words in advance (say, 
for example, that the 'economic' sense for the word 
'bank' has been chosen, then only the 'economic' or 
'neutral' senses of the 'arrange', 'overdraft' and 'ac- 
count' will be taken into account). This suggests a 
dramatic reduction on the search space; CHIP offers 
all the necessary arithmetic and symbolic facilities 
for the implementation. 

Our experiments will be based on the use the ma- 
chine version of LDOCE to verify the utility of this 
dictionary for the specific kind of applications we 
have in mind: the development methods and tech- 
niques that can assist large scale speech and hand- 
writing recognition systems using semantic knowl- 
edge from already available resources (MRDs and 
corpora) [Atwell et al., 1992]. But the problem here 
is somewhat different: semantic constraints must be 
used for the correct choice between different candi- 
date Ascii interpretations of a spoken or handwritten 
word. 
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