
On Abstract Finite-State Morphology

A j i t N a r a y a n a n & L a m a H a s h e m
D e p a r t m e n t of C o m p u t e r Science

Un ive r s i t y of E x e t e r
E x e t e r E X4 4 P T

U K

A b s t r a c t

Aspects of abstract finite-state morphology
are introduced and demonstrated. The use
of two-way finite automata for Arabic noun
stem and verb root inflection leads to ab-
stractions based on finite-state transition
network topology as well as the form and
content of network arcs. Nonconcatenative
morphology is distinguished from concate-
native morphology by its use of movement
on the output tape rather than the input
tape. The idea of specific automata for
classes of inflection inheriting some or all
of the nodes, arc form and arc content of
the abstract automaton is also introduced.
This can lead to novel linguistic generali-
ties and applications, as well as advantages
in terms of procedural efficiency and repre-
sentation.

1 I n t r o d u c t i o n

Finite-state approaches to morphology provide ways
of analyzing surface forms by appealing to the no-
tion of a finite-state transducer which in turn mim-
ics an ordered set of rewrite rules. Instead of in-
termediate forms being introduced (as would hap-
pen if rewrite rules are used (e.g. [Narayanan and
Mehdi, 1991] for Arabic morphology)), the finite-
state transducer works on two tapes (one represent-
ing lexical structure, the other the surface struc-
ture) and switches states if the symbols currently
being scanned on the two tapes match the condi-
tions of the state transition. Following the distinc-
tion expressed by Kay [1987], two-level morphol-
ogy is a specialization of finite-state morphology in
that intermediate forms are not required even in

the grammatical formalism (e.g. [Koskenniemi, 1983;
Koskenniemi, 1984]). The only representations re-
quired are those for the lexical and surface forms,
together with ways of mapping between the one and
the other directly. Surface forms express the result
of any spelling-change interactions between dictio-
nary/lexicon primitives. A typical architecture of
a two-level morphological system [Karttunen, 1983;
Kataja and Koskenniemi, 1988] consists of a dictio-
nary/lexicon component containing roots, stems, af-
fixes and their co-occurrence restrictions, and an au-
tomaton component which codes for the mappings
between dictionary/lexicon forms and surface real-
izations.

One of the problems faced by two-level approaches
was their handling of nonconcatenative morphol-
ogy. The main difference between Semitic and non-
Semitic languages is that inflectional patterns are not
straightforwardly concatenative (where morphemes
are simply concatenated with roots, stems and each
other) but 'interdigitate' or 'intercalate', i.e. the alTLx
pattern is distributed among the constituents of the
root morpheme. For example, the Arabic root 'd_r_s'
('study') intercalates with the inflectional pattern
'_u_i_' (perfect passive) to form the stem 'duris' ('was
studied'), which in turn can be inflected to signify
number and gender 1. This nonconcatenative aspect
of Arabic can be problematic for a traditional two-
level approach which bypasses intermediate forms.
The problem concerns the way roots, stems (roots for
Arabic verbs, stems for Arabic nouns) and inflection
patterns are represented and stored. It is obviously
not practical to store all the possible inflected forms

1Modern written Arabic rarely marks the vowels
(short vowels are marked by diacritics), in this case the
'u' and 'i' in 'duris', except in beginners' books on Arabic.
The (text) realization has the form Mrs'.

297

of each root. Instead, roots are usually separated
from inflections. Morphological analysis of a string
then consists of identifying the root and following
pointers to inflections which may themselves contain
pointers to other inflections [Karttunen, 1983]. The
nonconcatenative aspect of Arabic means that, when
processing a 'word' from beginning to end, differ-
ent constituents of different inflections are ertcounted
during root and inflection identification. The tradi-
tional idea of identifying a root and then following
a pointer to types of inflection depending on im-
mediately contiguous constituents of the inflection
cannot be adopted. This forced the ALPNET re-
searchers, for example, to adopt a novel way of stor-
ing and identifying inflections [Beesley el al., 1989;
Beesley and Newton, 1989; Beesley, 1990]. In their
system there are two types of lexicon: the root lexi-
con, and the pattern lexicon. The root lexicon stores
(three-consonant) roots in the form 'X_Y_Z', and
the pattern lexicon stores inflectional patterns in the
form '_A_B_', where the underscores '_' are called de.
tours. Starting with the pattern lexicon, the analysis
routines recursively switch between the two types of
lexicon whenever a detour character is found.

This interesting solution raises the question of
what aspect of morphology detouring is meant to
reflect or express. If detouring is based simply on im-
plementation and efficiency criteria, it is open to the
possible criticism that an alternative, efficient way
of handling intercalation which expresses some lin-
guistic generalities whilst being consistent with the
two-level approach should be preferred. Also, it is
not clear what the implications of detouring are for
parallel evaluation. However, one possible advantage
is that detouring forces inflectional patterns to be
kept together in the dictionary, rather than splitting
them up into even smaller fragments, as might be re-
quired by a simple two-level approach. For instance,
without detouring, patterns of the form '_A_B_' may
need to be split up into lexical entries first for the
'A' and then, at a different level, for 'B'. The fact
that 'A' and 'B' together represent a certain class of
morphological phenomena might be lost.

2 R e p r e s e n t i n g i n t e r c a l a t i o n

An alternative approach to nonconcatenative mor-
phology consists of usin G the idea of prosodic tem-
plates [McCarthy, 1981J, whereby the underlying
patterns of vowels and consonants are described. For
instance, Kay [1987] provides a four-level account
of how the Arabic root 'ktb' ('write') is mapped
onto the stem 'aktabib' (imperfective active form)
by means of the template 'VCCVCVC' (where 'V'
stands for vowel and 'C' for consonant) and eight
transitions. The first tape contains the root, the sec-
ond the template, the third the intercalative vowels
(vocalism), and the fourth the surface form. State
switches are determined by 'frames' of quadruples
which specify what each tape symbol must be. There

is an overhead attached to the formulation of indi-
vidual templates and quadruples (which represent
the mapping rules) for even a restricted set of lex-
ical entries. More generally, there is nothing in the
templates themselves which allows underlying pat-
terns to emerge or be used. This has led to the
examination of ways of making abstractions on and
classifying templates. For instance, inheritance and
default-based approaches, as used in artificial in-
telligence, can be adopted for template and lexical
entry representation [DeSmedt, 1984], so that du-
plicate and redundant information can be deleted
from individual entries if the path they are on al-
ready contains this information. Research has fo-
cused on unification-based formalisms for inheritance
network representation (e.g.[Flickinger et al., 1985;
Shieber, 1986; Porter, 1987; Evans and Gazdar, 1990;
Bird and Blackburn, 1990; Reinhard and Gibbon,
1991]).

The question arises as to whether it is possi-
ble to achieve the generalities obtainable through
a prosodic template approach within a multi-level
finite-state model. Briefly, we hypothesize, in addi-
tion to the lexical and surface levels, an abstract level
of automaton representation at which classes of in-
flectional phenomena are given an abstract represen-
tation. These abstract automata are translated into
two-level automata for specific morphological phe-
nomena. Concatenative and nonconcatenative pat-
terns of inflection are represented not via the dictio-
nary but at an abstract automaton component level.
Applications of abstract automata to Arabic noun
stems and verb roots are described below.

3 A r a b i c n o u n s t r u c t u r e

A noun stem in Arabic is inflected according to
Case Type (nominative, accusative, genitive), Num-
ber (singular, dual, plural), Gender (feminine and
masculine), and Definite/Indefinite. These mainly
are suffixes added to the noun stem. The case end-
ings determine the vowelisation of the end letter of
the stem.

The Indefinite Noun Endings are:
Singular
Nominative: - / u n / " (double damma) (e.g. wal-

adon *d))
Accusative: - / a n / " (fatha) (e.g. waladan "ld))
Genitive: - / en / . (kasra) (e.g. waladen aJ))
Dual
Nominative: - /ani /~I (e.g. waladani ~laJ))
Accusative: - / ayn i /~ . (e.g. waladyni x:eaJ~)
Genitive: as for accusative.
Plural
In Arabic there are three types of plural. These are

the Sound Masculine Plural (SMP), the Sound Femi-
nine Plural (SFP), and the Broken Plural (BP). The
SMP is for male human beings 2. For example ¢ . , .~

2Exception: sana - year ~ which can take the SMP.

298

('engineer') becomes o ~ . , ~ or O~. ~v. depending on
the case ending. The SFP is for female human be-
ings, inanimates, and most foreign words that have
been incorporated into the language. For example,
~Jt~ ('scientist') becomes "b'LJt~ or ~,LJ~, again de-
pending on the case ending. Similarly, 'car' (an inan-
imate object) (;).t~) becomes %'b.t~ or o b t ~ . The
BP does not follow any regular pattern and is for
nouns that do not fall into the above categories. But
this is not necessarily the case. For example, o¢.!
('son' - - male human) can be pluralised to *~.i which
is a broken plural.

The SMP Ending
Nominative: - /oon/~.~ (e.g. muhamiyoon o ~ 1 . ~)
Accusative: -/yyn/O~. (e.g. muhamiyyn O=,L~)
Genitive: as for the accusative
The SFP Ending
If there is the feminine ending of ~ then it needs to

be removed before adding the SFP ending.
Nominative:-/atun/"b-1 (e.g. maktabatun ° b ~)
Accusative: - / a t e n / f , i (e.g. maktabaten o . t ~
Genitive: as for the accusative
The definite noun endings are the same as for the

indefinite noun, except that al (JI) is added to the
beginning of the noun. When a noun is made defi-
nite, the nunation is lost, so any ending with double
fatha, kasra, or damma would be reduced to a single
fatha, kasra, or damma. For example, "~J, ('boy')
becomes "aJjJl ('the boy').

4 Network representation

The noun structure system to be described below
produces surface forms of lexical representation and
so is a generator of inflected nouns. Generation is
achieved by the use of finite-state transition networks
(FSTNs). FSTNs realize finite-state tables (FSTs)
which can be used for providing the mappings be-
tween lexical and surface structure. For instance,
consider the FST in Figure 1 and the associated
transition network in Figure 2. According to the

Input
h a

1. 2 0
States 2. 0 3

3. 2 0
4: 0 0

Figure 1: FST for a Laughing Machine

tabular representation, if we're in state 1 (first row)
and an 'h ' is the current input character found (first
column), then we switch to state 2 and look at the
next character. If we're in state 1 and an 'a' or '!'
is found, then we switch to an error state (0). If
we're in state 2 and an 'a' is found, we switch to
state 3 and read the next character, otherwise we

h 6

Figure 2: FSTN for the FST in Figure 1

switch to an error state. States 1, 2 and 3 are non-
terminal (signified by the full-stops), whereas state 4
is terminal (signified by ':'). This FST specifies the
state-switching behaviour of any machine which is to
accept strings of the form '{ha}n[' , i.e. one or more
occurrences of 'ha' followed by an exclamation mark.
The same FST can be interpreted as a generator of
such strings if ' Input ' is changed to 'Output ' in Fig-
ure 1. The 'conditions' on arcs are reinterpreted as
characters to be output in this case.

The transition network in Figure 2 is constructed
directly from the FST: nodes are labeled with state
numbers, and arcs specify the input conditions before
a state switch can occur. Double-circled nodes in the
transition network signify start and terminal nodes.
Given such FSTs and equivalent transition networks
for Arabic noun and verb structures, Prolog was used
to implement the automata. Start and end states
are declared with the predicates s t a r t _ s t a t e (X) a n d
e n d _ s t a t e (Y) where X and Y represent state num-
bers, and arc declarations have the form: a r c (Cur -
r e n t S t a t e , N e x t S t a t e , [I n p u t S t r i n g] , [O u t p u t -
S t r ing]) . The third argument consists of the param-
eters I n p u t C h a r a c t e r , D i r e c t i o n , Offset , and
the fourth refers (for nouns) to the characters for the
output word. The direction indicates how to move
the scanning head across the input. It can be o n e
of two values: r for right, and I for left. The offset
indicates by how much to move left or right along
the input tape. (Right or left zero is the same as not
moving.) The use of directions and offsets (a non-
zero offset of n can be regarded as n separate state
transitions of one move in the required direction)
means that the automata used here are examples
of two-way finite automata [Rabin and Scott, 1959;
Sheperdson, 1959; Hopcroft and Ullman, 1979].

The system works in the following way for Sin-
gular Nominatives (and similarly for all the other
noun inflections). A request for 'bnt ' ('girl') to be
inflected with Singular Nominative produces the list
[b ,n , t ,+ ,o ,n] which is then fed to the appropriate
automaton. The FSTN for the Singular Nominative
automaton can be seen in Figure 3 and its associated
FST in Figure 4. The first character, 'b', is identi-
fied. The current arc statement is matched against

299

Input Output Current
Character List State

Figure 3: FSTN for the Singular Nominative

States

1: 1
2. 0
3. 4
4. 0
5. 0
6: 0
7: 0

Lexical level
-b o n
2 0 0 0
0 7 3 0
0 0 0 0
0 0 5 6
0 0 0 6
0 0 0 0
0 0 0 0

Figure 4: FST for the Singular Nominative

the arc facts of the automaton. For the first letter we
have: are(1,?,[b,?,?],[?]), i.e. what is the state to be
moved to from state 1, and what is to be produced
at this stage? This will match against the stored
arc(1,1,[Anychr,r ,1] ,[Anychr]) , i.e. if in state 1
and any character found, then stay in state 1 and
move one position to the right (offset) after copying
the character ('b') to the output. The next character
is then scanned. This matching process is repeated
until the whole of the input word has been read.

Figure 5 shows how the output string is built up for
input [b~n~t~+,o~n]. For the first four steps the pro-
cedure is straightforward: the input is echoed to the
output list. The boundary sign (+) is replaced with
a null value ("). When the first of the case ending let-
ters is met, nothing is produced until a check is made
whether the previous output character needs chang-
ing. The automaton therefore moves back to the end
of the stem to check the end character (line 7). For
this particular example, the character remains the
same, and the automaton moves forward again to
the first case ending (line 8). The offsets for move-
ment backwards and forwards leaves the automaton
at the same position as in line 6. The bottom line
shows the output list at the end of the traversal of
the automaton. (The 'O' in the output list refers
to the double damma.) Null values are deleted, and
the output list sent to the Arabic output routines.
Narayanan and Hashem [1992] provide example runs
and more detail about the implementation.

b 1
b [b] 1
b [b,n] 1
t [b,n,t] 1
+ [b,n,t,'] 2
o [b,n,t," ,"] 3
t [b,n,t," ,"1 4
o [b,n,t," ," ,"] 5
n [b,n,t," ," ," ,O] 6

Figure 5: Building The Output String

5 I n h e r i t a n c e - b a s e d d e r i v a t i o n

Two-way automata for all nine types of inflection
(three Case by three Number) can be constructed
from abstract ones. For instance, the noun system
used two abstractions on number. Figure 6 repre-

(

)

)
Figure 6: The abstract automaton for the Singular
and Plural

sents the abstract automaton form for all three cases
(nominative, accusative and genitive) of singular and
plural, and Figure 7 of dual.

()

Figure 7: The abstract automaton for the Dual

Specific automata, for example for Dual Accusat-
ive and Genitive (Figure 8), can be derived from the
abstract dual automaton by means of the specific

300

automaton inheriting the basic form of the abstract
automaton and adding specific arcs and nodes (spe-
cialization), as will be described later.

Figure 8: FSTN for the Dual Accusative/Genitive

6 V e r b s t r u c t u r e

The major difference between concatenative and
nonconcatenative two-way automata for Arabic is
that, for nonconcatenation, movement in both di-
rections is required within the output tape rather
than the input tape, so that affix information can
be inserted between root characters. For concate-
native two-way automata (as for the nouns), any
moves are to the beginning or ending of the stem
on the input tape, and if the last character of the
stem needs changing this happens before the affix
output is added.

Arabic verb structure is well-documented (e.g.
[McCarthy, 1981; Hudson, 1986]). The following ta-
ble gives the perfect active and perfect passive stems
of the first three forms of 'ktb' only, but these are
adequate to demonstrate the abstraction principles
involved here.

Form Active Passive
I katab kutib
II kattab kuttib
III kaatab kuutib

The input representation is of the form [<roo t>
+ <vowels>], e.g. [k,t ,b,+,a,a] with a request for
Form II results in 'kattab', and [k, t ,b,+,u, i I results
in 'kuutib' if Form III passive is requested.

The following six statements describe an automa-
ton (Figure 9) for generating Form I stems.

(1) a r c (l , 2 , [C , r , 1] , [C_, r ,0])
(2) axc(2 ,3 , [C , r , 1] , [C_, r ,1])
(3) a r c (3 , 4 , [C , r , 1] , [C , r ,1])
(4) v x c (4 , 6 , [+ , r , 1] , [" , r , 1])
(5) a r c (S ,6 , I'V,r, 1], I ' [V, l ,4] , [" , r , 4]])
(e) a r c (e , 7 , [V , r ,1] , [[V,1 ,2] , [" , r , 2]])

The output argument of the arc statement is more
complex than for nouns. The output argument [X,

Figure 9: Automaton for Form I

D, N] means 'After moving N steps in direction D,
write X', where X can be a consonant C or vowel V.
Also, the output argument can consist of one or two
lists, the first for moving in one direction, the other
to return the head to an appropriate location on the
output tape for the next state. For instance, given
the input [k,t ,b,+,a,a] with a request for Form I,
arc (1) would produce 'C_' (i.e. the first consonant
is output together with a blank space to its right).
The same would happen for the second consonant
by arc (2). Arc (3) produces only a consonant, so
in state 4 the output tape contains 'C_C_C', with
the head of the output tape resting on the last C.
Arc (4) acts as a check that exactly three consonants
have been found. Arc (5) makes the output head
move left four positions (to the first blank between
two Cs) and inserts the V before moving back to
its original position (and writing a null value again
over the existing null value). Arc 6 works similarly,
except that the offset is only two. The input has been
scanned sequentially, one character at a time.

This automaton also works for perfect passive
Form I stems: 'a' and 'a' are replaced by 'u' and
'i'. Also, Form II can inherit the Form I automaton
and add two specializations. First, arc (2) is changed
so that instead of one C being written two copies of
the C are made (i.e. (2a)), and arc (5) has offset 5
and not 4 (i.e. (ha)):

(2a) a r c (2 , 3 , [C , r , 1] , [CC_,r,1])
(Sa) a r c (S , e , IV , r , 1] , [[V , I ,S] , [" , r , S]])

Form III can inherit from Form I and add its two
specializations, namely, arc (1) is changed so that
two blanks are introduced (i.e. (lb)), and arc (5) so
that two Vs are written (i.e. (bb)). The offset when
moving left is 5, and when returning 4.

(lb) a r c (l , 2 , [C , r , 1] , [C__,r,O])
(Sb) axc(S,6 , IV , r , 1] , [[W/,1 ,S] , [' ' , r , 4]])

7 A b s t r a c t a u t o m a t a a n d i n h e r i t a n c e

The abstract automaton underlying Forms I, II and
III is given in Figure 10. The solid lines specify those
arcs which are core to all specific automata, and the
dashed lines signify arcs which will be specialized. In

301

,V
cb

Q

Figure 10: Abstract automaton for Forms I, II and
III

the arcs of the automata for Forms I, II and III the
pattern of output Cs and Vs has specialized (as in
(lb), (2a) and (5b)) and so have offsets (as in 5(a)
and 5(b)). Inheritance is multiple since the automa-
ton for Form III inherits (2) from Form I as well as

1. the right return offset of 4 from (5) of Form I,
i.e. arc(5,6, [V,r,1], [[V,1,4], [~', r,4]]), and

2. the move left (before writing) offset from (5a) of
Form II, i.e. arc(5,6, IV,r,1], [[V, 1,5], ~',r,5]]).

Form III also specializes its V pattern, i.e. arc(5,
6, [V,r,1], [[VV, 1, 5], [",r,4]]). In all cases, there
are seven states and fixed length stems depending
on their form. The inheritance structure for these
three Forms is given in Figure 11. Form 0 specifies
the core arcs which are inherited by all specific au-
tomata and cannot be specialized, and subsequent
automata can further specialize their behaviour b y
adding their own arcs or changing contents of arcs
inherited from other automata.

The inheritance status of an arc is given by another
argument in the arc representation. Arcs therefore
have the following form in the implemented system:

arc (S 1, S2, IP, OP, status)

where S1 and $2 are state numbers, IP and OP are
the sets of input and output parameters, respectively,
and 'status' is 0 for core and non-zero for non-core.
In the case of representing the inheritance relation-
ships between the different Forms, any non-zero sta-
tus value refers to the Form for which the arc is a
specialization. The Form I automaton is therefore
fully described by:

(1) arc(l ,2, I t , r ,
(2) arc(2,3, [C,r,
(3) arc(3,4, [C,r,
(4) az'c(4,S, [+ , r ,
(6) arc(S,e, [V,r,

1], [C_,r,O], l)
1], [c_,r, 1], 1)
13, [C,r, 1] ,o)
1] , [" ,r ,1] ,o)
i] , [[v , l ,4] , [" ,r,4]] , l)

(6) az'c(6,7, IV,r,1], [[V, l ,2] , [' ' , r , 2]] O)
where status 1 refers to Form I specialization. Form
II automata are fully described by:

a0~ (3),(4),(6)

n I (1),(2),(5)

~ (lb),(2),(Sb)

Figure l h Inheritance structure for Forms I, II and
III

(1) arc(l ,2, [C,r,1], [C_,r,O] ,1)
(2a) arc(2,3, [C,r,1], [CC_,r,l] ,2)
(3) arc(3,4, [C,r,1], [C,r,1] ,0)
(4) arc(4,5, [+,r ,1] , [" ,r,1] ,o)
(Sa) arc(5,6, [V,r ,1] , [[V,1,6], [' ' , r ,5]] ,2)
(6) arc(e,7, [V,r,1], [[v,1,2], [" ,r ,2]] o)
where status 2 refers to Form II specialization. Sim-
ilarly for Form III:

(lb) arc(l ,2, [C,r ,1] , [C__,r,O] ,3)
(2) arc(2,3, [C,r,1], [C_,r,1] ,1)
(3) arc(S,4, [C,r,1], [C,r,1] ,0)
(4) arc(4,fi, [+ ,r ,1] , ['~ ,r ,1] ,O)
(sb) arc(s,e, Iv,r,1], [[w , l , s] , [" ,r,4]] .s)
(6) arc(6,7, IV,r,1], [[V,1,2], [' ' , r ,2]] ,O)
where (5b) has been constructed out of (5) and 5(a),
i.e. the state number's, input argument and right re-
turn offset of 5, and the move left offset of 5, respec-
tively. Ideally, these changes to (5) and (5a) will be
carried out within the Form III object.

8 Discussion

The work reported here demonstrates the feasibil-
ity of adopting an abstract automaton, three-level
approach to Arabic. Of particular importance is
the distinction between abstract and particular FSA,
where abstract automata represent classes of inflec-
tional phenomena at an abstract level. They also
represent algorithmic (processing) generalities. For
instance, crossing sequences, i.e. movement across
cells on the input (for nouns) and output (for verbs)
tapes, cannot have repeated states with the head
moving in the same direction (otherwise we may be
in a loop). The first time movement left takes place,
the state number must be odd (3 for nouns, 5 for

302

verbs). Subsequent crossings must be in opposite di-
rections.

The examples presented deal with significant frag-
ments of Arabic, and potentially useful ways of rep-
resenting Arabic verb Forms in inheritance networks
have been identified. Other advantages to the three-
level model involve the. applicability of parallelism
and the general way that the model is faithful to the
two-level approach. There is a clear separation be-
tween the top level of abstract automata dealing with
classes of inflection, on the one hand, and the knowl-
edge expressed in the dictionary component, on the
other. Also, the abstract automata express general
inflectional processes: particular automata derived
from these abstract automata handle individual in-
flectional variations.

Another advantage is that the three-level model
may actually be intuitively more plausible as a gen-
eral model of how native speakers acquire morpho-
logically rich languages such as Arabic. The child
may construct the abstract automata for classes of
inflectional variations after exposure to individual
words and sentences, and then use these abstract
automata to make sense of the remaining inflectional
variations not so far encountered. And with regard
to the teaching of Arabic, the abstract automata
may represent a teaching strategy whereby the over-
all structure of Arabic inflection types can be taught
before specific ones are introduced.

There are implications for grammatical descrip-
tions of inflectionally-rich languages. Most Arabic
grammar books introduce inflectional variations in
the form of complete tables which need to be memo-
rized. Abstract automata may provide a more struc-
tured description of morphological phenomena. And
finally, and perhaps most interestingly, the abstract
level of automata description makes possible the
comparison and contrasting of morphological phe-
nomena across different but related morphologically
rich languages. Analysis of inflections in different
languages can be based on automata topology and
arc form and content. This can lead to language-
independent morphological theories of inflectional
types. Research is continuing on all these aspects,
as well as on relationships with structured Markov
models [Kornai, 1991] and multi-tape autosegmental
phonology [Wiebe, 1992].

R e f e r e n c e s

[Beesley and Newton, 1989] K. Beesley and S. New-
ton. Computer analysis of Aymara morphology: A
two-level, finite state approach. In S. Cox, editor,
Proceedings of the ISth Annual Deseret Language
and Linguistics Symposium, pages 126-144. De-
seret Language and Linguistics Society, Brigham
Young University, 1989.

[Beesley et aL, 1989] K. Beesley, T. Buckwalter, and
S. Newton. Two-level finite state analysis of Ara-

bic. In Proceedings of the First Conference on
Bilingual Computing in Arabic and English. Liter-
ary and Linguistic Computing Centre, Cambridge
University, 1989.

[Beesley, 1990] K. Beesley. Finite-state descriptions
of Arabic morphology. In Proceedings of the Sec-
ond Conference on Bilingual Computing in Arabic
and English. Literary and Linguistic Computing
Centre, Cambridge University, 1990.

[Bird and Blackburn, 1990] S. Bird and P. Black-
burn. A logical approach to Arabic phonology.
In Proceedings of the Fifth Conference of the Eu-
ropean Chapter of the Association for Computa-
tional Linguistics, pages 89-94, 1990.

[DeSmedt, 1984] W. M. DeSmedt. Using object-
oriented knowledge representation techniques in
morphology and syntax programming. In Proceed-
ings of the 198~ European Conference on Artificial
Intelligence, pages 181-184, 1984.

[Evans and Gazdar, 1990] R. Evans and G. Gazdar,
editors. The DATR Papers, Volume 1. School of
Cognitive and Computing Sciences, University of
Sussex, 1990.

[Flickinger et al., 1985] D. P. Flickinger, C. J. Pol-
lard, and T. Wasow. Structure-sharing in lexical
representation. In Proceedings of the 23rd Annual
Meeting of the Association for Computational Lin-
guistics, pages 262-267, 1985.

[Hopcroft and Ullman, 1979] J. E. Hopcroft and J.
D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley,
1979.

[Hudson, 1986] G. Hudson. Arabic root and pattern
morphology without tiers. Journal of Linguistics,
22:85-122, 1986.

[Karttunen, 1983] L. Karttunen. KIMMO: A two-
level morphological analyzer. Tezas Linguistic Fo-
rum, 22:163-186, 1983.

[Kataja and Koskenniemi, 1988]
L. Kataja and K. Koskenniemi. Finite-state de-
scription of Semitic morphology: a ease study in
Ancient Akkadian. In Proceedings of the Inter-
national Conference on Computational Linguistics
(COLING88), pages 313-315, 1988.

[Kornai, 1991] A. Kornai. Formal Phonology. PhD
thesis, Stanford University, 1991.

[Koskenniemi, 1983] K. Koskenniemi. Two-level
model for morphological analysis. In Proceedings
of the International Joint Conference on Artificial
Intelligence, pages 683-685, 1983.

[Koskenniemi, 1984] K. Koskenniemi. A general
computational model for word-form recognition
and production. In Proceedings of the Interna-
tional Conference on Computational Linguistics
(COLING84), pages 178-181, 1984.

303

[McCarthy, 1981] J. J. McCarthy. A prosodic the-
ory of nonconcatenative morphology. Linguistic
Inquiry, 12:373-418, 1981.

[Narayanan and Mehdi, 1991] A. Narayanan and S.
Mehdi. A computer model for transliterated Ara-
bic. Applied Computer Translation, 1(3):5-28,
1991.

[Porter, 1987] H. H. Porter. Incorporating inheri-
tance and feature structures into logic grammar
formalism. In Proceedings of the 25th Annual
Meeting of the Association for Computational Lin-
guistics, pages 228-234, 1987.

[Rabin and Scott, 1959] M. O. Rabin and D. Scott.
Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):115-
125, 1959.

[Reinhard and Gibbon, 1991] S. Reinhard and D.
Gibbon. Prosodic inheritance and morphological
generalisations. In Proceedings of the Fifth Con-
ference of the European Chapter of the Associ-
ation for Computational Linguistics, pages 131-
136, 1991.

[Sheperdson, 1959] J. C. Sheperdson. The reduction
of two-way automata to one-way automata. IBM
Journal of Research and Development, 3(2):198-
200, 1959.

[Shieber, 1986] S. M. Shieber. An Introduction to
Unification-Based Approaches to Grammar. CSLI,
Stanford, 1986.

[Wiebe, 1992] B. Wiebe. Modelling Antosegmental
Phonology with Multi-Tape Finite State Transduc-
ers. PhD thesis, Simon Fraser University, 1992.

304

