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Abstrac t  

This paper presents a method for parsing 
associative Lambek grammars based on graph- 
theoretic properties. Connection graphs, which 
are a simplified version of proof-nets, are 
actually a mere conservative extension of the 
earlier method of  syntactic connexion, 
discovered by Ajduckiewicz [1935]. The method 
amounts to find alternating spanning trees in 
graphs. A sketch of  an algorithm for finding 
such a tree is provided. Interesting properties of 
time-complexity for this method are expected. 
It has some similarities with chart-parsing 
([KOnig, 1991, 1992], [Hepple, 1992]) but is 
different at least in the fact that intervals are 
here edges and words are vertices (or trees) 
instead of the contrary in classical chart- 
parsing. 

1 I n t r o d u c t i o n  

In this paper, we present a method for parsing Lambek 
grammars based on graph-theoretic properties. We 
expect that it may be done efficiently by an algorithm 
(time-polynomial even in the worst case) which aims at 
finding an alternating spanning tree in a graph. We do 
not give the explicit formulation of such an algorithm 
in this paper: we will only give an idea and an 
illustration of it. This paper is thus mostly devoted to 
the properties on which the method is based. We call 
connection graphs the special kind of proof-nets we 
explore, just in order to make explicit some difference 
with the usual method of proof-nets, as it can be found 
in [Roorda, 1991; 1992] and [Moortgat 1992], but the 
two concepts are very similar. In many respects, 
connection graphs are a mere conservative extension of 

the earlier method of syntactic connection, discovered by 
Ajduckiewicz [1935]. The method amounts to link the 
nodes of an ordered sequence of trees in such a way that 
properties of connexion, "non overlapping", acyclicity 
and "strong connectivity" are verified. Connection 
graphs are simpler than proof-nets in that they loose 
some information. As they are here formulated, they are 
only convenient for the associative version of the 
product-free Lambek calculus. One of their advantages 
lies in the geometrical viewpoint they provide on the 
proofs of a sequent. By means of this viewpoint, 
questions of provability may be reduced to graph- 
theoretical problems. For instance, every reading of a 
sentence is provided by an alternating spanning tree. 

In many aspects, the method resembles the well 
known method of chart-parsing. Ktnig [1991, 1992] 
was the first to apply chart-parsing to Lambek calculus. 
Hepple [1992] has recently improved this application. 
An obvious difference with the method proposed here 
lies in the fact that, in ours, words are points and 
intervals between them are edges instead of the contrary 
in chart-parsing. In both cases, computational 
advantages are found by keeping correct partial analyses 
after they have been obtained. A chart is actually used in 
both methods. 

2 C o n n e c t i o n  G r a p h s  

2.1 Links and Nodes 
Definition 1: Let S be a set of signed vertices (i-e: 
labelled with letters belonging to an alphabet A and 
with a + or - sign). We define three types of links: 

• external links: 
+a . . . . . . .  a or -a . . . . . .  +a, between complementary 
vertices (same letter and opposite signs) 
• internal links: 
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• type 1: 
fight-oriented: left-oriented: 
+B +B 

% s" 
% / 

-A -A 

• type 2: 
right-oriented: left-oriented: 
-B -B 

\ / 
+ A  + A  

2.2 Connection Graphs (inductive definition) 
We define by induction the class of  connection graphs 
and the associated notions of  unit and of  linking a 
sequence of units. 

• every external link is a connection graph, which 
links the units +a and -a, 
• (I) if (z is a connect ion graph which links a 
sequence of  units x and a unit +A and if [3 is a 
connection graph which links y, -B and z (where z 
= z' +C) 1, then the following schemes define new 
connection graphs: 

(a) 
y -B 

\ 
X Z 

+A 
('o) 

y x -B  z 

/ 
+A 

they will be noted respectively: o ~  r 13 and c ~  1 [~, 
and they link respectively: y, - (B/A), x, z and y, x, 
-(AkB), z where -(B/A) and -(AkB) are new units. 
• (II) if ~ is a connection graph which links -A, x 
and +B, then: 
(a) if -A is the left end of  the linking, we get a new 
connection graph which links x and +(AkB) by the 
scheme: 

x +B 
s' 

,¢ 

-A 

1 W e  use  smal l  lat in le t ters  for sequences  o f  units  and 
capital latin let ters with a s ign for units. 

(b) if  -A is the right end just before +B, then we get 
a new connection graph which links x and +(B/A) 
by the scheme: 

x + B  
% 

% 

-A 

they are respectively noted: tl(a) and tr(ot). 

Example: 
-b . . . . . . . .  +b is a connection graph which links -b and 
+b, idem for -c . . . . . . . .  +c. 
By (Ib), we get: 

_ KIIII:.:  . . . . . . . .  

+ c  
which is a connection graph which links -(b/c), -c 
and +b 
-a ........ +a is also a connection graph and we obtain 
by (la): 

"°%,°. 

+ a  + c  
which is a connect ion graph which l inks -a, - 
(a~(b/c)), -c and +b 
and we obtain by (Ha): 

/N. .--  / 
+a +c -a 

which links - (a~(b/c)), -c and +(akb). 

Proposition l: for  any sign +_, we have for  all A, B 
and C : 

_+ (AkB)IC = +__ A\(BIC) 

Proof: assume we have a connection graph [3 which 
links y, -(AXB), z and a connection graph a which links 
x and +C, then, by (Ia) we obtain a connection graph 
which links y, -((AkB)/C), x and z. But since 13 links 
units having already a type 2 link, it necessarily comes 
from a [y', -B, z] and a Ix', +A] such that y' x' = y. 
From [y', -B, z] and [x, +C] we obtain a connection 
graph which links y', -(B/C), x and z and from this 
graph and the graph which links Ix', +A], we get a 
graph which links y', x', -(A~(B/C)), x and z, that means 
a graph which links y, -(A~(B/C)), x and z, which is 
identical to the graph which links y, -((AkB)/C), x and 
z. 0 

2.3 Alternating trees 
Definition 2: Let  L1 and L2 respectively the sets of  
type 1 links and type 2 links. An alternating tree on 
L 1 u L 2  is a tree in which all the nodes at a same level 
have the same sign, all the edges are type 1 or type 2 
links and the sign of a node is alternatively + and - 
along any path from the root to any leaf. 
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Proposition 2: Let G be a connection graph and E be 
the set o f  its external links. The set G-E  is an ordered 
set o f  units, each of  them consisting in an alternating 
tree, noted -A i f  the root is negative and +A i f  the root 
is positive. 

Proof. by induction on building a connection graph. 
1) Let G consist in a single external link, if we remove 
the external link, we get two distinct vertices: +a and -a, 
which are alternating trees. 
2) Let us assume the property true for ~ which links y, 
-B, z and for ct which links x and +A. -B, as a unit, is 
an alternating negative tree and +A is an alternating 
positive tree. By (Ia) and 0b), a type 2 link is added 
from the root of  -B. We thus keep a tree the root of 
which is negative and the type of the added link is the 
same as that of the links at the same level. Moreover, 
no cycle is added because before this operation, the two 
graphs were not already connected. -(B/A) and -(AkB) are 
thus alternating Irees. 
3) Let us assume now the property true for ct which 
links -A, x and +B, then it is also true for tl(¢0 and 
tr(cx) because a type 1 link is added from the positive 
root of  +B. Obviously, no cycle is added when we 
exclude the external links. 0 

2 . 4  Number ing  the nodes of  a connection 
graph 

Let F be the ordered set of  alternating trees in a 
connection graph G. 

Proposit ion 3: F contains one and only one positive 
tree. It is the last tree of  the set. Its root will be called 
the positive root of  G. 

Proof." very easy, by induction on building a connection 
graph.0 

Proposit ion 4: Let us assume that G contains 2n 
vertices. There is one and only one way o f  numbering 
these vertices in order that the following conditions are 
full filled: 

• i fX  and Y are alternating trees and X< Y (X before 
Y in the order defined on 1-') the set I X of  numbers 
associated to X and the set I y  are such that: I X < I y  

(where I < I" means: ~ Vi" i~ l  and i'El' ==~ i<i') 
• type 1 links: 

+ B  + B  

% J '  

-A  -A 

IA < IB IA > IB 

• type 2 links: 
-B -B 

\ / 
+ A  + A  

I B < I A IA < I B 
Proof: easy. (cf one of the several ways of enumerating 
the nodes of a tree).0 

Example:  

- "'" ..-c ~" ..... "": +b 5 

; 6 
+a 1 -I-12 -a 

Definition 3: a connection graph G is said to be well 
numbered if and only if its nodes are numbered according 
to Proposition 4. 

2 . 5  Comple teness  of  Connect ion  Graphs  
with respect to the Associat ive Product-free 
Lambek Calculus 

We show that every deduction d in the calculus A (for 
Associative Product-free Lambek calculus) may be 
translated into a connection graph %(d). 

axiom: a ---> a is translated into: 
-a . . . . . . .  -+a or +a . . . . . . . . . . .  a 

rules: 
[L/q: if x ---> A translates into 13 and y B z --> C 
translates into y, y B/A x z translates into l] ~ r  y 
[L\]: y x AkB z translates into 13 @1 7 
[R/]: translates into tr(a) where ~ is the translation 
o f A  x---> B 
[R\]: translates into tl(cx).0 

Remark: this translation is not a one-to-one mapping, 
because several deductions can be translated into the 
same connection graph. We assume here that connection 
graphs provide a semantics for derivations. It is possible 
to show that this semantics is isomorphic to the 
associative directed lambda calculus (see Wansing 1990). 

2 . 6  Soundness of  Connect ion Graphs with 
respect to A 

This paragraph is very similar to Roorda 1991, chap IIl, 
§ 4 .  

L e m m a  1: I f  we remove a type 1 link from a 
connection graph G, we keep a connection graph. 

Proof: we may assume that this link has been added at 
the last stage of the construction.(> 

Definit ion 4: a type 2 link is called separable if it 
could have been added in the last stage of the 
conslruction. 

Lemma 2: I f  a connection graph, consisting of  more 
than one link, has no terminal type 1 link, it has a 
separable type 2 link. 

Proof'. obvious. 

Proposit ion 5: To every connection graph G the 
units o f  which are: -A1. -A 2 . . . . .  -A n, +B, there 
corresponds a deduction in A of  the sequent: 

AI*.  A2* . . . . .  An* --~ B* 

271 



(where X* is the formula associated with the alternating 
tree X) 

Proof:  by induction on the structure of  G. G has 
necessarily a last link, in the order of  the construction. 
As seen in the previous lemma, it is necessarily either a 
type 1 link or a type 2 link. In the first case, when 
removing it, we still have a connection graph. In the 
second case, when removing it, we get two connection 
graphs  ct and [3 which correspond,  by induction 
hypothesis, respectively to x ---> A and y B z---> C. 

2.7  Non-Overlapping property 

Definition 5: given a connection graph G, we call 
interval every set of  integers [i, j] (ie: {x; i<x<j} such 
that i and j are indices associated with ending points of  
an external link (and i<j). 
Two intervals [i, j] and [i', j '] do not overlap if and only 
if: 

• [i, j] n [i', j'] = gl 
or • [i, j] D [i', jq and i ~ i' and j ~: j' 
or • [i', j '] D [i, j] and i ¢ i' and j ¢ j '  

Given a family I of  intervals, we say that it satisfies the 
Non Overlapping Condition (NOC) if it does not 
contain any pair of  intervals which overlap. 

Theorem 1: in a well numbered connection graph G, 
the family of  intervals associated with all the external 
links satisfies NOC. 

Proof: easy, by induction.<) 

2.8  Linking the posit ive  root 

Theorem 2: in a connection graph G, the positive root 
is connected by an external link either to a negative 
vertex in the same tree (just below it) or to a negative 
root. 

2.9  Connect iv i ty  and acyc l ic i ty  by 
external links and type 2 links 

Theorem 3: Let G be a connection graph. Let L1 be 
the set o f  its type 1 links. G-L1 is connected and 
acyclic (it is a tree). 

Proof: a type 2 link connects two connection graphs for 
the first time they meet  and a type 1 link does neither 
connect two graphs, nor modify the topology of  type 2 
links and external links. 0 

2.10 One-to-one mapping between nodes 

Theorem 4: for  every i in a connection graph G, let 
(~(i) be the node linked to i by an external link, ~ is a 
one-to-one mapping from S onto S. 
Proof: trivial by induction. 0 

2-11 Strong connectivity 

Definition 6: given a graph G, a spanning tree of G 
is defined as a tree on the complete set of nodes of  G. A 
tree is said to be alternating on L2 u E, if  each of its 

paths from the root to a leaf is alternatively composed 
by L2-edges and E-edges. 

Theorem 5: every connection graph G admits an 
alternating spanning tree with the positive root of  G as 
the root. 

Proof'. 
• true for any axiom, 
• Let us assume it is true for tx and 7. Then by (la) and 
fro): 
• by induction hypothesis, there is a path from the root 
of  +C to the root of  -B which is alternating. Since it 
arrives at a negative vertex, its last link cannot be of  
type 2, then it is an external link. 
• There is also a path from the root of  +A to any leaf of  
the spanning tree of  ix, which is alternating. Since it 
comes from a positive vertex, it cannot begin with a 
type 2 link, hence it begins with an extrernal link. 
Thus, by inserting a type 2 link between the external 
link arriving at -B and the external link starting from 
+A, we get a path starting from the positive root of  +C 
and arriving at any leaf o f  ct, inserted into 7, which is 
alternating. 
Therefore, there is an alternating path from the positive 
root of  +C to any leaf of  ct0)7. 
Let  us assume now it is true for ct which links -A, x 
and +B. The transformation t r or t I does not modify the 
set of  paths starting from the positive root of  +B. 0 

Definition 7: a node in a connection graph G will be 
said strongly connected to another node in the same 
graph if they are connected by an alternating path. 

Definition 8: a link will be said to be strong if its 
two ends are srongly connected. 

Theorem 6: in a connection graph G, every type 1 
link is strong. 

Proof: this is shown when installing a new type 1 link. 
Such an installation does not modify the topology of  
G - L 1 .  The previous graph (before applying t 1 or t r) was 
necessarily a connection graph. Thus by Theorem 5, it 
was scanned by an alternating spanning nee with as root 
the positive root of  the graph. This tree is preserved by 
t I or t r, it contained an alternating path connecting the 
two vertices which are now linked by a type 1 link. 0 

As a matter of  recapitulation, we enumerate now the 
following properties, satisfied by any connection graph. 

• one-to-one mapping by external links (CG0) 
• positive root property + uniqueness of  the positive 
root (CG1)  
• non-overlapping condition (CG2) 
• strong connectivity (CG3)  
• connectivity and acyclicity on L2 u E (CG4)  
• alternating spanning tree (CGS) 
• G - E  is a set of  well numbered alternating trees 
(CG6)  

Proposition 6: C G 5 i s  a consequence of  C G 0 ,  
C G 1 ,  C G 3 ,  CG4.  
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Proof: By C G 4 ,  G - L 1  is a tree on S, it is therefore a 
spanning tree of  G. Let us consider a path ~ from the 
positive root +b (which is the root of  the positive tree 
+B, and which is unique according to CG1)  to a leaf a. 
We must notice that a cannot be positive, because if it 
was, it would necessarily be an end of  a type 2 link and 
this type 2 link would be the last edge on the path a ,  
but by CG0,  it would be linked by an external link to 
another node and thus it would not be a leaf. Thus, a is 
necessarily negative, and we can write -a instead of  a. If  
-a is isolated (as a negative root of  a negative tree), we 
can remove the last external link and the type 2 link 
before the last, we are led to the same problem: a path 
c '  arriving at a negative leaf, but or' is shorter than ~. 

If  -a is not isolated, it is necessarily the end of  a type 
1 link, but by CG3,  there is an alternating path joining 
-a and the positive node +c which is the other end. 
Removing this path and the type 2 link arriving at +c, 
we still get the same problem of  a path c '  arriving at a 
negative node, but again a '  is shorter than g. We can 
proceed like that until we have a mere external link 
between the positive root +b and a vertex -b. In this 
case, the path is obviously alternate. 

3 W e l l  L i n k e d  G r a p h s  ( W L G )  

Defini t ion 9: Let -A1, -A2 . . . . .  -An, +B a sequence 
of  alternating trees on the set S o f  signed vertices. We 
call Well Linked Graph on [-A1, -A2 . . . . .  -An, +B] the 
result of  adding external links in order that CG0,  CG1,  
CG2,  CG3,  C G 4  are satisfied. 

P r o p o s i t i o n  7: every connection graph is a well 
linked graph. 

Proof: obvious according to the previous §.0 

T h e o r e m  7: every well linked graph is a connection 
graph. 
(ie: every well linked graph could be obtained by the 
inductive construction of  a connection graph, with the 
sequence of  alternating trees as G-E).  

Proof: given a WLG on I-A1, -A2 . . . . .  -An, +B], it has 
a unique positive root +b (the root of  +B). Thus it 
satisfies the property of  uniqueness of  the positive root. 
Let us assume there is a type 1 link from +b, then let 
us remove: 
• if it is left-oriented: the leftmost one 
• if it is right-oriented: the rightmost one. 
Let us assume for instance that it is left-oriented: 
• The tree below this link may be moved towards the 
left end of  the sequence o f  trees by the inverse o f  the 
construct ion rule (IIa). This move preserves the 
topological structure o f  E u L 2 ,  therefore, CG1, CG3 
and CG4 are preserved. This move implies a re- 
numbering but it does not destroy the non-overlapping 
property. Thus CG2 is preserved. CG0 is trivially 
preserved. The argument is similar for a right-oriented 
link. Thus after this removal, we keep a WLG. 

Let us assume now there is no type 1 link from +b. 
Then there is an external link which links +b to a vertex 
-b situated among the negative trees. If  -b is not related 
to another node, we get an elementary WLG: -b . . . .  +b, 
which is obviously a connection graph. If -b is related 
to another node, then by CG5, either -b is a leaf, or it is 
the starting point of  a type 2 link. Let us assume -b is a 
leaf (of a non atomic tree), then -b is linked by a type 1 
link to a vertex +a (and not to +b since we have 
assumed there is no longer type 1 link from +b). 
Because o f  CG3, -b and +a are connected by an 
alternating path on E u L 2 ,  thus -b is necessarily the 
starting point of  a type 2 link, but in this case, -b is not 
a leaf. Therefore -b is not a leaf and it is the starting 
point of  a type 2 link. Let +c the other end of this link. 
• Let us assume that this link is left-oriented: we 
remove the leftmost one if many. In this case, the 
scanning tree is broken into two parts and the 
connection graph is also separated into two pieces. One 
contains +b, the other contains +c. 
Let us consider the first one: 
• it keeps CG3 and CG4: 
for example CG3: 
- let us consider a type 1 link situated in this part. It 
does not come from +b since we have assumed there is 
no longer type 1 link from +b. 
- its ends are linked by an alternating path. Let us 
assume that the removed type 2 link belonged to this 
path. By removing it, we get either a single external 
link: -b . . . . . .  +b, but such a piece does not contain any 
type 1 link, or another kind of  graph. If we want this 
graph has a type 1 link, it necessarily must contain 
another type 2 link starting from -b, and arriving, say, 
at +d, But an alternating path between two ends of a 
type 1 link can neither arrive by an external link at -b 
since -b is already connected by such a link to the 
positive root +b (and we have assumed there is no type 
1 link attached to +b), nor pass through +d since, in 
this case, the path would have two consecutive type 2 
links, which contradicts the definition of  an alternating 
path. Therefore, the removed type 2 link cannot be on 
the alternating path linking the ends of  a type 1 link in 
this part of  the graph. Finally, no alternating path in the 
first component is destroyed by this removal, among all 
the alternating paths connecting ends of type 1 links. 
Let us consider the second one: 
- let us consider a type 1 link situated in this part and let 
us assume that its ends are linked by an alternating path 
passing through the removed type 2 link. The proof is 
the same as previously: the path can neither arrive at -b 
by an external link nor by a type 2 link. Moreover, it 
has one and only one positive root +c, because it does 
not contain +b, and +c is necessarily linked by an 
external link to either a negative root or a negative 
vertex just below it (if not, there would be a type 1 link 
+x - -  -c, with -c externally linked to +c, the alternating 
path from -c to +x would thus necessarily pass through 
+c and -b, which is impossible according to the first 
part of  the proof). 
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When all the type 2 links attached to -b are removed,  
there remains only the external link -b . . . .  +b which is a 
WLG,  and we can perform this decomposition for each 
part resulting from a previous s t ep .  
It would then be possible  to reconstruct the graph 
accordint to the induction schemes (I) and (II), starting 
only from axioms. 

Corollary: well linked graphs are sound and complete 
with respect to the calculus A. 

4 M e t h o d  o f  c o n s t r u c t i o n  o f  a wel l  
l inked graph 

An alternating tree was defined by a set of  signed 
vertices and a set o f  typed links which link them. We  
are now adding two new kinds of  entity in order to 
facilitate tree-encoding. 

4.1 Colours and anti-colours 

4.1.1 Colours 
Let us assign to each vertex in a sequence of trees [-A1, 
-A2 . . . . .  -An, +B] a colour (originally unknown and 
represented by a free variable X) in order that: 
a) two nodes linked by a type 2 link have same colours 
b) two nodes which are not linked or which are linked 
by a type-1 link have not the same colours (X ~ Y). 

Proposition 8:for every connection graph G with set 
of type 1 links L1, the connectivity and acyclicity of  G 
- L 1  translates into: every external link links two nodes 
having differents colours. After linking by an external 
link, the two colours are equalized (X = Y). 

4.1.2 Anticolours 
Anticolours are assigned to nodes in an alternating tree 
in order that: 
a) two nodes linked by a type 1 link have same 
anticolour, 
b) if a positive node receives an anticolour a ,  (by (a) or 
by an external link), the negated anticolour 9c t  is 
transmitted to all other posit ive nodes having same 
colour. 
Rule: 
1) When joining two nodes by an external link, which 
are associated with different (positive) anticolours tx and 
13, ¢t and ~ are said to be equalized, that means: put in a 
same multi-set. 
2) When joining a node having a negated anticolour 913 
to a node having a colour X by an external link, the 
anticolour --,13 is transmitted to the colour X as a label. 
3) When linking two ends of a type 1 link by external 
links, the two occurrences  of  the same (posit ive) 
anticolour tx must meet only one colour, or two colours 
which have been already equalized and such that one of 
the two is not labelled by a negated anticolour 913 if 13 is 
an anticolour already equalized to ix. 

Proposition 9: in a connection graph G, the strong 
connectivity translates into: the anticolour proper to a 

type 1 link meets only one colour (or colours which 
have been equalized). 

Corollary: Every connection graph verifies: CGO, 
C G I ,  C G 2 ,  C G 3 ' ,  C G 4 ' ,  C G 5 ' ,  C G 6  where: 
CG3' is the condition on unifying anti-colours, CG4' 
the conditions on colours, CG5'  the fact that any 
connection graph is monocoloured. 

4.2 Method 

4.2.1 Categories 
Definition 9: We  call a category any set of  6-tuples 
each consisting in: 

• a label taken from an alphabet A, 
• a sign (+ or -) 
• an index (integer), 
• a colour (free variable) 
• an anticolour (free variable of  a second sort) 
• the indication of being a root if it is the case. 

Definition 10: We call an ordered category a category 
where 6-tuples are ordered according to their index. 

Proposition 10: each alternating tree has one and 
only one encoding into an ordered category. 
Examples: 

- a  

(l~-b 
s 

s 

s o_d 
translates into: {<+,b,I,X,U,_>, <-,d,2,Y,U,_>, 
<+,c,3,X,~U, >, <-,a,4,X,_,r> } 

--a 

( ~ b  ( ~ c  

translates into: {<+,b,I,X, gU,_>, <-,d,2,Y,U, >, 
<+,c,3,X,U,_>, <-,a,4,X,_,r> } 

Definition 11: two 6-tuples are said to be mergeable 
if: 

• they have same literal label, 
• they have opposite signs, 
• they have different colours, 
• if one of  them has an anticolour ~ ,  the other must 
not have a colour which has been labelled by a negated 
anticolour --,13 such that ~ and 13 have already been 
equalized, in a same multiset. 
• if one node is the posit ive root, the other is a 
negative root or a negative node just below it in the 
same tree (same anticolour). 
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fig 1: (three alternating spanning trees = three readings) 

-a -a 7 - a ~  i a  11 

10,~ v 
+a 

-a 3 

-a ~ a  ~ a  11 

2+a +a4 / a  +a +a 

-a ~ 8 -a 9 ""'"~-a 

-a 3 
4-2-2 A sketch of  an algorithm 

We scan the ordered list of  nodes from left to right, 
creating links at each step, between the current node and 
all the possible mergeable nodes on its left or just 
shifting. When nodes are shifted, they are pushed onto a 
stack. Links are recorded on the chart in the following 
way. Each link is a node of the chart (in consequence, 
the chart has no more than n 2 nodes, where n is the 
number of nodes on the reading tape R). A link 1 is 
joined by arcs in the chart to all links already recorded 
11 . . . .  1 n such that 1 makes a correct partial linking by 
insertion into the linkings represented by the paths 
arriving at 11 . . . .  In. and 1 has a left extremity which 
coincides with either the rightmost right extremity of a 
link already recorded on such a path, or with a top of 
stack attached to such a previously recorded link. Thus, 
a link 1 may be an arriving point for several paths. In 
this case, we will consider 1 as a new starting point. 
That means that when joining a new link 1' to links 
above 1 in the chart, we only test the correctness of 
a partial linking down to the link I. We consider here 
that if 1 is in the chart at this place, there is necessarily 
a correct path up to it, and all the partial paths from I to 
the current node are, by definition, correct. Thus, when 
adding a link above 1 (and before a possible new 
"crossroads"), even if there are many paths joining I to 
it, there is at least one correct path from the bottom of 
the chart to the current node. Each time a link is 
recorded and joined to other ones, we record for each arc 
arriving at it, the possible tops of  stack, the possible 

+a 12 

+a 12 

11 +a 12 

rightmost right extremities, the list of nodes through 
which the path has passed since the previous 
embranchment, the list of  equalized colours (possibly 
labelled with negated anticolours) and the list of 
equalized anticolours (for the piece of path coming from 
the previous embranchment). When joining a new link, 
we have to retrieve a new top of the stack, if added by 
consuming a previous one or a previous rightmost fight 
extremity, and to test the correctness of the path. This 
necessitates a descent along paths down to the bottom of 
the chart. This descent is made deterministic because of 
the informations stored on arcs. If n is the number of 
nodes in the original sequent, a maximum of n 2 links 

may be created, and there can be a maximum of n 4 arcs 
in the chart. At step i, there can be a maximum of i 4 
arcs. We add new links on the basis of stack 
informations stored on arriving arcs at each previously 
recorded link. Each checking does not take more than i 
steps, and there are at most i 2 nodes to check at step i. 
For a given link to add, when looking for new tops of 
the stack and checking the correctness of  the new 
linking, we explore the current state of the chart by 
scanning no more than twice (one in one direction, one 
in the other) each arc it contains. Thus joining a new 
link to previous ones entails a maximum of 2i 7 steps. 
At step i, i new links can be added. Thus step i entails a 
maximum of 2i 8 steps. Thus, when reaching step n, we 

have done a maximum of 2Y.i 8 steps (i=l to n), that is 
O(n9). This is obviously a too big order. Nevertheless, 
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the method is time-polynomial and more improvements 
can be expected in the future. 
Example: 
Suppose we have to demonstrate the sequent: 

(a/a)/(a/a) a/a a/a a a\a --) a 

(cf fig 1) 
At beginning steps 1, 2, 3, 4, nodes are pushed onto the 
top of the stack. At step 5, the link (4 5) is created and 
recorded in the chart. The new top of stack 3 is attached 
to it. At step 6, (3 6) is added (with new top of stack 2), 
on the top of the previous link. At step 7, (6 7) is 
created and joined to (4 5) (with top of stack 3) and not 
to (3 6) (because they have the node 6 in common). (2 
7) is joined to (3 6) (with top of stack 1). At step 8, (3 
8) is created and joined to (6 7) (with top of stack 2), 
but not to (2 7) because of anticolours (7 receives 913 
and 8 receives ~ and they have same colour). (1 8) is not 
created because they have same colour. At step 9, (2 9) 
is created and joined to (3 8), and (8 9) is created too, 
but joined to (6 7) and (2 7). At step 10, (1 10) is joined 
to (8 9), (3 10) is joined to (8 9) and (6 7), (9 10) to (3 
8). (7 10) is also joined to (8 9) and (3 8) because 7 is a 
rightmost right extremity in paths leading to these 
nodes. In such a circumstance, the node previously 
linked to the released right extremity, here 2 or 6 is 
pushed onto the stack. After that, (2 11) may be added to 

' ( 7  10) and (9 10) but not to (2 11) because of 
anticolours. And finally, (1 12) may be joinedto (2 11) 
and (11 12) to (1 10). By looking at the list of nodes 
attached to links installed in the chart, we see that these 
last moves lead to complete linkings. By going down to 
the bottom of the chart, we find the three solutions: [1 
[2 [3 [4 5] 6] 7] [8 9] 10][11 12], [1 [2 [3 [4 5] 6] [7 [8 
9] 10] 11] 12] and [1 [2 [3 [4 5] [6 7] 8] [9 10] 11] 12] 
(cf fig 2). 

fig2: the final chart. 
(1 12) (11 12) --./ 

f 
(7 10) (3 10) (1.10) (9 10) 

~ ~  12 9) 

(4 51 

5- C o n c l u s i o n  

We have presented a conception of parsing essentially 
based on a geometrical viewpoint. It amounts to build a 

correct linking of nodes in an ordered sequence of types 
represented as trees. Such a linking corresponds to an 
alternating spanning tree in a graph. We have shown 
that this method is sound and complete with respect to 
the associative product free Lambek calculus and we 
have given an idea of what an algorithm for finding such 
a spanning tree could be. 
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