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A b s t r a c t  

We show how techniques known from gen- 
erMized LR parsing can be applied to left- 
corner parsing. The ~esulting parsing algo- 
rithm for context-free grammars has some 
advantages over generalized LR parsing: 
the sizes and generation times of the parsers 
are smaller, the produced output is more 
compact, and the basic parsing technique 
can more easily be adapted to arbitrary 
context-free grammars. 
The algorithm can be seen as an optimiza- 
tion of algorithms known from existing lit- 
erature. A strong advantage of our presen- 
tation is that it makes explicit the role of 
left-corner parsing in these algorithms. 
Keywords :  Generalized LR parsing, left- 
corner parsing, chart parsing, hidden left 
recursion. 

1 Introduction 
Generalized LR parsing was first described by 
Tomita [Tomita, 1986; Tomita, 1987]. It has been 
regarded as the most efficient parsing technique for 
context-free grammars. The technique has been 
adapted to other formalisms than context-free gram- 
mars in [Tomita, 1988]. 

A useful property of generalized LR parsing 
(henceforth abbreviated to GLR parsing) is that in- 
put is parsed in polynomial time. To be exact, if the 
length of the right side of the longest rule is p, and 
if the length of the input is n, then the time com- 
plexity is O(nP+l). Theoretically, this may be worse 
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than the time complexity of Earley's algorithm [Ear- 
ley, 1970], which is O(n3). For practical cases in 
natural language processing however, GLR parsing 
seems to give the best results. 

The polynomial time complexity is established by 
using a graph-structured stack, which is a generaliza- 
tion of the notion of parse stack, in which pointers are 
used to connect stack elements. If nondeterminism 
occurs, then the search paths are investigated simul- 
taneously, where the initial part of the parse stack 
which is common to all search paths is represented 
only once. If two search paths share the state of 
the top elements of their imaginary individual parse 
stacks, then the top element is represented only once, 
so that any computation which thereupon pushes el- 
ements onto the stack is performed only once. 

Another useful property of GLR parsing is that 
the output is a concise representation of all possi- 
ble parses, the so called parse forest, which can be 
seen as a generalization of the notion of parse tree. 
(By some authors, parse forests are more specifically 
called shared, shared-packed, or packed shared (parse) 
forests.) The parse forests produced by the Mgorithm 
can be represented using O(n p+I) space. Efficient 
decoration of parse forests with attribute values has 
been investigated in [Dekkers et al., 1992]. 

There are however some drawbacks to GLR pars- 
ing. In order of decreasing importance, these are: 

• The parsing technique is based on the use of LR 
tables, which may be very large for grammars 
describing natural languages. 1 Related to this 
is the large amount of time needed to construct 

l[Purdom, 1974] argues that grammars for program- 
ruing languages require LR tables which have a size which 
is about linear in the size of the grammar. It is gener- 
ally considered doubtful that similar observations can be 
made for grammars for natural languages. 
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a parser. Incremental construction of parsers 
may in some cases alleviate this problem [Rek- 
ers, 1992]. 

• The parse forests produced by the algorithm are 
not as compact as they might be. This is be- 
cause packing of subtrees is guided by the merg- 
ing of search paths due to equal LR states, in- 
stead of by the equality of the derived nonter- 
minals. The solution presented in [Rekers, 1992] 
implies much computational overhead. 

• Adapting the technique to arbitrary grammars 
requires the generalization to cyclic graph- 
structured stacks [Nozohoor-Farshi, 1991], 
which may complicate the implementation. 

• A minor disadvantage is that  the theoretical 
time complexity worsens if p becomes larger. 
The solution given in [Kipps, 1991] to obtain 
a variant of the parsing technique which has 
a fixed time complexity of O(n3), independent 
of p, implies an overhead in computation costs 
which worsens instead of improves the time com- 
plexity in practical cases. 

These disadvantages of generalized LR parsing 
are mainly consequences of the LR parsing tech- 
nique, more than consequences of the use of graph- 
structured stacks and parse forests. 

Lang [Lang, 1974; Lang, 1988c] gives a general con- 
struction of deterministic parsing algorithms from 
nondeterministic push-down automata.  The pro- 
duced data structures have a strong similarity to 
parse forests, as argued in [Billot and Lang, 1989; 
Lang, 1991]. The general idea of Lang has been 
applied to other formalisms than context-free gram- 
mars in [Lang, 1988a; Lang, 1988b; Lang, 1988d]. 

The idea of a graph-structured stack, however, 
does not immediately follow from Lang's construc- 
tion. Instead, Lang uses the abstract notion of a 
table to store information, without trying to find the 
best implementation for this table. 2 

One of the parsing techniques which can with 
some minor difficulties be derived from the con- 
struction of Lang is generalized left-corner parsing 
(henceforth abbreviated to GLC parsing). 3 The 
starting-point is left-corner parsing, which was first 
formally defined in [Rosenkrantz and Lewis II, 1970]. 
Generalized left-corner parsing, albeit under a dif- 
ferent name, has first been investigated in [Pratt, 

2[Sikkel, 1990] argues that the way in which the ta- 
ble is implemented (using a two-dimensional matrix as 
in case of Earley's algorithm or using a graph-structured 
stack) is only of secondary importance to the global be- 
haviour of the parsing algorithm. 

3The term "generalized left-corner parsing" has been 
used before in [Demers, 1977] for a different parsing tech- 
nique. Demers generalizes "left corner of a right side" to 
be a prefix of a right side which does not necessarily con- 
sist of one member, whereas we generalize LG parsing 
with zero lookahead to grammars which are not LC(0). 

1975]. (See also [Tanaka et al., 1979; Bear, 1983; 
Sikkel and Op den ikker ,  1992].) In [Shann, 1991] 
it was shown that  the parsing technique can be a se- 
rious rival to generalized LR parsing with regard to 
the time complexities. (Other papers discussing the 
time complexity of GLC parsing are [Slocum, 1981; 
Wir~n, 1987].) 

A functional variant of GLC parsing for defi- 
nite clause grammars has been discussed in [Mat- 
sumoto and Sugimura, 1987]. This algorithm does 
not achieve a polynomial time complexity however, 
because no "packing" takes place. 

A variant of Earley's algorithm discussed in [Leiss, 
1990] also is very similar to GLC parsing although 
the top-down nature of Earley's algorithm is pre- 
served. 

GLC parsin~ has been rediscovered a number of 
times (e.g. in [Leermakers, 1989; Leermakers, 1992], 
[Schabes, 1991], and [Perlin, 1991]), but without any 
mention of the connection with LC parsing, which 
made the presentations unnecessarily difficult to un- 
derstand. This also prevented discovery of a number 
of optimizations which are obvious from the view- 
point of left-corner parsing. 

In this paper we reinvestigate GLC parsing in 
combination with graph-structured stacks and parse 
forests. It is shown that  this parsing technique is not 
subject to the four disadvantages of the algorithm of 
Tomita. 

The structure of this paper is as follows. In Sec- 
tion 2 we explain nondeterministic LC parsing. This 
parsing algorithm is the starting-point of Section 3, 
which shows how a deterministic algorithm can be 
defined which uses a graph-structured stack and pro- 
duces parse forests. Section 4 discusses how this gen- 
eralized LC parsing algorithm can be adapted to ar- 
bitrary context-free grammars. 

How the algorithm can be improved to operate 
in cubic time is shown in Section 5. The improved 
algorithm produces parse forests in a non-standard 
representation, which requires only cubic space. One 
more class of optimizations is discussed in Section 6. 

Preliminary results with an implementation of our 
algorithm are discussed in Section 7. 

2 Left-corner parsing 
Before we define LC parsing, we first define some 
notions strongly connected with this kind of parsing. 

We define a spine to be a path in a parse tree 
which begins at some node which is not the first son 
of its father (or which does not have a father), then 
proceeds downwards every time taking the leftmost 
son, and finally ends in a leaf. 

We define the relation / between nonterminals 
such that  B / A if and only if there is a rule A --* B a ,  
where a denotes some sequence of grammar symbols. 
The transitive and reflexive closure of / is denoted 
by L*, which is called the left-corner relation. Infor- 
mally, we have that  B / *  A if and only if it is possible 
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to have a spine in some parse tree in which B occurs 
below A (or 13 = A). We pronounce B Z* A as "B is 
a left corner of A". 

We define the set GOAL to be the set consisting 
of S, the start  symbol, and of all nonterminals A 
which occur in a rule of the form B--* t~ A fl where 
is not e (the empty sequence of grammar symbols). 
Informally, a nonterminal is in GOAL if and only if 
it may occur at the first node of some spine. 

We explain LC parsing by means of the small 
context-free grammar below. No claims are made 
about the linguistic relevance of this grammar. Note 
that  we have transformed lexieal ambiguity into 
grammatical ambiguity by introducing the nonter- 
minals VorN and VorP. 

S --, N P V P  
S - * S P P  
NP --~ "time" 
NP -~ "an . . . .  arrow" 
NP -~ NP NP 
NP -~ VorN 
VP --~ VorN 
VP - *  VorP NP 
PP --* VorP NP 
VorN - *  "flies" 
VorP --~ "like" 

The algorithm reads the input from left to right. 
The elements on the parse stack are either nonter- 
minals (the goal elements) or items (the item ele- 
ments). Items consist of a rule in which a dot has 
been inserted somewhere in the right side to separate 
the members which have been recognized from those 
which have not. 

Initially, the parse stack consists only of the start  
symbol, which is the first goal, as indicate in Fig- 
ure 1. The indicated parse corresponds with one of 
the two possible readings of "time flies like an arrow" 
according to the grammar above. 

We define a nondeterministic LC parser by the 
parsing steps which are possible according to the fol- 
lowing clauses: 

la.  If the element on top of the stack is the nonter- 
minal A and if the first symbol of the remaining 
input is t, then we may remove t from the input 
and push an item [B --~ t • ~] onto the stack, 
provided B /* A. 

lb. If the element on top of the stack is the non- 
terminal A, then we may push an item [B --~ .] 
onto the stack, provided B /* A. (The item [B 
--* .] is derived from an epsilon rule B ---, c.) 

2. If the element on top of the stack is the item 
[A ~ c~ . t /~] and if the first symbol of the 
remaining input is t, then we may remove t from 
the input and replace the item by the item [A 
---+ Ott o ill. 

3. If the top-most two elements on the stack are B 
[A ~ ~ .], then we may replace the item by an 
item of the form [C --* A • ill, provided C Z* B. 

4. If  the top-most three elements on the stack are 
[a -~ f t .  A 7] A [A -~ ~ 4, then we may replace 
these three elements by the item [B --* fl A • 7]- 

5. If a step according to one of the previous clauses 
ends with an item [A ~ t~ • B ~ on top of the 
stack, where B is a nonterminal, then we subse- 
quently push B onto the stack. 

6. If the stack consists only of the two elements S 
[S--* a .] and if the input has been completely 
read, then we may successfully terminate the 
parsing process. 

Note that  only nonterminals from GOAL will oc- 
cur as separate elements on the stack. 

The nondeterministie LC parsing algorithm de- 
fined above uses one symbol of lookahead in case of 
terminal left corners. The algorithm is therefore de- 
terministic for the LC(0) grammars, according to the 
definition of LC(k) grammars in [Soisalon-Soininen 
and Ukkonen, 1979]. (This definition is incompati- 
ble with that  of [Rosenkrantz and Lewis II, 1970].) 

The exact formulation of the algorithm above is 
chosen to simplify the treatment of generalized LC 
parsing in the next section. The strict separation be- 
tween goal elements and item elements has also been 
achieved in [Perlin, 1991], as opposed to [Schabes, 
1991]. 

3 G e n e r a l i z i n g  l e f t - c o r n e r  p a r s i n g  

The construction of Lang can be used to form deter- 
ministic table-driver parsing algorithms from non- 
deterministic push-down automata.  Because left- 
corner parsers are also push-down automata,  Lang's 
construction can also be applied to formulate a de- 
terministic parsing algorithm based on LC parsing. 

The parsing algorithm we propose in this pa- 
per does however not follow straightforwardly from 
Lang's construction. If we applied the construction 
directly, then not as much sharing would be provided 
as we would like. This is caused by the fact that  
sharing of computation of different search paths is 
interrupted if different elements occur on top of the 
stack (or just beneath the top if elements below the 
top are investigated). 

To explain this more carefully we focus on Clause 3 
of the nondeterministic LC parser. Assume the fol- 
lowing situation. Two different search paths have 
at the same time the same item element [A --* a o] 
on top of the stack. The goal elements (say B' and 
B" ) below that  item element are different however in 
both search paths. 

This means that  the step which replaces [A ---* a o] 
by [C ---, A °/~], which is done for both search paths 
(provided both C / *  B' and C / *  B"), is done sepa- 
rately because B' and B" differ. This is unfortunate 
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Step Parse stack Input read 
S 

1 S [NP ~ "time" .] 
2 S[NP -~ NP. NP]NP 
3 S [NP --~ NP. NP] NP [VorN -*  "flies' .] 
4 S [NP-~ NP. NP] NP [NP -*  VorN .] 
5 S[NP - ~ N P N P . ]  
6 S [ S ~ N P . V P ] V P  
7 S [ S ~ N P . V P ] V P [ V o r P ~  like" .] 
8 S [S --* NP. VP] VP [VP -*  VorP. NP] NP 
9 S [S ~ NP. VP] VP [VP ~ VorP. NP] NP [NP 

i0 S [S ~ NP. VP] VP [VP -*  VorP. NP] NP [NP -~ 
i i  S [S -~ NP. VP] VP [VP -~ VorP NP .] 
12 S[S - ~ N P V P . ]  
13 

"an" ° "arrow"] 
"an" "arrow" ,] 

"time" 

"flies" 

"like" 

"arl" 
"arrow" 

Figure 1: One possible sequence of parsing steps while reading "time flies like an arrow" 

because sharing of computation in this case is desir- 
able both for efficiency reasons but also because it 
would simplify the construction of a most-compact 
parse forest. 

Related to the fact that  we propose to implement 
the parse table by means of a graph-structured stack, 
our solution to this problem lies in the introduc- 
tion of goal elements consisting of sets of nontermi- 
nals from GOAL, instead of single nonterminals from 
GOAL. 

As an example, Figure 2 shows the state of the 
graph-structured stack for the situation just after 
reading "time flies". Note that  this state represents 
the states of two different search paths of a nonde- 
terministic LC parser after reading "time flies", one 
of which is the state after Step 3 in Figure 1. 

We see that  the goals NP and VP are merged in 
one goal element so that  there is only one edge from 
the item element labelled with [VorN ~ "flies" °] to 
those goals. 

Merging goals in one stack element is of course 
only useful if those goals have at least one left corner 
in common. For the simplicity of the algorithm, we 
even allow merging of two goals in one goal element 
if these goals have anything to do with each other 
with respect to the left-corner relation /*.  

Formally, we define an equivalence relation ~ on 
nonterminals, which is the reflexive, transitive, and 
symmetric closure of L. An equivalence class of this 
relation which includes nonterminal A will be de- 
noted by [A]. Each goal element will now consist 
of a subset of some equivalence class of ~.  

In the running example, the goal elements con- 
sist of subsets of {S, NP,VP, PP}, which is the only 
equivalence class in this example. 

Figures 3 and 4 give the complete generalized LC 
parsing algorithm. At this stage we do not want to 
complicate the algorithm by allowing epsilon rules in 
the grammar.  Consequently, Clause lb of the non- 

deterministic LC parser will have no corresponding 
piece of code in the GLC parsing algorithm. For 
the other clauses, we will indicate where they can 
be retraced in the new algorithm. In Section 4 we 
explain how our algorithm can be extended so that  
also grammars with epsilon rules can be handled. 

The nodes and arrows in the parse forest are con- 
structed by means of two functions: 

MAKE_NODE (X) constructs a node with label X, 
which is a terminal or nonterminal.  It returns (the 
address of) that  node. 

A node is associated with a number of lists of sons, 
which are other nodes in the forest. Each list rep- 
resents an alternative derivation of the nonterminal 
with which the node is labelled. Initially, a node is 
associated with an empty collection of lists of sons. 
ADD_SUBNODE (m, 1) adds a list of sons I to the 
node m. 

In the algorithm, an item element el labelled with 
[A --* Xx . . .  X,n • .a] is associated with a list of 
nodes deriving X1 . . . . .  Xm. This list is accessed by 
SONS (el). A list consisting of exactly one node m is 
denoted by < m > ,  and list concatenation is denoted 
by the operator +. 

A goal element g contains for every nonterminal A 
such that  A L* P for some P in g a value NODE (g, 
A), which is the node representing some derivation 
of A found at the current input position, provided 
such a derivation exists, and NODE (9, A) is NIL 
otherwise. 

In the graph-structured stack there may be an edge 
from an item element to a unique goal element, and 
from a goal in a goal element to a number of item 
elements. For item element el, SUCCESSOR (el) 
yields the unique goal element to which there is an 
edge from el. For goal element g and goal P in g, 
SUCCESSORS (g, P) yields the zero or more i tem 
elements to which there is an edge from P in g. 

The global variables used by the algorithm are the 
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N - *  N P .  NP I, I ~ =  

S ~ NP . V P  l*  

I "flies" I I V o r N  ~ 

Figure 2: The graph-structured stack after reading "time flies" 

following. 

a0 al . . .  an The symbols in the input string. 

i The current input position. 

r The root of the parse forest. It has the value NIL 
at the end of the algorithm if no parse has been 
found. 

r and Fnezt The sets of goal elements containing 
goals to be fulfilled from the current and next 
input position on, respectively. 

I and Inezt The sets of item elements labelled with 
[A ~ a • t ~ such that  a shift may be performed 
through t at the current and next input position, 
respectively. 

F The set of pairs (g, A) such that  a derivation from 
A has been found for g at the current input po- 
sition. In other words, F is the set of all pairs 
(g, A) such that  NODE (g, A) ~ NIL. 

The graph-structured stack (which is initially 
empty) and the rules of the grammar are implicit 
global data  structures. 

In a straightforward implementation, the relation 
/* is recorded by means of one large s' x s boolean 
matrix,  where s is the number of nonterminals in the 
grammar,  and s' is the number of elements in GOAL. 
We can do better however by using the fact that  A 
Z* B is never true if A 7~ B. We propose the storage 
of Z* for every equivalence class of ,,, separately, i.e. 
we store one t '  x t boolean matr ix for every class of 
,,, with t members, t ~ of which are in GOAL. 

We furthermore need a list of all rules A --* X a 
for each terminal and nonterminal X. A small op- 
timization of top-town filtering (see also Section 6) 
can be achieved by grouping the rules in these lists 
according to the left sides A. 

Note that  the storage of the relation Z* is the main 
obstacle to a linear-sized parser. 

The time needed to generate a parser is determined 
by the t ime needed to compute Z* and the classes of 
-~, which is quadratic in the size of the grammar.  

4 A d a p t i n g  t h e  a l g o r i t h m  f o r  

a r b i t r a r y  c o n t e x t - f r e e  g r a m m a r s  

The generalized LC parsing algorithm from the pre- 
vious section is only specified for grammars without 
epsilon rules. Allowing epsilon rules would not only 

complicate the algorithm but would for some gram- 
mars also introduce the danger of non-termination of 
the parsing process. 

There are two sources of non-termination for non- 
deterministic LC and LR parsing: cyelicity and hid- 
den left-recursion. A grammar is said to be cyclic 
if there is some derivation of the form A ---+ A. A 
grammar is said to be hidden left-recursive if A --* 
B a, B -+* e, and c~ --+* A ~, for some A, B, a ,  
and ~. Hidden left recursion is a special case of left 
recursion where the fact is "hidden" by an empty- 
generating nonterminal. (A nonterminal is said to 
be nonfalse if it generates the empty string.) 

Both sources of non-termination have been studied 
extensively in [Nederhof and Koster, 1993; Nederhof 
and Sarbo, 1993]. 

An obvious way to avoid non-termination for non- 
deterministic LC parsers in case of hidden left- 
recursive grammars is the following. We general- 
ize the relation i so that  B L A if and only if 
there is a rule A -~ p B fl, where p is a (possibly 
empty) sequence of grammar  symbols such that  /~ 
--* e. Clause lb  is eliminated and to compensate 
this, Clauses l a  and 3 are modified so that  they take 
into account prefixes of right sides which generate 
the empty string: 

la. If the element on top of the stack is the nonter- 
minal A and if the first symbol of the remaining 
input is t, then we may remove t from the input 
and push an item [B -* p t • a] onto the stack, 
provided B Z* A and p -+* e. 

3. If the top-most two elements on the stack are B 
[A --+ a .], then we may replace the item by an 
item of the form [C --+ p A • fl], provided C L* 
B and # -+* e. 

These clauses now allow for nonfalse members at 
the beginning of right sides. To allow for other non- 
false members we need an extra seventh clause: 4 

7. If the element on top of the stack is the item [A 
--+ t~ • B fl], then we may replace this item by 
the item [A --+ a B • fl], provided B --+* e. 

The same idea can be used in a straightforward 
way to make generalized LC parsing suitable for 

4Actually, an eighth clause is necessary to handle the 
special case where S, the start symbol, is nonfalse, and 
the input is empty. We omit this clause for the sake of 
clarity. 
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PARSE: 
• r ¢= NIL 
• Create goal element g consisting of S, the start  symbol 
• r = {g}  
• I ¢ = 0  
o F ~ O  
• fo r  i ¢= 0 t o  n d o  PARSE_WORD 
• r e t u r n  r, as the root of the parse forest 

PARSE_WORD: 

• r n e z t  ¢= 0 
• Inezt  ¢= O 
• f o r  al l  pairs (g, A) E F d o  

o NODE (g, A) ¢= NIL 
o F ¢ = O  
• t ~= MAKE_NODE (eq) 
• FIND_CORNERS (t) 
• SHIFT (t) 
• F ¢= Fnezt 
• I ¢= Inezt 

FIND_CORNERS (t): /*  cf. Clause l a  of the nondeterministic LC parser * /  
• f o r  al l  goal elements g in F containing goals in class [B] d o  

o f o r  a l l  rules A --* ai a such that  A E [B] d o  
• i f  A Z* P for some goal P in g /*  top-down filtering * /  

t h e n  
o MAKE_ITEM_ELEM ([A ---, ai • c~], < / > ,  g) 

SHIFT (Q: 1" cf. Clause 2 "1 
• fo r  a l l  i tem elements el in I labelled with [A --* a • ai fl] d o  

o MAKE_ITEM_ELEM ([A ~ ~ ai • fl], SONS (el) + < l > ,  SUCCESSOR (el)) 

MAKE_ITEM_ELEM ([A ~ a .  ~], l, g): 
• Create i tem element el labelled with [A --* ~ • fl] 
• SONS (el) .¢= 1 
• Create an edge from el to g 
• iff~ = e 

t h e n  
o REDUC E (el) 

elself /~ = t7, where t is a terminal 
t h e n  

o Inezt ~ Inezt U {el} 
e l se l f  ~ = B7, where B is a nonterminal 
t h e n  

o MAKE_GOAL (B, el) 

/*  cf. Clause 5 * /  

MAKE_GOAL (A, el): 
• i f  there is a goal element g in Fnext containing goals in class [A] 

t h e n  
o Add goal A to g (provided it is not already there) 

e l se  
o Create goal element g consisting of A 
o Add g to Fnezt 

• Create an edge from A in g to el 

Figure 3: The generalized LC parsing algori thm 
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REDUCE (el): 
• Assume the label of el is [A ~ a .] 
• Assume SUCCESSOR (el) is g 
• i f  NODE (g, A) = NIL 

t h e n  
o m ¢: MAKE_NODE (A) 
o NODE (g, A)¢= m 
o F ~ F U { ( g , A ) }  
o for  al l  rules B --* A/3 do  /*  cf. Clause 3 */ 

• i f  B / *  P for some goal P in g /* top-down filtering */ 
t h e n  

o MAKE_ITEM_ELEM ([B ---* A o ~ ,  < m > ,  g) 
o i f  A is a goal in g 

t h e n  
• i f  SUCCESSORS (g, A) # 0 

t h e n  
o for  al l  el' E SUCCESSORS (g, A) labelled with [B --, ~ • A 7] do  /* cf. Clause 4 */ 

• MAKE_ITEM_ELEM (IS --~/3 A • 7], SONS (el') + < m > ,  SUCCESSOR (el')) 
e lse i f  i = n / *  cf. Clause 6 */ 
t h e n  

o r C = m  

• ADD_SUBNODE (NODE (g, A), SONS (el)) 

Figure 4: The generalized LC parsing algorithm (continued) 

hidden left-recursive grammars, similar to the way 
this is handled in [Schabes, 1991] and [Leermakers, 
1992]. The only technical problem is that,  in or- 
der to be able to construct a complete parse for- 
est, we need precomputed subforests which derive 
the empty string in every way from nonfalse nonter- 
minals. This precomputation consists of performing 
m A ¢= MAKE_NODE (A) for each nonfalse nonter- 
minal A, (where m A are specific variables, one for 
each nonterminal A) and subsequently performing 
ADD_SUBNODE (mA, < m s 1 , . . .  , mBk> ) for each 
rule A -~ B1 . . .  Bk consisting only of nonfalse non- 
terminals. The variables m A now contain pointers 
to the required subforests. 

GLC parsing is guaranteed to terminate also for 
cyclic grammars, in which case the infinite amount 
of parses is reflected by cyclic forests, which are also 
discussed in [Nozohoor-Farshi, 1991]. 

5 P a r s i n g  i n  c u b i c  t i m e  

The size of parse forests, even of those which are 
optimally dense, can be more than cubic in the length 
of the input. More precisely, the number of nodes in 
a parse forest is O(nP+l), where p is the length of 
the right side of the longest rule. 

Using the normal representation of parse forests 
does therefore not allow cubic parsing algorithms 
for arbitrary grammars. There is however a kind 
of shorthand for parse forests which allows a repre- 
sentation which only requires cubic space. 

For example, suppose that  of some rule A --* c~ 
fl, the prefix a of the right side derives the same 

part of the input in more than one way, then these 
derivations may be combined in a new kind of packed 
node. Instead of the multiple derivations from a,  this 
packed node is then combined with the derivations 
from j3 deriving subsequent input. We call packing of 
derivations from prefixes of right sides subpacl¢ing to 
distinguish this from normal packing of derivations 
from one nonterminal. 

Subpacking has been discussed in [Billet and Lang, 
1989: Leiss, 1990; Leermakers, 1991]; see also [Sheil, 
1976]. 

Connected with cubic representation of parse 
forests is cubic parsing. The GLC parsing algorithm 
in Section 3 has a time complexity of O(nP+l). The 
algorithm can be easily changed so that,  with a lit- 
tle amount of overhead, the time complexit~ is re- 

3 duced to O(n ), similar to the algorithms in [Perlin, 
1991] and [Leermakers, 1992], and the algorithm pro- 
duces parse forests with subpacking, which require 
only O(n 3) space for storage. 

We consider how this can be accomplished. First 
we define the underlying rule of an item element la- 
belled with [A --~ a • fl] to be the rule A --* a ft. Now 
suppose that  two item elements ell and el2 with the 
same underlying rule, with the dot at the same posi- 
tion and with the same successor are created at the 
same input position, then we may perform subpack- 
ing for the prefix of the right side before the dot. 
From then on, we only need one of the item elements 
ell and el2 for continuing the parsing process. 

Whether two item elements have one and the same 
goal element as successors cannot be efficiently veri- 
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fled. Therefore we propose to introduce a new kind 
of stack element which takes over the role of all for- 
mer item elements whose successors are one and the 
same goal element and which have the same under- 
lying rule. 

We leave the details to the imagination of the 
reader. 

6 Optimization of top-down filtering 
One of the most time-costly activities of general- 
ized LC parsing is the check whether for a goal el- 
ement g and a nonterminal A there is some goal P 
in g such that  A Z* P. This check, which is some- 
times called top-down filtering, occurs in the routines 
FIND_CORNERS and REDUCE. We propose some 
optimizations to reduce the number of goals P in g 
for which A Z* P has to be checked. 

The most straightforward optimization consists of 
annotating every edge from an item element labelled 
with [A ~ a •/~] to a goal element g with the sub- 
set of goals in g which does not include those goals 
P for which A L* P has already been found to be 
false. This is the set of goals in g which are actu- 
ally useful in top-down filtering when a new item 
element labelled with [B ---* A .  7] is created during a 
REDUCE (see the piece of code in REDUCE corre- 
sponding with Clause 3 of the nondeterministic LC 
parser). The  idea is that  if A L* P does not hold 
for goal P in g, then neither does B Z* P if A L B. 
This optimization can be realized very easily if sets 
of goals are implemented as lists. 

A second optimization is useful if / is such that  
there are many nonterminals A such that  there is 
only one B with A £ B. In case we have such a non- 
terminal A which is not a goal, then no top-down 
filtering needs to be performed when a new item el- 
ement labelled with [B --* A • a] is created during a 
REDUCE. This can be explained by the fact that  if 
for some goal P we have A Z* P, and i fA ¢ P, and if 
there is only one B such that  A / B, then we already 
know that  B z* p. 

There are many more of these optimizations but  
not all of these give better performance in all cases. 
It depends heavily on the properties of / whether 
the gain in time while performing the actual top- 
down filtering (i.e. performing the tests A /* P for 
some P in a particular subset of the goals in a goal 
element g) outweighs the time needed to set up ex- 
tra administration for the purpose of reducing those 
subsets of the goals. 

7 Preliminary results 
Only recently the author has implemented a GLC 
parser. The algorithm as presented in this paper has 
been implemented almost literally, with the treat- 
ment of epsilon rules as suggested in Section 4. A 
small adaptation has been made to deal with termi- 
nals of different lengths. 

Also recently, some members of our department 
have completed the implementation of a GLR parser. 
Because both systems have been implemented us- 
ing different programming languages, fair compari- 
son of the two systems is difficult. Specific problems 
which occurred concerning the efficient calculation of 
LR tables and the correct t reatment  of epsilon rules 
for GLR parsing suggest that  GLR parsing requires 
more effort to implement than GLC parsing. 

Preliminary tests show that  the division of nonter- 
minals into equivalence classes yields disappointing 
results. In all tested cases, one large class contained 
most of the nonterminals. 

The first optimization discussed in Section 6 
proved to be very useful. The  number of goals which 
had to be considered could in some cases be reduced 
to one fifth. 

Conclusions 
We have discussed a parsing algorithm for context- 
free grammars called generalized LC parsing. This 
parsing algorithm has the following advantages over 
generalized LR parsing (in order of decreasing im- 
portance). 

• The size of a parser is much smaller; if we neglect 
the storage of the relation / ' ,  the size is even 
linear in the size of the grammar.  Related to 
this, only a little amount  of t ime is needed to 
generate a parser. 

• The generated parse forests are as compact as 
possible. 

• Cyclic and hidden left-recursive grammars can 
be handled more easily and more efficiently (Sec- 
tion 4). 

• As Section 5 shows, GLC parsing can more eas- 
ily be made to run in cubic t ime for arbitrary 
context-free grammars.  Furthermore,  this can 
be done without much loss of efficiency in prac- 
tical cases. 

Because LR parsing is a more refined form of pars- 
ing than LC parsing, generalized LR parsing may 
at least for some grammars be more efficient than 
generalized LC parsing. 5 However, we feel that  this 
does not outweigh the disadvantages of the large sizes 
and generation times of LR parsers in general, which 
renders GLR parsing unfeasible in some natural lan- 
guage applications. 

GLC parsing does not suffer from these defects. 
We therefore propose this parsing algorithm as a rea- 
sonable alternative to GLR parsing. Because of the 
small generation time of GLC parsers, we expect this 
kind of parsing to be particularly appropriate dur- 
ing the development of grammars,  when grammars 

SThe ratio between the time complexities of GLC 
parsing and GLR parsing is smaller than some constant, 
which is dependent on the grammar. 
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change often and consequently new parsers have to 
be generated many times. 

As we have shown in this paper, the implementa- 
tion of GLC parsing using a graph-structured stack 
allows many optimizatious. These optimizatious 
would be less straightforward and possibly less ef- 
fective if a two-dimensional matrix was used for the 
implementation of the parse table. Furthermore, ma- 
trices require a large amount of space, especially for 
long input, causing overhead for initialization (at 
least if no optimizations are used). 

In contrast, the time and space requirements of 
GLC parsing using a graph-structured stack are only 
a negligible quantity above that of nondeterministic 
LC parsing if no nondeterminism occurs (e.g. if the 
grammar is LC(O)). Only in the worst-case does a 
graph-structured stack require the same amount of 
space as a matrix. 

In this paper we have not considered GLC parsing 
with more lookahead than one symbol for terminal 
left corners. The reason for this is that we feel that 
one of the main advantages of our parsing algorithm 
over GLIt parsing is the small sizes of the parsers. 
Adding more lookahead requires larger tables and 
may therefore reduce the advantage of generalized 
LC parsing over its Lit counterpart. 

On the other hand, the phenomenon reported in 
[Billot and Lang, 1989] and [Lankhorst, 1991] that 
the time complexity of GLIt parsing sometimes wors- 
ens if more lookahead is used, does possibly not apply 
to GLC parsing. For GLIt parsing, more lookahead 
may result in more Lit states, which may result in 
less sharing of computation. For GLC parsing there 
is however no relation between the amount of looka- 
head and the amount of sharing of computation. 

Therefore, a judicious use of extra lookahead may 
on the whole be advantageous to the usefulness of 
GLC parsing. 
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