
Generating Contextually Appropriate Intonation*

S c o t t P r e v o s t & M a r k S t e e d m a n
C o m p u t e r and I n f o r m a t i o n Science

Univers i ty of P e n n s y l v a n i a

200 Sou th 33rd St ree t
P h i l a d e l p h i a PA 19104-6389, USA

(Internet: prevost©linc, cis. upenn, edu steedman@cis, upenn, edu)

A b s t r a c t

One source of unnaturalness in the output
of text-to-speech systems stems from the in-
volvement of algorithmically generated de-
fault intonation contours, applied under
minimal control from syntax and semantics.
It is a tribute both to the resilience of hu-
man language understanding and to the in-
genuity of the inventors of these algorithms
that the results are as intelligible as they
are. However, the result is very frequently
unnatural, and may on occasion mislead the
hearer. This paper extends earlier work on
the relation between syntax and intonation
in language understanding in Combinatory
Categorial Grammar (CCG). A generator
with a simple and domain-independent dis-
course model can be used to direct synthe-
sis of intonation contours for responses to
data-base queries, to convey distinctions of
contrast and emphasis determined by the
discourse model.

1 T h e P r o b l e m

Consider the exchange shown in example (1). Capi-
tals indicate stress, and brackets informally indicate
the intonational phrasing. The intonation contour
is indicated underneath using Pierrehumbert's nota-
tion ([8], [1], see [13] for a brief summary). L+tt*

*Keywords: Speech-synthesis; Generation. We thank
Mark Beutnagel and AT&T Bell Laboratories for allow-
ing us access to the TTS speech synthesiser. The re-
search was supported in part by NSF grant nos IRI90-
18513, IRI90-16592, and IRI91-17110, DARPA grant no.
N00014-90-J-1863, and ARC) grant no. DAAL03-89-
C0031.

and H* are different high pitch accents, and LH%
and LL% (and its relative L) are rising and low
boundaries respectively. The other annotations in-
dicate that the intonational tunes L+H* LH% and
H* LL% convey two distinct kinds of discourse in-
formation. First, both pitch accents mark any word
that they occur on (or rather, its interpretation) for
"focus", which in the context of such simple queries
as example (1) usually implies contrast of some kind.
Second, the tunes as a whole mark the constituent
that bears them (or rather, its interpretation) as
having a particular function in the discourse. We
have argued at length elsewhere that, at least in this
same restricted class of dialogues, the function of the
L+H* LH% tune is to mark the "theme" - that is,
"what the participants have agreed to talk about".
The H* LL% tune (and its relative the H* L tune)
mark the "theme" - that is, "what the speaker has
to say" about the theme. This phenomenon is a
strong one: the same intonation contour sounds quite
anomalous in the context of a question that does not
establish the correct open proposition as the theme,
such as Which device has the fast processor?. One
further point is worth noting: the unit that we are
calling the theme is not in this example a traditional
syntactic constituent. Many problems in the analy-
sis and synthesis of spoken language result from the
partial independence of syntactic and intonational
phrase boundaries.

The architecture of our system (shown in Figure 1)
is for the most part self-explanatory, but we note that
we follow a long tradition in separating the process
of generation itself into two phases. The "strategic"
phase is one in which the content of the utterance
is planned, including the division into theme and
rheme, and the assignment of contrastive focus. The
"tactical" phase is one in which content is mapped

332

(1) Q: I know that the OLD widget had a SLOW processor.
But what processor does the NEW widget include?

A: (The Nv.W widget includes) (a FAST
L+H* LH% H*

Ground Focus Ground Ground Focus
Theme Rheme

processor)
LL%

Ground

Prosodically Annotated Question

Intonational Parser

Strategic Generator

Tactical Generator

Prosodically Annotated Response

TTS Translator I
¢

I Speech Synthesizer [

Spoken Response

I Oatabas01

Figure 1: Architecture

onto strings of words.

2 CCG-Based Prosody

We will assume a standard CCG of the kind dis-
cussed in [11], [12], and [13]. For example, we shall
write the category of a transitive verb like prefers
either abbreviated, as in (2)a, or in full as in (2)b:

(2) a. (S \ N P) / N P
b. (S : include' z y \ N P : y) /NF : z

In b, syntactic types are paired with a semantic in-
terpretation via the colon operator, and the category
is that of a function from NPs (with interpretation
x) to functions from NPs (with interpretation y) to
Ss (with interpretation include' z y). Constants in
interpretations bear primes, variables do not, and
there is a convention of left associativity.

We also need the following two rules of functional
application, where X and Y are variables over cate-
gories in either notation:

(3) FUNCTIONAL APPLICATION:
a. x / Y Y x (>)
b. Y X\Y => X (<)

CCG extends this strictly context-free categorial
base in two respects. First, all arguments, such
as NPs, bear only type-raised categories, such as
S / (S \ N P) . Similarly, all functions into such cate-
gories, such as determiners, are functions into the
raised categories, such as (S / (S \ N P)) / N . For ex-
ample, subject NPs bear the following category in
the full notation:

(4) widgets := S : s / (S : s \ N P : widgets')

The derivation of a simple transitive sentence ap-
pears as follows in the abbreviated notation: 1

(5) Widgets include sprockets

S/(S\NP) (S\NP)/NP (S\NP)\((S\NP)/Ni a)

S\~P

S

Second, the combinatory rules are extended to in-
clude functional composition, as well as application.
The following rule will be relevant below:

(6) FORWARD COMPOSITION (>B):
X / Y Y / Z ~ B X / g

This rule allows a second syntactic derivation for the
above sentence, as follows: 2

(7) Widget a include sprockets

S/(S\NP) (S\NP)/NP S\(S/NP)

S/tn •

S

1The reader is encouraged to satisfy themselves
using the full semantic notation that this deriva-
tion yields an S with the correct interpretation
include' sprockets' widgets'. At first glance, it looks as
though type-raising will expand the lexicon Marmingly.
One way round this problem is discussed in [14].

2The reader is again strongly uged to satisfy them-
selves that the S yielded in the derivation bears the cor-
rect interpretation.

333

The reasons for making this move, which concern
the grammar of coordinate constructions, the gen-
eral class of rules from which the composition rule
is drawn, and the problem of processing in the face
of such associative rules, are discussed in tile earlier
papers, and need not concern us here. The point
for present purposes is that the partit ion of the sen-
tence into the object and a non-standard constituent
S : include' z ' w i d g e l s ' / N P : z makes this theory
structurally and semantically perfectly suited to the
demands of intonation, as exhibited in example (1). 3

We can therefore directly incorporate intonational
constituency in syntax, as follows (cf. [12], [13], and
[15]). We assign to all constituents an autonomous
prosodic category, expressing their potential for com-
bination with other prosodic categories. Then we
lock these two structural systems together via the
following principle, which says that syntactic and
prosodic constituency must be isomorphic:

(S) PROSODIC CONSTITUENT CONDITION:
Combination of two syntactic categories
via a syntactic combinatory rule is only al-
lowed if their prosodic categories can also
combine via a prosodic combinatory rule.

One way to do this is to make the boundaries ar-
guments and the pitch accents functions over them.
The boundaries are as follows: 4

(9) L : - b : 1
LL% : - b : il
LH% := b : lh

As in CCG, categories consist of a structural type,
here b for boundary, and an interpretation, associ-
ated via a colon. The pitch accents have the follow-
ing functional types: 5

(10) L+H* := p : l h e m e / b : lh
H* := p : r h e m e / b : l , P : r h e m e / b : l l

We further assume, following Bird [2], that the pres-
ence of a pitch accent causes some element(s) in the
translation of the category to be marked as focussed,
a mat ter which we will for simplicity assume occurs
at the level of the lexicon. For example, when in-
cludes bears a pitch accent, its category will be as
follows:

(11) (S : (* i n c l u d e ') x Y k N P : y) / N P : x

The categories that result from the combination of
a pitch accent and a boundary may or may not con-
stitute entire prosodic phrases, since there may be a
prenuclear null tone. There may also be a null tone
separating the pitch accent(s) from the boundary.

aA similar argument in a related categorial framework
is made by Moortgat [6].

4These categories slightly depart from Pierrehumbert.
5 Here we are ignoring the possibility of multiple pitch

accents in the same prosodic phrase, but cf. [13].

(Both possibilities are illustrated in (1)). We there-
fore assign the following category to the null tone,
which can thereby apply to the right to any non-
functional category of the form X : Y, and compose
to their right with any function into such a category,
including another null tone, to yield the same cate-
gory:

(12) 0 := X : Y / X : Y

It is this omnivorous category that allows intona-
tional tunes to be spread over arbitrarily large con-
stituents, since it allows the pitch accent's desire for
a boundary to propagate via composition into the
null tone category (see the earlier papers).

In order to allow the derivation to proceed above
the level of complete prosodic phrases identifying
themes and rhemes, we need two unary category-
changing rules to mark the interpretation a of the
corresponding grammatical category with that dis-
course function and change the phonological cate-
gory, thus: 6

(13) ~ ::~
p : X p / p

(14) ~, =>
P : X p

These rules change the prosodic category either to p,
or to an endocentric function over p. (These types
capture the fact that the LL% boundary can only
occur at the end of a sentence, thereby correcting
an overgeneration in the version of this theory in
Steedman [13], noted by Bird [2]). The fact that p
is an atom rather than a term of the form X : Y is
important, since it means that it can combine only
with another p. This is vital to the preservation of
the intonation s t ruc tu re /

The application of the above two rules to a com-
plete intonational phrase should be thought of as pre-
cipitating a side-effect whereby a copy of the category
E is associated with the clause as its theme or rheme.
(We gloss over details of how themes and rhemes are
associated with a particular clause, as well as a num-
ber of further complications arising in sentences with
more than one theme).

In [13] and [15], a related set of rules of which
the present ones form a subset are shown to be well-
behaved with a wide range of examples. Example
(15) gives the derivation for an example related to
(7) (since the raised object category is not crucial, it
has been replaced by NP to ease comprehension): s
Note that it is the identification of the theme and

8These rules represent both a departure from the ear-
lier papers and a slight simplification of what is actually
needed to allow prosodic phrases to combine correctly.

7The category has the same effect of preventing fur-
ther composition into the null tone achieved in the earlier
papers by a restriction on forward prosodic composition.

SNote the focus-marking effect of the pitch accents.

334

(15) Widgets include sprockets
(L+H* LHT,) (H* LLT~)

.

S: s/(S: s\NP: *eidget ~) (S: include ~ x y\NP: y)/NP: x NP: *sprockets '
p: theme/b: lh b: lh P: rheme

S: include ' • ,eldget ~/NP : •
p: theme

S : i n c l u d e ' • *w idge t ' /NP : • NP: * s p r o c k e t s '
pip p

S: i n c l u d e ' * s p r o c k e t s ' * w i d g e t '

P
Theme: S : include z * w i d g e t / N P : z
Rheme: N P : , s p r o c k e t s

rheme at the stage before the final reduction that de-
termines the information structure for the response,
for it is at this point that discourse elements like
the open proposition are explicit, and can be used in
semantically-driven synthesis of intonation contour
directly from the constituents.

Of course, such gushingly unambiguous intonation
contours are comparitively rare in normal dialogues.
Even in the context given in (7), a more usual re-
sponse to the question would put low pitch - that is,
the null tone in Pierrehumbert's terms - on every-
thing except the focus of the rheme, sprockets, as in
the following:

(16) Widgets include SPROCKETS

Such an utterance is of course ambiguous as to
whether the theme is widgets or what widgets in-
clude. The earlier papers show that such "un-
marked" themes, which include no pitch accent be-
cause they are entirely background, can be captured
by a "Null Theme Promotion Rule", as follows: 9

(17) ~ :E
X:Y/X:Y ::~ p : t h e m e

3 Parsing

Having established the relationship between prosody,
information structure and CCG syntax, we can now
address the computational problem of automatically
directing the synthesis of intonation contours for
responses to database queries. Our computational
model (shown in Figure 1) starts with a prosodically
annotated wh-question given as a string of words
with associated Pierrehumbert-style pitch accent and
boundary markings. We employ a simple bottom-up
shift-reduce parser of the kind presented in [14], mak-
ing direct use of the CCG-Prosody theory described
above, to identify the semantics of the question. The

9See the next section concerning the nondeterminism
inherent in this rule.

inclusion of prosodic categories in the grammar al-
lows the parser to identify the information structure
(theme and theme) within the question as well. The
focus and background information within the theme
and theme (if any) is further marked by the focus
predicate * in the semantic representation. For ex-
ample, given the question (18) below, the parser pro-
duces the semantic and information structure repre-
sentations shown in (19). 1°

(18) I know that widgets contain cogs,
but what parts do WODGETS include?

L+H* LH% H* LL%

(19) prop:
theme:

rheme:

s : Ax[part(x)&include(*wodgets, x)]
s : Ax~ar t (x)&:include(,wodgets, x)] /

(s: i .et(.wodg~ts, ~) l . p : ~)
s : include(,wodgets, x) /n p :

The nondeterminism inherent in unmarked themes
is handled by default: the present implementation
of Null Theme Promotion delivers the longest un-
marked theme that the syntax permits. 11

4 Strategic Generation
The strategic phase of generating a response is
somewhat simplified in the current implementation,
and we have cut a number of corners. In par-
ticular, we currently assume that the question is
the sole determinant of the information structure
in the answer. This is undoubtedly an oversim-
plification. The complete specification of the se-
mantic and information structures provided by the
parser is used by the generator to determine the
intelligible and prosodically natural response. For

1°The alert reader will note that the notation for con-
stants, variables, and functional application is slightly
changed in these sections, to correspond to the Prolog
implementation.

11This is a simplification, but a harmless one for the
simplified query domains that we are dealing with here.

335

a wh-question, the semantic representation corre-
sponds to a lambda expression in one or more vari-
ables ranging over individuals in the database, and
has the structure of a Prolog query which we can
evaluate to determine the possible instantiations of
the open proposition. The instantiated proposi-
tion determines the semantic proposition to be con-
veyed in the response. For the example above, this
is par t (sprocke ts)&inc lude(.wodge t s , . sprocke ts) -
"Wodgets include sprockets".

Note that the derived semantics includes the neces-
sary occurrences of the focus predicate *, determined
as follows. All terms that are focused in the ques-
tion semantics are focused in the response semantics.
Intuitively, the instantiated variable in the response
semantics must also be focused since it represents the
information which is new in the response. For more
complex rhemes such as quantified NPs with modi-
fiers, we focus those elements of the semantic repre-
sentation that are new in the current context. (That
is, ones which did not figure in the interpretation
of the original query). Thus, given a question such
as (1), we choose to focus the modifier "fast" rather
than the noun "processor" in the rheme. Similary,
in the exchange below, we focus "processor" instead
of "fast" because of its newness in the context.

(20) Q: What fast component does the widget
include?

A: The widget includes a fast PROCES-
SOR.

To determine an appropriate intonation contour
for the utterance, we must further determine the
appropriate information structure. Fortunately, for
the simple question-answering task, the information
structure of the response can be assumed to be com-
pletely determined by the original query. The theme
of a question corresponds to "what the question is
about" - in this case, "parts". The theme of a ques-
tion corresponds to "what the speaker wants to know
about the theme" - here, "What wodgets include".
It follows that we expect the theme of the ques-
tion to determine the theme of the response. For
example (18), the theme of the response should be
S : inc lude(.wodge ts , x) / N P : x, as in (21) below.
Note that we simplify the strategic generation prob-
lem by including the syntactic category in our repre-
sention of the theme (as determined by the syntac-
tic category of the theme of the original quest ion)) 2
Given the syntactic and semantic representation of
the theme of the response, the CCG combination
rules can easily be invoked to determine the theme of
the response. The rheme is simply the complement

12Here we are cutting another corner: the theme, and
hence the rheme, are fully specified syntactically, as well
as semantically, as a result of the analysis of the question:
in a more general system, we would presumably need to
specify syntactic type from scratch, starting from pure
semantics.

of the theme with respect to the overall semantics of
the response, as in (21) below, obtained by instan-
tiating the result and one input of the appropriate
combinatory rule (cf. [7]): la

(21) prop: s: include(,wodgets, *sprockets)
theme: s : include(.wodgets, x) /np : x
theme: np : ,sprockets

5 T a c t i c a l G e n e r a t i o n a n d C C G

Just as the shift-reduce parser sketched above can
readily be made to construct the interpretations and
information structures shown in the examples, specif-
ically marking themes, rhemes and their foci, so it is
relatively easy to do the reverse---to generate pro-
sidically annotated strings from a focus-marked se-
mantic representation of themes and rhemes.

For simplicity, we start by describing the syntac-
tic and semantic aspects of the generator, ignoring
prosody for the moment. In constructing a tactical
generation schema, several design options are avail-
able, including bot tom-up, top-down and semantic
head-driven models ([3], [10]). We adopt a hybrid
approach, employing a basic top-down strategy that
takes advantage of the CCG notion of "functional
head" to avoid fruitless search. While this tech-
nique exhibits some inefficiencies characteristic of a
depth-first search, it has several significant advan-
tages. First, it does not rely on a specific seman-
tic representation, and requires only that the seman-
tics be compositional and representable in Prolog.
Thus the generating procedure is independent of the
particular grammar. This modular character of the
system has been very useful in developing the com-
petence grammar proposed in the preceding section,
and offers a basis for proving the completeness of
the implementation with respect to the competence
theory.

The tactical generation program is written in Pro-
log, and works as follows. Starting with a syntactic
constituent (initially s) and a semantic formula, we
utilize the CCG reduction rules to determine possible
subconstituents that can combine to yield the orig-
inal constituent, invoking the generator recursively
to generate the proposed subconstituents. The base
case of the recursion occurs when a category we wish
to generate unifies with a category in the lexicon.
For example, suppose we wish to generate an utter-
ance corresponding to the category s:walks '(mary') .
Since the given category does not unify with any cat-
egory in the lexicon, the program proposes possible
subconstituents by checking the CCG combination
rules in some pre-determined order. By the back-
ward function application rule, we might hypothe-
size that the categories x and s :walks ' (mary ') \ z are
the subconstituents of s:walks '(mary') , where x is

13Again the example is simplified by the use of a non-
raised category for the object.

336

(22) gen(s:def(x, ((engine(x)~new(x))&shiny(x))~
def(y, ((gear(y)&rotating(y))&largest(y))~contains(x,y)))).

RESULT: the shiny nee engine contains the largest rotating gear.

(23) genCs:exists(z, (engineerCz)~brilliantCz))kexists(x,(design(x)~revolutionary(x))&
def(y, (engine(y)~new(y))~gave(z,y,x))))).

RESULT: a b r i l l i a n t e n g i n e e r gave the nee engine a r e v o l u t i o n a r y d e s i g n .

(24) gen(s:def(x,(widget(x)~*new(x))~probably(contains(x,y)))/np:y @ p:theme).
RESULT: the new@lhstar vidget probably containsQlhb.

(25) gen(np:(x's)'def(x,(processor(x)&*fastest(x))ls) @ ph:rheme).
RESULT: the f a s t e s t @ h s t a r p r o c e s s o r @ l l b .

(26) gen(s:def(x,(widget(x)&new(x))& *probably(contains(x,y)))Inp:y @ p:theme).
RESULT: the new widget probably@lhstarcontains@lhb.

(27) gen(s:def(x,(*widget(x)~new(x))~contains(x,y))/np:y @ p:theme).
RESULT: the new widgetQlhstar contains@lhb.

some variable. If we recursively call the generator
on s:walks'(mary')kx, we find that it unifies with
the category s:walks'(y}knp:y in the lexicon, corre-
sponding to the lexical item walks. This unification
forces the complementary category z to unify with
np:mary', which yields the lexical item mary when
the generator is recursively invoked. Concatenat-
ing the results of generating the proposed subcon-
stituents therefore gives the string "Mary walks."

The top-down nature of the generation scheme
has a number of important consequences. First,
the order in which we generate the postulated
subconstituents determines whether the generation
succeeds. Had we chosen to generate x before
s:walks'(mary'}kx, we would have entered a poten-
tially infinite recursion, since x unifies with every
category in the lexicon. For this reason, our gener-
ator always chooses to recursively generate the sub-
constituent that acts as the functional head before
the subconstituent that acts as the argument under
the CCG combinatory rules. By strictly observing
this principle, we ensure that as much semantic infor-
mation as possible is deployed, thereby constraining
the search space by prohibiting spurious unifications
with incorrect items in the lexicon. For this reason,
we refer to our generation scheme as a "functional
head"-driven, top-down approach.

One disadvantage of the top-down generation tech-
nique is its susceptibility to the non-termination
problem. If a given path through the search space
does not lead to unification with an item in the
lexicon, some condition which aborts the path in
question at some search depth must be imposed.

Note that whenever the CCG function application
rules are used to propose possible subconstituents to
be recursively generated, the subconstituent acting
as the functional head has one more curried argu-
ment than its parent. Since we know that in En-
glish there is a limit to the number of arguments
that a functional category can take, we can abort
fruitless search paths by imposing a limit on the
number of curried arguments that a CCG category
can possess. The current implementation allows
categories with up to three arguments, the mini-
mum needed for constructions involving di-transitive
verbs. Note that this strategy does not prohibit
the generation of categories whose arguments them-
selves are complex categories. Thus, we allow cat-
egories such as ((s\np)/np)\(((s\np)/np)/np) for
raised indirect objects, but not categories such as
(((s\ np}/np)/np)/np.

When the CCG composition rule is used to pro-
pose possible subconstituents, the subconstituents
do not have more curried arguments than their par-
ent. Consequently, imposing a bound of the type
described above will not necessarily avoid endless re-
cursion in all cases. Suppose, for example that we
wish to generate a category of the form s/x, where s
is a fully instantiated expression and x is a variable.
If the function application rules fail to produce sub-
constituents that generate the category, we rely on
the CCG composition rule to propose the possible
subconstituents s/y and y/x. Since s/x and s/y are
identical categories to within renaming of variables,
the recursion will continue indefinitely. We rectify
this situation by invoking the composition rule only

337

if the original category has an instantiation for both
its argument and result. Such a solution imposes
limitations on the types of derivations allowed by the
system, but retains the simplicity and transparency
of the algorithm. Merely imposing a limit on the
depth of the recursion provides a more general solu-
tion. Examples of the types of sentences that can be
generated appear in (22) and (23).

This procedure can immediately be applied to the
prosodically augmented grammar. To do so, we
merely enforce the Prosodic Constituent Condition
at each step in the generation. That is, whenever
a pair of subconstituents are considered (by revers-
ing the CCG combination rules), a pair of prosodic
subconstituents are also considered and recursively
generated using the prosodic combinatory rules. Ex-
amples (24) and (25) illustrate the generation of in-
tonation for the theme and theme of the utterance
"The NEW widget probably contains the FASTEST
processor" .14 Examples (26) and (27) manifest the
intonational results of moving the thematic focus
among the various propositions in the semantic rep-
resentation of the theme "The new widget probably
contains. . . ".

6 Synthesis

We showed in the previous section how constituents
of the type shown in (21) can generate intonation-
ally annotated strings. The resulting string for
the current example is "wodgets@lhstar include@lhb
sprockets@[hstar, llb]." The final aspect of gener-
ation involves translating such a string into a form
usable by a suitable speech synthesiser. Currently,
we use the Bell Laboratories I T S system ([5]) as a
post-processor to synthesise the speech wave. Ex-
ample (28) shows the translated output for the same
example, as it is sent to this synthesiser.

(28) \!> \!*L+H*I wodgets \ ! f L 1 include
\ ! p L 1 \ ! b H 1 \!*H*2 sprockets
\ ! p L 1 \ ! b L 1 . \ (* [2 0] \)

We stress that we use TTS as an unmodified output
device, without any fine tuning other than in the
lexicon. While TTS is particularly easy to use with
Pierrehumbert's notation, we are confident that our
system can easily be adapted to other synthesisers.

7 R e s u l t s

The system just described produces sharp and
natural-sounding distinctions of intonation contour
in minimal pairs of queries like the following:

14The ~ symbol separates syntactic categories from
their corresponding prosodic categories and lexical items
from their pitch/boundary markings.

(29) Q: I know that widgets contain cogs, but
what gadgets include SPROCKETS?
L+H* LH% H* LL%
p r o p : s : Ax[gadget(x)&inel(x, *sprockets)]
t h e m e : s : Ax[gadget(~)&inel(x,*sprockets)]]

(s : inel(x, *sprockets)\rip: x)
r h e m e : s : i n e l (x , * s p r o e k e t s) \ n p : x

A: p r o p : s : inel(*wodgcts, *sprockets)
t h e m e : s : i n c l (x , * s p r o e k e t s) \ n p : x
r h e m e : n p : *wodgets

WODGETS include SPROCKETS.
H* L L+H* LH%

(30) Q: I know that widgets contain cogs, but
what parts do WODGETS include?
L+H* LH% H* LL%

p r o p : s : Ax[part(x)&inel(*wodgets,x)]
t h e m e : s : Ax~gart(x)&inel(*wodgets,x)]/

(s : ine l (*wodgets ,x) /np : x)
r h e m e : s : incl(*wodgcts, x) /np : x

A: p r o p : s : inel(*wodgets, *sprockets)
t h e m e : s : ine l (*wodgets ,x) /np : x
rheme: n p : *sprockets

WODGETS include SPROCKETS.
L+H* LH% H* LL%

(31) Q: I know that programmers use widgets,
but which people DESIGN widgets?

L+H* LH% H* LL%
p r o p : s : Ax~eople(x)&*design(x,widgets)]
t h e m e : s : Ax~eoplc(x)&*desian(x, widgets)] I

(s : *des ign(x ,widgets) \np : x)
r h e m e : s : *des ign(x ,widgets) \np : x

A: p r o p : s : *design(*engineers,widgets)
t h e m e : s : *design(x, widgc ts) \np : x
r h e m e : np: *engineers

ENGINEERS DESIGN widgets.
H* L L+H* LH%

(32) Q: If engineers design widgets,
which people design WODGETS?

L+H* LH% H* LL%
p r o p : s : Ax~cople(x)&design(x,*wodgets)]
t h e m e : s : Ax[people(x)&design(x, *wod#ets)]/

(s : design(x, ,wodge ts) \np : ~)
r h e m e : s : design(x, *wodgets)\np : x

A: p r o p : s : design(*programmers, *wodgets)
theme: s : design(x, *wodgets) \np : x
r h e m e : np : * p r o g r a m m e r s

PROGRAMMERS design WODGETS.
H* L L+H* LH%

Examples (29) and (30) illustrate the ability of our
system to produce appropriately different intonation
contours for identical strings of words depending on
the context, which determines the information struc-
ture of the response..If the responses in these ex-
amples are interchanged, the result sounds distinctly

338

unnatural in the given contexts. From examples (31)
and (32), it will be apparent that our system has
the ability to make distinctions in focus placement
within themes and rhemes based on context. The
issue of focus placement can be crucial in more com-
plex themes and rhemes, as shown below:
(33) Q: I know the old widget has the slowest processor,

but which widget has the FASTEST processor?
L+H* LH% H* LL%

A: The NEW widget has the FASTEST processor.
H* L L+H* LH%

(34) Q: The old widget has the slowest processor,
but which processor does the NEW widget have?

L+H* LH% H* LL%
A" The NEW widget has the FASTEST processor.

L+H* LH~ H* LL%

(35) Q: The new WODGET has the slowest processor,
but which processor does the new WIDGET have?

L+H* LH~ H* LL%
A: The new WIDGET has the FASTEST processor.

L+H* LH~0 H* LL%

As noted earlier, such precisely specified themes
are uncommon in normal dialogue. Consequently,
the Null Tone Promotion rule is employed for un-
marked themes, allowing the types of responses in
(36) and (37) below. The theme is taken to be the
longest possible prosodically unmarked constituent
allowed by the syntax.

(36) Q: I know t h a t p r o g r a m m e r s use widgets,
but which people DESIGN widgets?

H* LL%
A: ENGINEERS design widgets.

H* L

(37) Q: If engineers design widgets,
which people design WODGETS?

H* LL%
A: PROGRAMMERS design wodgets.

H* L

Although we have only briefly discussed the pos-
sibility of multiple pitch accents within a theme or
rheme, we have included such a capability in our im-
plementation. The system's ability to handle multi-
ple pitch accents is illustrated by the following ex-
ample.
(38) Q: I know that students USE WODGETS,

but which people DESIGN WIDGETS?
H* H* LL%

A: ENGINEERS design widgets.
H* L

While many important problems remain, exam-
ples like these show that it is possible to produce
synthesized speech with contextually appropriate in-
tonational contours using a combinatory theory of
prosody and information structure that is completely
transparent to syntax and semantics. The model
of utterance generation for Combinatory Categorial
Grammars presented here implements the prosodic
theory in a similarly transparent and straightforward
manner.

8 R e f e r e n c e s

[1] Beckman, Mary and Janet Pierrehumbert:
1986, 'Intonational Structure in Japanese and
English', Phonology Yearbook, 3, 255-310.

[2] Bird, Steven: 1991, 'Focus and phrasing in Uni-
fication Categorial Grammar', in Steven Bird
(ed.), Declarative Perspectives on Phonology,
Working Papers in Cognitive Science 7, Univer-
sity of Edinburgh. 139-166.

[3] Gerdeman, Dale and Erhard Hinrichs: 1990.
Functor-driven Natural Language Generation
with Categorial Unification Grammars. Pro-
ceedings of COLING go, Helsinki, 145-150.

[4] Jackendoff, Ray: 1972, Semantic Interpretation
in Generative Grammar, MIT Press, Cambridge
MA.

[5] Liberman, Mark and A.L. Buchsbaum: 1985,
'Structure and Usage of Current Bell Labs Text
to Speech Programs', Technical Memorandum,
TM 11225-850731-11, AT&T Bell Laboratories.

[6] Moortgat, Michael: 1989, Categorial Investiga-
tions, Foris, Dordreeht.

[7] Pareschi, Remo and Mark Steedman: 1987,
'A Lazy Way to Chart-parse with Categorial
Grammars', Proceedings of the ~5th Annual
Meeting of the Association for Computational
Linguistics, Stanford CA, July 1987, 81-88.

[8] Pierrehumbert, Janet: 1980, The Phonology and
Phonetics of English Intonation, Ph.D disserta-
tion, MIT. (Dist. by Indiana University Lin-
guistics Club, Bloomington, IN.)

[9] Pierrehumbert, Janet, and Julia Hirschberg,
1990, 'The Meaning of Intonational Contours in
the Interpretation of Discourse', in Philip Co-
hen, Jerry Morgan, and Martha Pollack (eds.),
Intentions in Communication, MIT Press Cam-
bridge MA, 271-312.

[10] Shieber, Stuart and Yves Schabes: 1991, 'Gen-
eration and Synchronous Tree-Adjoining Gram-
mars', Computational Intelligence, 4, 220-228.

[11] Steedman, Mark: 1990. 'Gapping as Con-
stituent Coordination', Linguistics ~J Philoso-
phy, 13, 207-263.

[12] Steedman, Mark: 1990, 'Structure and In-
tonation in Spoken Language Understanding',
Proceedings of the 25th Annual Conference of
the Association for Computational Linguistics,
Pittsburgh, PA, June 1990, 9-17.

[13] Steedman, Mark: 1991, Structure and Intona-
tion, Language, 68, 260-296.

[14] Steedman, Mark: 1991, 'Type-raising and Di-
rectionality in Categorial Grammar' , Proceed-
ings of the 29th Annual Meeting of the Asso-
ciation for Computational Linguistics, Berkeley
CA, June 1991, 71-78.

339

[15] Steedman, Mark: 1991, 'Surface Structure, In-
tonation, and "Focus"', in Ewan Klein and F.
Veltman (eds.), Nalural Language and Speech,
Proceedings of the ESPRIT Symposium, Brus-
sels, Nov. 1991. 21-38,260-296.

340

