
Parsing with po lymorphism *

M a r t i n Emms,
The CIS

Leopoldstr 139
8000 Munchen 40

Germany

Abstract
Certain phenomena resist coverage within
the Lambek Calculus, such as scope-
ambiguity and non-peripheral extraction. I
have argued in previous work that an ex-
tension called Polymorphic Lambek Calcu-
lus (PLC), which adds variables and their
universal quantification, covers these phe-
nomena. However, a major problem is the
absence of a known decision procedure for
PLC grammars. This paper proposes a de-
cision procedure which covers a subset of
all the possible PLC grammars, a subset
which, however, includes the PLC gram-
mars with wide coverage. The decision pro-
cedure is shown to be terminating, and cor-
rect, and a Prolog implementation of it is
described.

1 The L a m b e k Calculus

To begin, I give a brief description of Lambek cate-
gorial grammar [Lambek, 1958]. The categories are
built up from basic categories, using the binary cat-
egorial connectives ' / ' and 'V. 1 Then a set of 'cat-
egorial rules' involving these categories is defined, of
the form: x l , . . . x , =~ y (n > 1), xi and y being cat-
egories. A distinctive feature is that the set of rules
is defined inductively. Using a term adopted from

*This work was done whilst the author was in receipt
of a six month scholarship from the German Academic
Exchange Service, whose support is gratefully acknowl-
edged

1Lambek also considered a third connective, the
'product'. I, in common with several authors, use the
name Lambek calculus to refer to what is really the
product-free calculus

logic, sequent, in place of 'categorial rule', Lambek
presented this inductive definition as a close variant
of Gentzen's sequent calculus for propositional logic.
Lambek's calculus, L(/'\), is given below:

(Ax) x =~ z

(/L) U, y, V =~ w T ::~ z
/ L

U,y /x ,T , V =~ w

(\L) T =~ z U, y, Y =~ w
\L

U ,T , y \~ , V ~ w

(/R) T, z =~ y (\R) z, T =~ y

T =~ y l z T =~ y \ z

Here U, T, V are sequences of categories (U,V pos-
sibly empty), w , z , y are categories. In the two
premise rules, the T ::~ x premise is called the minor
premise. The fact that L(//\)derives r, I will notate
as L(/'\) ~-r. With regard to the names of the rules,
'L' and 'R ' stand for left and right. For example,
(\ i) (resp. (\R)), derives sequents with 'V on the
left (resp. on the right) of the sequent arrow, ' =# '
For various purposes it is convenient to consider the
addition of the 'Cut ' rule, given below (in which z
is referred to as the Cut formula, and T ::~ z as the
minor premise):

U,z,V =~ w T =~ z
Cut

U , T , V ~ w

Lambek [1958] establishes that n(/ , \)+ Cut]-r iff
L(/,\)~-r (Cut elimination), and that L(/'\)~- r is de-
cidable.

120

The proof of the decidability of L(/'\) }-- r proceeds
as follows. First one reads the rules of L(/'\) 'back-
wards', as a set of rewrites, growing a tree at its
leaves 'up the page'. Call the trees grown this way
deduction trees. L(/,\)~-r iff r is the root of a de-
duction tree whose leaves are all axioms. I t remains
to note that there are only finitely many deduction
trees for a given sequent: a leaf can be grown in
at most a finite number of different ways, and the
added daughters have always a diminished complex-
ity (complexity measured as number of occurrences
of connectives). This decision procedure is improved
upon somewhat if the rules of the calculus are ex-
pressed as a Prolog data base of conditionals concern-
ing a binary predicate seq, holding between a list of
categories and a single category. For later reference,
let Lain stand for some such Prolog implementation
of L(/'\).

A grammar, G, in this perspective is an assignment
of categories to words. Reading G }-s E y as 'accord-
ing to G, s has category y', I will say G ~-s E y, if (i)
s is lexically assigned y, or (ii) s = sl . . . s o (n > 1),
G~-s~ E xi, a n d L (/ , \) ~ - x l , . . . x n =~ y.

For any Lambek grammar, G, the question
whether G~- s E x is decidable. This is got by
combining Cut elimination with the decidability of
L(/'\)~-r. Consider deciding whether G ~ s l s 2 E
z, where 81 and s2 are lexically assigned the cat-
egories x and y. One can first check whether
L(]'\)~-x,y:=~ z, which is decidable. If L(/ , \)~
x, y :=~ z, then one should try a 'non-flat' categori-
sation possibility. That is, one should also con-
sider derivable categorisations of the subexpressions,
namely x I and y' such that L(/,\)~- x =~ x', y ::~ y~,
and check whether they may be combined to give
z. Here lurks a problem, because there are infinitely
many x ~ and y~ such that L(/,\)[- x :~ x I, y =V y~.
The way out of this problem is the relationship be-
tween the 'non-fiat ' categorisation strategy and Cut-
based proofs, to illustrate which, note that if there
were derivable categorisations, x' and yl of the subex-
pressions, which combined to give z, then L(/ ' \)+ Cut
~x , y :=~ z:

(1)
Y ==~ y, x I ,yl ==~ z

Cut

Cut
x, y =C. z

So parsing with an L(/,\) grammar comes to decid-
ing the derivability of X l , . . . , xo =:~ s, where xi are
the categories of the lexical items.

This Lambek style of grammar is associated also
with a certain method for assigning meanings to
strings. The idea is that a proof, 7, of L(/'\)- can
mapped into a semantic operation, ~. So, if there is
a proof, 7, of Xl, . . . , ;go : :~ Y, then a sequence of
expressions with categories X l , . . . , xn and meanings

m l , . . - , ran , has a possible meaning 6 (m a , . . . , too).
As to which operation, G, goes with which proof, 7,
this is defined by a term-associated calculus. Repre-
sentative parts of the (extensionally) term associated

calculus, L~/'\), are given below:

(Ax) x : a =~ x : a

(/L) U,y : a (fl), V =V w : e T =~ z : fl

U,y/x : a , T , V ~ w : e
/L

(/ R) T, x : ¢ : ~ y : /R

There are corresponding (\L) and (\R) rules.

L~/'\)derives sequents where in place of categories
there are category:term pairs. If we start with an
L(/,\) proof of r, and add variables to the antecedent
categories of r, there is a unique way to add terms
to the rest of the proof so as to get a proof of L (/ '\).
When this is done the term, a, associated with the
succedent of r, represents the semantic operation.
The above mentioned decision procedure can be em-
bellished to develop trees featuring semantic terms,
some of them unknown, together with an evolving
set of equations in these unknowns. When a proof is
discovered, the term for that proof can be obtained
by solving the set of equations.

There is a semantic question to be asked about
the acceptability of parsing simply by search through
L(/,\) proofs: are all term-associated proofs for a
sequent in L(/, \)+ Cut equivalent to some term-
associated proof in L(/,\), and vice-versa ? The an-
swer is yes [Hendriks, 1989], [Moortgat, 1989].

2 P o l y m o r p h i s m

Despite the great simplicity of Lambek grammars,
a surprising amount of coverage is possible [Moort-
gat, 1988]. Two aspects of this are embryonic ac -.
counts of extraction, and scope-ambiguity, the lat-
ter arising from the fact that there may be more
than one proof of a given sequent. However, the
accounts possible have remained only partial. Non-
peripheral extraction remainsd unaccounted for (eg.
the (man)/ who Dave told ei to leave) and only the
scope-ambiguities of peripheral quantifiers are cov-
ered (as in the structure QNP TV QNP). A simple
account of cross-categorial coordination has also of-
ten been cited as an attractive feature of Lambek
grammars ([Moortgat, 1988]). However, the analy-
ses are never in a purely Lambek grammar. Belong-
ing to Lambek grammar proper is a part assigning
some category to the strings to be coordinated, and
then lying without Lambek grammar, a coordination
schema, such as x, and, x ::~ x.

121

To overcome these deficits in coverage, I have
proposed a polymorphic extension of the calculus.
Added to the categorial vocabulary are category
variables and their universal quantification, allowing
such categories as: X, X/X, VX.X/(X\np). To L(/,~ \~
are added left and right rules for V, to give what I will
call L(/,\,v)(I given straightaway the term-associated
calculus):

(VL) U, x[y/Z] : c~(a), V :~ w: @

U, VZ.= : a, V =~ w : q~

(VR) T =V z : a [Z is not free
in 71 T =:~ VZ.z : Awa

Notation: the terms are drawn from the language
of 2nd Order Polymorphic A-calculus [Girard, 1972],
[Reynolds, 1974]. Here, terms carry their type as
a superscript, and one can have variables in these
types (eg. Axr.x~), one can abstract over such vari-
able types, deriving terms of quantified type (eg.
A~r.Ax ~.z ~, of type Vr(Tr--*~r)), and terms of quanti-
fied type can be applied to types (eg. Ar.Axr.=x(t) ,
of type (Z-+Z)). In the (VL) rule above, the type, a,
that a is applied to, is the type that corresponds to
the category, y, that is being substituted for the cat-
e~ory variable, Z. 2 An equivalent slight variant on
L (/,\,v) takes as axioms only those z ::~ x sequents
where z is basic or a variable, something I will call
L~/'\'v). It is easy to show L~/'\'v)~-r iff L(/,\,v)~--r
(see [Emms and Leiss, forthcoming]).

By assigning conjunctions to YX.((X\X)/X), nega-
tion to VX.X/X, and quantifiers to VX.X/(X\np)
and VX.X\(X/np), one obtains coverage of cross-
categorial coordination and negation, as well as a
comprehensive account of quantifier scope ambiguity
[Emms, 1989],[Emms, 1991]. Assigning relativisers
to VX.((cn \cn) / (s \X) / (X/np)) , non-peripheral ex-
traction can also be handled [Emms, 1992]. The
meanings that go along with these categories are as
follows. Where £ is Q, f f or A f, le t / :G vary over the
conventional meanings of quantifiers, junctions and
negation, with £:p the polymorphic version.

£p(t) = £G
Q(a---*b)(pe'-"'~-"~)(x ") = Q(b)(y'---*Pyz)

o) =

who(a)(P~ a)(p~ t)(Qe t)(xe) = P2(P~x) A Q x

I will give two illustrations. The proof below would
allow the embedded quantifier, every man, to be as-
signed a de-re interpretation in John believes every
man walks. Note (s \np) \ ((s \np) / s) : X.

2The (VR) given is a cut-down version of the 'official'
version, which allows a change of bound variable

np, s\np ~ X

nP, (s\np)/s, X =~s s\np =~. ' '~npl:

np, (s\np)/s, X/(X'\np) s\np ::~ s
,¥L

np, (s\np)/s, VX.X/(X\np), s\np ::~ s

Now assuming j , bel, em and walk were the terms
associated with the antecedents of the root sequent,
the term for the proof is:
emp (tel, et) (AxA f A y[f (walk(z))(y)]) (bel)(j)
We obtain as a possible denotation for John believes
every man walks:
e m p (t a , a) (= , / , y ~ f (w a l k (z)) (y)) (b e l) (j)
= e m p (a) (~ , y ~ b~ t (waZk(=)) (y)) (j)
= emp(t) (z ~-* bel(walk(z))(j))
= emG(=

As an illustration of non-peripheral extraction, the
proof below allows the string who John told to go to
be recognised as a postmodifier of a common noun:

s/vpc, vpc =~ s
__ \R

r vpc =~ s \X
D

(c . \ c .) / (s \X) , vpc ca\ca

np, V, np, vpc ::~ s
/L _ ./L

np, V :~ X/np
/L

rip, v , vpc cn\cn
VL

VX.((cn\cn)/(s\X)/(X/np)), rip, V, vpc cn\cn

Here r = cn\cn ~ cn\cn, V -- ((s \np) /vpc) /np ,
= s/vpc. Assuming who, j , told, and go were asso-
ciated with the antecedents of the root, the term for
the proof is:
who((et, t))(AzAy[told(z)(y)(j)l)(A f [f (go)])
We obtain for the denotation of the string who John
told to go:
who((et, t)) (z , y ~ told(z)(y)(j))(f ~ /(go))
= Q, z ~ ((f ~ f(go))((y ~ told(z)(v)(j))) A O(z))
= Q, z ~ (told(z)(go)(j) A Q(z))

For the further discussion of the analyses within
an L (/,\,v) grammar that cover a significant range of
data, see the earlier references. I turn now to the
main problem which this paper addresses: is there
an automatic procedure able to find these analyses ?

2.1 C u t E l i m i n a t i o n fo r L (/,\,v)

We want a procedure to decide whether G ~-s E z,
where G is an L (/,\,v) grammar. As with L(/'\) gram-
mars, this problem reduces to deciding L(/'\'v)~ - r if
it can be shown both that Cut can be eliminated,
and without the loss of any significant semantic di-
versity. This has recently been shown ([Emms and
Leiss, forthcoming]). I make some remarks on the
proof. The strategy of the proof of Cut elimination
for L (/A) starts from the observation that a proof, 7,

122

using Cut must contain at least one use of Cut which
dominates no further uses of Cut - a ' topmos t ' use
of Cut. Suppose this use of Cut derives r. Then
one defines two things: a degree of the Cut leading
to r, and a transformation taking the proof of r to
an alternative proof of r, such that either the trans-
formed proof of r is Cut-free, or it is a proof with
2 or less cuts of lesser degree. After a finite number
of iterations of the transformation, one must have a
cut free proof.

In the proof for L (/ ' \), the degree of a Cut infer-
ence is simply the sum of the numbers of connectives
in the two premises. This cannot be the degree for
L (/ ' \ 'v). For example, a cases to be considered is
where one has a cut of the kind shown in (2). The
natural rewrite is (3) (that T ~ y[a/Z] is provable
relies on the fact that Z is not free in T and substi-
tution for free variables preserves derivability [Emms
and Leiss, forthcoming])

(2) T ~ v VR U, v[~/Z], V ~ WVL
T ~ VZ.y U, VZ.v, V =~ w

Cut
V , T , V =~ w

(3) T ::~ y[a/Z] U, y[a/Z], V =~. w
.Cut

U, T, V =C, w

With degree defined by number of connectives, we
need that the number of connectives in y[a/Z] is
strictly less than the number in VZ.y, and that is
often false. The proof goes through instead by tak-
ing the degree of a cut to be the sum of sizes of the
proofs of its two premises, where the size is the num-
ber of nodes in the proof. 3

2.2 Di f f i cu l t i e s in d e c i d i n g L(/,\,v)}-T ::¢, x

So the problem reduces to one of L (/ ' \ 'v) derivabil-
ity. Whether L (/ ' \ 'v) derivability is decidable I do
not know. The nearest to an answer to this that
the logical literature comes is a result that quanti-
fied intuitionistic propositional logic is undecidable
[Gabbay, 1974]. The difference between L(/,\,v) and
logic of this result is the presence of the further con-
nectives (V, A), and the availability of all structural
rules. I will describe below some of the problems that
arise when some natural lines of thought towards a
decision procedure are pursued.

One might start by considering the logic that is
L(/ ' \)+ (VR). This can be argued to be decidable
in the same fashion as L(/'\): read (VR) backwards
as a rewrite, adding another way to build deduction
trees. As for L((/'\) a sequent has only finitely many
deduction trees, and provability is equivalent to the
existence of a deduction tree with axiom leaves.

~In fact nodes above axiom form sequents are n o t
counted in the size, and the proof relies on changes of
bound variable and substitutions not changing the size
of L(/'\'Y) proofs

However, when (VL) is added this simple argument
will not work: if (VL) is read backwards as a further
claus- ill tile definition of deduction trees, then a
leaf containing an antecedent V could be rewritten
infinitely many different ways. A natural move at.
this point is to redefine deduction trees, reading the
(VL) rule as an instruction to substi tute all unknown.
One hopes then that: (i) the set of so-defined deduc-
tion trees for a given sequent, r, is finite (ii) there is
some easy to check property, P , of these trees such
that the existence of a P- t ree in the set would be
equivalent to L(/,\,v)~-r. Now, if we were considering
the combination of first-order quantification with the
Lambek calculus, this s t rategy works, but whether it
works for n (/ '\,v) remains unknown.

I will go through the application of the strategy in
the first-order case to highlight why g(/,\,v) does not
yield so easily. The first-order quantification plus the
Lambek calculus, I will call L (/ ' \ ,v ') . It is the end-
point of a certain line of thought concerning agree-
ment phenomena. One first reanalyses basic cate-
gories, such as s and np, as being built up by the
application of a predicate to some arguments, giving
categories such as np(3rd,sing), s(fin). It is natural
then to consider quantification over the first order
positions, such as Vp. s(fin)\np(p,pl), which could
be used when, as in English, the plural forms of a
verb are not distinguished according to person. Now
L(/,\,v~) is decidable, which can be shown by adapt-
ing an argument that shows that when the contrac-
tion rule is dropped from classical predicate logic,
it becomes decidable [Mey, 1992]. Deduction trees
for a sequent, r, of L (/'\'v~) are defined so that the
rewrite associated with the (VL) rule substitutes an
unknown. There are then only finitely many deduc-
tion trees (the absence of the structural rule of con-

traction is essential here). Now, if L(/'\ 'v')~--r, and r
has a complex first order term, one can be sure that
this term is present in an axiom, because no rules
build complexity in the places in categories where a
bound variable can occur. For this reason, the so-
defined deduction trees for r cover all the possible
patterns for a proof of r. Provability is therefore
equivalent to the existence of a substitution making
one of the deduction trees have axiom leaves, and
this can be checked using resolution.

This situation does not wholly carry over to
g(/,\,v). The 'substi tute an unknown' rewrite reading
of (VL) defines only finitely many deduction trees for
a sequent, r. However, these so-defined deduction
trees for r do not cover all the possible palterns for
a proof of r: unlike g (/,\'v~), there are rules that
build complexity in the places in categories where a
bound variable can occur. So, for example, L(/'\,v)~ -
no, VX.X/(X\np) , (s \np) \np , but none of the de-
duction trees represents the pat tern of the proof. So
to check for the existence of a deduction tree (as
above defined) that by a substitution would have ax-

123

iom leaves is not sufficient to decide derivability. I t
seems we must defined the looked for property, P ,
of deduction trees recursively, so that a tree has P
if (1) the leaves by a substitution become axioms, or
(2) by hypothesising a connective in one of the un-
knowns, and extending the tree by rewrites licensed
by this connective, one obtains a P-tree.

It would amount to the same thing if the definition
of deduction tree was extended (by hypothesising a
connective in an unknown), and the looked for prop-
erty, P , kept simple: a tree whose leaves by a substi-
tution become axioms. However, the extended def-
inition of deduction tree now allows infinitely many
trees for a sequent. This may seem surprising, but is
seen one considers a leaf such as T ==~ X. One can hy-
pothesis X = Y/Z, extend the deduction tree by the
rewrite associated with a slash Right rule, obtain-
ing once again a leaf with a succedent occurrence of
an unknown. By imposing a control s trategy which
would systematically consider all deduction trees of
height h, before deduction trees of height h + 1, one
can be sure that any provable sequent would sooner
or later be accepted by the decision procedure (be-
cause its provabili ty would entail the existence of a
deduction tree of a certain finite height). However,
there is no reason to expect the procedure to termi-
nate when working on an underivable sequent. 4

3 A p a r t i a l d e c i s i o n p r o c e d u r e f o r

L(/,\,v)

While there are problems in the way of a general de-
cision procedure for L (/'\'V), I claim a partial decision
procedure for L (/ ' \ 'v) is possible. Part ial in the sense
of covering only a certain class of sequents, but one
sufficiently large, I claim, to cover all linguistically
relevant cases. The procedure will be a part ial deci-
sion procedure for L (/,\,v) via being a partial decision
procedure for L(0/'\'v).

To describe the class of sequents that the proce-
dure applies to I need definitions of the 'polar i ty ' of
an occurrence of a category. Let the category polarity
of an occurrence of z in a category y (pol(z, y)) be:

pol(x, z) = +
if z occurs in y, pol(:~,y/z)
pol(x, y) = opp(pol(x, z/y))

= pol(x,VZ.y)

Here opp(+) = - , opp(-) = +. The sequent polarity
of an occurrence of x in y in a sequent r is the same
as the category polari ty if y is an antecedent, and
otherwise it is opposite. I use 'polar i ty ' as short for
'sequent polari ty ' . An example:

(4) sk(V-X.X/(Xknp)) ::~ sk(V+X.X/(X\np))

4I have found non-terminating consecutively bounded
depth first search to happen on the Prolog implementa-
tion of the calculus that these paragraphs suggest

The decision procedure to be described is applica-
ble to sequents whose negative occurrences of poly-
morphic categories are unlimited, but whose positive
polymorphic categories are drawn from:

(5) VX.X/(X\np) , VX.X\(X/np) ,
vx.x/x,
VX.((cn\cn)/(s\X)/(X/np)
vx.((x\x)/x),

I will now make three observations concerning
proofs in L (L\'v), leading up to the definition of the
procedure.

Observation O n e In the categories in (5) there is
exactly one positive and one or two negative occur-
rence of the bound variable. This leads to the pre-
dictable occurrence of certain sequents. To help de-
scribe these I need to define some more terminology.

An initial labelling of a proof is the assignment of
unique integers to some of the categories in some se-
quent of the proof. A completed labelling is got from
an initial labelling by a certain kind of propagat ion
up the tree: a label is passed up when a labelled
category is s imply copied upward, and in a (VL) in-
ference the label is distributed to the occurrences of
the categories chosen for the variable. In other infer-
ences where a labelled category is active, the label is
not passed up. For example:

(6) sl =~s s=~ sl np=~ np s = ~ s
/L .\L

sl /s l , s =~ s up, s\np =~ s

VlX.X/X, s =~ s s\np =~ s\np

vlx.x/x, s\np s

I will say U, ai, V =~ w is 'posit ive for Vi' if the se-

quent occurs in a labelled L (/ ' \ 'v) proof and the label
on ai has been passed f rom a labelled occurrence of
Vi. Correspondingly, call a sequent T ::~ ai 'negative
for Vi'. Now note tha t in the above proof, the Vl in
the root led to one V + and one V~" branch. This is
no accident: one can predict the existence of such
branches in any proof of a sequent with a positive
occurrence of ViX.X/X. To see this, let me first de-
fine a notion reflecting how ' embedded ' a category
is:

path(a, a) = O.
Where a occurs in x, path(a, x/y) - (/,path(a, x)),
path(a,y/z) = (/,path(a,z)), path(a, VZ.x) =
(v, path(a, z))

With the exception of bound variable, if a cate-
gory occurs with a pa th (C,p), and a polari ty 6,
in the conclusion of an inference, then it occurs in
the premises of tha t inference with the same po-
larity, and with either the same pa th or with pa th

p. Also, in leaves of a proof in L (/ ' \ 'v) , categories
only occur with zero path. Therefore, if we have

124

a proof of a sequent with a positive occurrence of
ViX.X/X and with non-zero path, then there must
occur higher in the proof, a sequent with V,.X.X/X
occurring again positively and this time with with
zero-path. In other words there must occur a node U,
ViX.X/X, V =~ w. Then if there were no (VL) infer-
ence in this proof introducing the category ViX.X/X,
the category ViX.X/X would be present in the leaves
of the proof. Because the leaves can only feature ha-
sic categories, there must be a (VL) inference, and
therefore a node U ~, ai /a i , V ~ =~ w ~. Reasoning in a
similar vein concerning the category ai /a i , we can be
sure there must be a (/L) inference, with premises
U ~ , a i , V " = ~ w # and T ~=~a l . These are V + and
V~- sequents.

Provable sequents having a positive occurrence of
one of the polymorphic categories from (5), labelled

with i, will generate an L~/'\'v) proof such that cor-
responding to each of the positive and negative oc-
currences of the bound variable, there are (distinct)
V + and V~- branches.

O b s e r v a t i o n Two We just argued that in any proof
of a sequent with a positive occurrence of quantified
category, there must occur a node at which the quan-
tifier is introduced by a (VL) inference, and that for
the categories in (5), V~ sequents must appear above
this. For each of the V~ sequents, the minimum num-
ber of steps there can be between the conclusion of
the (VL) step and the V~ sequent is the length of
the paths to the associated occurrence of the bound
variable in the quantified category. Proofs featur-
ing such minimum intervals between the quantified
category and the associated V~ sequents I will call
orderly. One can ask the question whether whenever
there is a proof of a sequent whose positive quanti-
tiers are drawn from the list in (5), there is also an
(equivalent) orderly proof. And the answer is that
there is.

Proof sketch We want to show that for any cate-
gory x in (5), for each of the occurrence of a variable
in it, that if there is a proof of U, x, V =~ w, then
there is a proof in which the steps leading from the
lowest occurrence of the relevant V~ sequent to the
(VL) inference correspond to the path to the bound
variable in x.

Let me define the spine of a category as: s p (x / y) =
(/, sp(x)), sp(VZ.x) = (V, sp(x)), sp(x) = O, where
z is basic.

We will show first for categories such that sp(x) =
(V, s lash) , and sp (z) = (s lash l , slash2), that when
there is a proof such that the left inferences for the
first two elements of the spine are separated by n
steps there must be an equivalent proof where they
are separated by n - 1 steps.

One considers all the possibilities for the last in-
tervening step, 1, and shows that the step associ-
ated with the first element of the spine could have

been done before l, thus lowering by 1 the number
of steps intervening between the first two elements
of the spine. There is not the space to show all the
cases. (7), (S) and (9, (10) are representative exam-
ples for sp(w) = (V, sp(x)) . Note that in (9) and (10)
there are side-conditions to the (VR) inferences. Sat-
isfaction of these for (9) entails satisfaction for (10).
(11), (12) and (13),(14) show representative exam-
ples for sp(w) = (slash1, slash2). In (14), X ' is some
variable chosen to be not free in U, x / y / z , T, V and
w. The provability of the upper premise U, x / y , V

w [X ' / X] follows from that of U, z / y , V ~ w by
substitution for the variable X throughout. 5 As to
the equivalence of the proofs, one can confirm that in
the term-associated versions, the same term is paired
with the succedent category in each case.

(7) U, a, V2 =~ w x'/y', V1 =*, b
/L

U, a/b, x ' / y ' , Va, V~ =~ w
"¥L

U, a/b, VZ.x /y , V1, V2 :=~w

(8) E/v', v~ =~ b
.VL

U , a , V2 =~ w V Z. x / y , V1 =~ b
"/L

U, a/b, VZ.x /y , V1, V2 =~ w

(9) U, x'/y', V ~ z
VR

U, z' /y' , V :0 VY.z
.VL

U, YX . z / y , V ~ VY.z

(10) U, s'/y', V =~ z
-¥L

U, VX.z/y, V =~ z
VR

U, VX.z/y, V =~ VY.z

(11) U, a, V =~ w x /y , T2 =~ b
.]L

U, a/b, x /y , T2, V ~ w T1 :* z
/L

U, a/b, x / y / z , T1, T2, V =~ w

(12) z / y , T2 ~ b T1 =~ z
/L

U, a, V m, w x /V / z , T1, T2 ~ b
/L

U, a/b, x / y / z , T1, T~, V =*, w

(13) U, x /y , V ~ w
VR

V, x /y , Y ~ V Y w [Y / X] T =~ z
./i

U, z / y / z , T, V ~ V Y w [Y / X]

U, z / y , Y =~ w [X ' / Z] T =~ z
./L

U, x / y / z , T, V ~ w [X ' l X]
'VR

U, x / y / z , T, V ~ V Y w [Y / X]

(14)

5Here the 'full' version of (VR) is being used, incorpo-
rating a change of bound variable. See earlier footnote.

125

This is enough to show orderly proofs for
VX.X/X and VX.(X\X)/X. For VX.X/(X\np) and
VX.((cn \cn) / (s \X) / (X/np)) we must further show
that if there is a proof of T =~ x / y whose last step is
not a (/R) inference introducing x /y , then there is
an equivalent proof whose last step is a (JR) infer-
ence introducing ~./y. One can show this by showing
if there is a proof whose last two steps use (/R) fol-
lowed by some rule *, then there is an equivalent
proof reversing that order. (15) and (16) illustrate
this.

(15) U, a, V, y ~ x
/R

U , a , V ~ x / y T ~ b
/n

U, a/b, T, V ~ z / y

(16) U, a, V, y =~ x T =~ b
/L

U, a, T, V, y ~

U, a/b, T, V =~ x / y /R

So much by way of a sketch of a proof. I will
put the fact that orderly proofs exist to the follow-
ing use. For sequents whose positive quantifiers are
drawn from the list in (5), one can be sure that if they
have proofs at all, they have a proofs which instan-
tiate quantifiers 'one at a time'. One at t ime in the
sense that once a there is a (VL) inference, one can
suppose there will be no more (VL) on the branches
leading to the first occurrences of a V~ sequents.

O b s e r v a t i o n T h r e e Bearing in mind Observation
One, the question whether a given choice, hi, for the
value of the quantified variable is a good one will
come to depend, sooner or later, on the derivability,
of a certain set of V/6 sequents, containing one V~
sequent and one or two V~- sequents. In relation to
this consider the following:

Fac t 1 (U n k n o w n e l i m i n a t i o n) (i) and (ii) are
equivalent
(i) There is an x such that L(/ , \ ,v)[-U,x,V ~ w,
Ti ~ z , T , ~ z
(it) L(/'\'v)~-U, Ti, V =¢, w, . . . , U, T , , V =:~ w

The proof of this, from left to right uses
Cut and Cut-Elimination. For example, from
L(/,\,v)~-U, x, V =¢. w, L(/,\,v)~-Ti =¢, x, we deduce
L(/'\'V)+ Cut ~-U, Ti, V ~ w. Therefore by Cut
elimination, L(I,\,v)~U, T1, V ~ w. For the right
to left direction, let me say that (w \ U) / V is a
shorthand for (w\u i . . . \ u s) /v,, . . . / v i . We
choose the x to be (w \ U) / Y . Clearly for
this x, L(I,\ ,v)~-U,x,V ~ w. Also each of the
claims L(/,\,v)~-T/ =~ x, follows from the assumed
U, 7 ~ , V ~ w , simply by sufficiently many slash
Right inferences.

On the basis of these observations, I suggest the

following decision procedure: 6

D e f i n i t i o n 1 (D e c i s i o n p r o c e d u r e) Where A, r
vary over possibly empty sequences of sequents, let a
rewrite procedure 7~ be defined as follows

1. A, z =t, x, r .,~ A, r , where x is atomic
2. A, T :=~ w, r .,., A , O, r , if T "=~ w follows

from 0 by some rule of L(/'\ 'v) other than O/L)
3. A, U, VZ.z, V =~ w, r ~ A, z [x /Z] , V =~ w, r ,

where X is an unknown, and there are no other
unknowns in A , U, VZ.z , V ::~ w, r

4. A , U,X,V =~ w, Tx =~ X , T , ~ X , r
..~ A U, T1, V =¢, w, . . . , U, Tn, V ~ w, r

A sequent T ~ w is accepted iff the sequence con-
sisting of just this sequence can be rewritten to the
empty sequence by 7¢.

The fourth clause slightly oversimplifies what I in-
tend in the two respects that (i) the rewrite can apply
when the U, X, V =¢, w, T1 =¢, X, . . . , T , =¢, X occur
dispersed in any order through the sequence, and (it)
it can only apply if the unknown X does not occur in
sequents other than those mentioned. Note because
of clause 3, there will only ever be one unknown in
the state of the procedure. This corresponds to Ob-
servation Two above. I will show that this procedure
is terminating and correct when applied to sequents
whose positive quantifiers are drawn from (5). By
correctness of the procedure, I mean that the pro-
cedure accepts r i f f L(/,\,V)]--r. The implication left
to right I will call soundness, and from right to left
completeness.

There is a term associated version of this deci-
sion procedure, rewriting a pair consisting of a set
of equations, and a sequence of term-associated se-
quents. On the basis of the discussion earlier, for
the most part the the reader should be able to eas-
ily imagine what embellishments are required to the
clauses of the rewrite. I will just give the full version
of the Clause 4 rewrite. The input will be:
Equations:E
Sequence: A, U : ~7,_. X:@I, V : ~' =t, w : @2, Ti : t~
:~ X:~l, . . . , Tn : tn ::~ X:q/n, r

The output will be:
Equations:E plus ¢2 = (]~I(~-~)(U), I I /1 - -)tV~'tA~tI#i,
. . . , ~ , = ~ u ~ "
Sequence: A, U : ~ , T1: 4 , V : ~ =~ w : @], . . . ,
U : u n , T n : ~ , V : ~ =¢, w : ~ , r

3.1 T e r m i n a t i o n

If there are any rewrites possible for a sequence there
at most finitely many. So we require that no rewrite
series can be infinitely long. Call the sequents fea-
turing an unknown a linked set. At any one time

nSince writing this paper, I have discovered that the
above observation concerning unknown elimination have
been made before [Moortgat, 1988], [Benthem, 1990].
This will be further discussed at the end of the paper

126

there is at most one linked set. Let the degree, d, of
a sequence be the total number of connectives. All
rewrites on a sequence that has no linked set lower
the degree. So rewriting can only go on finitely long
before it stops or a linked set is introduced. A linked
set is introduced by a clause 3 rewrite, introducing
an unknown into some particular sequent. Call this
the input sequent. While the sequence contains a
linked set, either the degree of the whole sequence
goes down, and the sequence remains one containing
a linked set (clause 1, clause 2), or the sequence be-
comes one no longer containing a linked set (clause
4). So a rewrite can only go on finitely long before
it either stops, or has a phase where a linked set
is introduced and then eliminated. Call the sequents
which result from the elimination of the unknown in a
clause 4 rewrite, the oulpul sequents. Now consider-
ing any such phase of unknown introduction followed
by elimination, one can say that the count of posi-
tive quantifiers in the input sequent must be strictly
greater than the count of positive quantifiers in any
of the outputs. This, taken together with the fact
that the m a x i m u m count of positive quantifiers is
never increased outside of such phases, means that
there can only by finitely many such phases in a
rewrite.

3.2 S o u n d n e s s

We show that if the procedure accepts a sequence
of n sequents (n > 1), then there is substitution for
the unknowns such that there are n proofs of the n
substi tuted for sequents. This subsumes soundness,
which is where n = 1 and there are no unknowns. I
shall use sub(A) to refer to the sequence of sequents
got from A by some substitution for the unknowns in
A, and L(/,\,v)~-A for the claim that there are proofs
of each of the sequents in A

The proof is by induction on the length of the
shortest accepting rewrite. When the shortest ac-
cepting rewrite is of length 1, the sequence must con-
sist simply of an axiom, and so there is a proof. Now
suppose the s ta tement is true for all sequences whose
shortest accepting rewrite is less than 1. Then for se-
quences whose shortest accepting rewrite is of length
l, we consider case-wise what the first rewrite might
be.
• clause 2 rewrite, for example: A, U, z/y, T, V ~ w,
F .,.* A, U,x, V =~. w, T ::~ y, F. A, U,x, V ~ w,
T ::~ y, r must have a shortest accepting rewrite
of length < l, so by induction there is a substitu-
tion such that L(/,\,v)~-sub(A), sub(U,x,V =~ w),
sub(T ::V y), sub(r). From this it follows that
L(/,\,V)Fsub(A), sub(U,z/y,T, V ~ ~), sub(r).
The other possibilities for clause 2 rewrites work in
a similar way
• clause 3 rewrite: A, U, VZ.x ,V=~w, F
~.~ A, U,x[X/Z], V =~ w, A. By induction
there is a substitution such that L(l'\'v)~-sub(A),
sub(U,.x[X/Z], Y ::V w, sub(A). Let sub' be the sub-

stitution that differs from sub simply by substitut-
ing nothing for X. sub'(VZ.x) -- VZ(sub'(x)), and
sub(x[X/Z]) = subt(x)[sub(X)/Z]. I t follows that
L(/,\,v)~-sub'(~), sub'(U, VZ.~, V ~ ~), sub'(F)
* clause 4 rewrite. A, U , X , V : : ~ w , T1 ::~X, . . . ,
Tn ~ X, r ..~ A U, T1, V =v w, . . . , U, Tn, V =V w
r . By induction: L(/,\,v)~-sub(A),
sub(U, T1, V =~ w,. . . , U, T,, V : , w), sub(r). Let
sub' be the substitution that differs from sub sim-
ply by substi tuting for X, sub(w\U/V). Clearly
L(/,\,v)~ - sub'(U,X,V=~w). Also for each T~,
it follows from L(/,\,v)~-sub(U, Ti, V :=0 w) that
L(/,\'v)~-sub'(Ti =~ X). Hence L(/,\,v)~-subl(A),
sub'(U, X, V =~ w), sub'(T1 =~ X), . . . , sub'(T, ::~ X),
sub'(r) []

3.3 C o m p l e t e n e s s

I will now show completeness for sequents whose pos-
itive polymorphic categories are drawn from (5).

By a frontier, f , in a proof, I will mean either the
leaves of that proof or the leaves of a subtree having
the same root. Given a frontier f in a proof p, which
has some completed labelling, the procedure will be
said to be in a state s that corresponds to f , if the
state and the frontier are identical except that (i) s
may have some axioms deleted as compared with f ,
and (ii) the occurrences of labelled, non-quantified
ai in f , are transformed to occurrences of some un-
known in s. Given a state s, I will say that a frontier,
f , is accessible if there is a state corresponding to f
that the procedure may reach from s.

I assume the procedure is complete for unknown-
free sequents whose positive quantifier count is zero. 7
Now suppose the procedure is complete for unknown-
free sequents whose positive quantifier count is less
than some particular n, and consider a sequent r, of
positive quantifier count n, with some proof, p, and
one of the form remarked upon in Observation Two.
There will be (VL) inferences in this proof, amongst
which is a set lower than any others. Take the con-
clusion of one such (VL) inference, U, VX.y, V ==~ w
and from all other branches pick a point not above a
(VL) inference. This set of points forms a frontier, f ,
which is accessible if the procedure starts at r. Call
the corresponding state s. The sequents in the state
other than U, VX.y, V =~z w are unknown-free, have
a positive quantifier count of less than n, and have
a proof, and so by induction the procedure is com-
plete for them. So there is a possible later s tate s I
which consists solely of the sequent U, VX.y, V ~ w.
We now focus on the subproof of p that is rooted in
U, VX.y, V =~ w. Consider VX.y as labelled with i,
and labelling to have been propagated up the tree. I
want to define a certain accessible frontier, if , in this
tree. There are a certain finite number of branches
ending in U, VX.y, V ::~ w. A certain subset of those

7I am of course assuming that all these positive quan-
tified categories are drawn from the list in (5)

127

branches lead to V~ sequents, and without any in-
tervening (VL) inferences. Select for the frontier f '
tile lowest occurrences for the V~ sequents. From
the other branches simply select a set of nodes, P,
which is not preceded by a (VL). This frontier is ac-
cessible, and the corresponding state is: U, Xi, V
=2,, w, T1 z=~ Xi, . . . , Tn ~ Xi. By a clause 4 rewrite

this leads to: U, T1, V =~ w, . . . , U, T,, V ~ w. This
state is unknown free, each of the sequents has pos-
itive quantifier count less than n, and each has a
proof. So by induction, the procedure is complete for
each of the sequents, and the state may be rewritten
to O" []

4 I m p l e m e n t a t i o n

We can with respect to the term-associated version
of the decision procedure ask whether it is semanti.
cally comprehensive: whether the procedure assigns,
up to logical equivalence, exactly the same terms to
a sequent as are assigned to it by the declarative defi-
nition of an L(/,\'v) grammar. Some but not all parts
of what is necessary for a proof of this are established
- that Cut elimination for L (/'\'v) preserves readings,
that restriction to orderly proofs loses no readings.
However, for the moment, the claim rests ultimately
on empirical evidence, drawn from the prolog imple-
mentation that I will now describe. I will describe
the implementation as additions/alterations to the
earlier mentioned Laln.

First, it was noted in Observation Two, that one can
insist in proof search that Slash right rules are used
as soon as their application become possible: this
early use of Slash right rules is the first modification
of Lain. For the sake of the discussion, assume it is
done by adding to non Slash right rules a check on
the absence of a slash in the succedent.

Second, a conditional for (VL) is added:

seq([U,pol(X,Y):Terral,V],W:Terra2):-
groundseqC[U,pol(X,Y):Tez~l,V],

W:Term2),
substituteCXl,X,Y,Yl), ~ Y1 is Y[XI/X]
mark(Y1,Y2),
seq([U,Y2:Terml(Ty),V],W:Term2) ,
cat totype(X1,Ty) .

Note, polymorphic categories appear as terms such
as po l (x ,x /x) . The code is in a simplified form,
pretending that [U, X, V] matches any list that is the
appending together of the lists U, fX] and V, where in
reality there are further clauses taking care of this.
The conditional basically substitutes an unknown for
a quantified variable. Prior to the substitution there
is a check, groundseq, that the categories in the goal
do not already feature some syntactic unknown. Sub-
sequent to substitution, the mark relation leads to
the replacement of the positive occurrence of the un-

known Xl with (Xl,a) .

Third, a goal featuring a zero-path occurrence of
(Xl, a) :Term matches no standard sequent rule, be-
cause of the marking, matching instead an 'argument
stacking' conditional:

seqC[U:[~,CX,a) :F,V:~ ~] ,W:Tena) :-
x = (w \u) /v , Tez~ = FC~)Cr~)

Fourth, sequents featuring the marked version of the
unknown are dealt with before sequents featuring the
unmarked (negative) instances of the unknown, by
ordering the major premise before the minor in the
conditionals for the Slash Left rules.

To illustrate I will 'trace' the behaviour of the pro-
gram on the goal given as 1 below (tv stands for
(s\np)/np

1. s e q ([n p : f , t v : g , p o l C x , x \ (x / n p)) : h] , s : T)
2. s e q ([n p : f , t v : g , (X i , a) \ (X l / n p) : h (T y)] ,
s:T)
3. s e q ([n p : f , (X l , a) : h (T y) (T 1)] , s : T)
4. Xl = sknp, T : h(Ty)(T1)(f)
5. s eq ([(s \np) /np :g] ,s\np/np:T1)
6. TI =)~x ~y g(x)(y)
7. c a t t o type (s \np ,Ty)
8. Ty = (e,t)
9. T = h (C e , t)) (I x ~y gxy) (f)

1 matches against the (VL) clause. The check that
there are no syntactic unknowns around is success-
ful, and after substitution and marking, we reach the
subgoal shown as 2, which introduces the new un-
knowns Xl and Ty. 2 matches against the (\L) clause,
the first subgoal of which is the major premise, shown
as 3, with the new unknown T1 (if we could pick
the minor premise, we would have non-termination).
3 matches only the 'argument stacking' conditional,
giving a solution for Xl and solving T in terms of Ty
and T1, as shown in 4. The second subgoal of 2 is
then considered, under the current bindings, which
is 5. 5 will solve via a combination of slash Left and
slash Right rules, giving the solution for T1 shown in
6. 2 is now satisfied, and the final subgoal of 1 is
considered under the current bindings, which is 7. 7
solves with the solution for Ty shown in 8. 1 is now
satisfied, and the solution for T is shown in 9 (recall
in 4, T was expressed in terms of Ty and T1).

Space precludes giving a formal argument that this
Prolog implementation and the foregoing decision
procedure correspond, in the sense that they suc-
ceed and fail on the same sequents, and assign the
same terms. By way of indication of the behaviour
of the implementation, and in particular its seman-
tic comprehensiveness, I give below some examples
of what the implementation does by way of assigning
readings. In all but the last two cases the task is to
reduce to s. For the last two it is to reduce to cn.

128

(17) a. every man walks (I)
b. every man loves a woman (2)
C. John believes Mary thinks every man walks
(3)
d. every man a woman 2 flowers (0)
e. every man loves a woman 2 flowers (0)
f. every man gave a woman 2 flowers (6)
g. (omdat) John gek en Mary dom is (1)
h. man who John told to go (1)
i. man who John told Mary to go (0)

5 C o n c l u d i n g r e m a r k s

To pick up on an earlier footnote, I have discovered
since writing this paper that Benthem and Moort-
gat have shown decidable, by using what I have re-
ferred to as Unknown Elimination, the system which
is L(/'\) with an added rule of 'Boolean Cut':

U,x,V ~ w TI ~ x T2 ~ x
-Bool.Cut

U, T1,J,T2,V =~ w

The question arises then of the relation between
their work and what has been proposed in this paper.
At the very least, I hope to have shown that there is
lurking in this Unknown Elimination technique, an
approach not only to coordination, but also to quan-
tifier scope ambiguity and non-peripheral extraction.
The main difference between the decision procedure
for L (/'\'v) and that for L(/,\)+ Bool.Cut is that the
Unknown Elimination technique is put to work on se-
quents which do not arise from special purpose Cut
rules, but simply by the elimination of categorial con-
nectives from certainkinds of categories containing
unknowns. This introduces some intricacies into the
proof of completeness, which the observation con-
cerning orderly proofs was used to deal with.

As to the scope of the decision procedure, this
ought to have a more general specification than that
which has been given here, though I have not yet
found it. A plausible seeming idea is that there
should be one positive and several negative occur-
rences of a bound variable. However, this includes a
category such as VX.s/(X/X), and a proof featuring
this category is not guaranteed to produce separate
V ~ sequents.

A direction for future research would be to in-
vestigate the possibility of combining this approach
to quantification, coordination and extraction with
non-categorial accounts of other aspects of a lan-
guage. The idea would be to use such a non-
categorial grammar as an extended axiom base. If
this turned out to be feasible then we would have an
attractively portable account of quantification, coor-
dination and extraction.

R e f e r e n c e s

[Benthem, 1990] Johan van Benthem. Categorial

Grammar meets unification. In Unification for-
malisms: syntax, semantics and implementation,
J.Wedekind et al.(eds.).

[Emms, 1989] Martin Emms. Polymorphic Quanti-
tiers. In Proceedings of the Seventh Amsterdam
Colloquium, pages 139-163, Torenvliet, M. S. L.
(ed.), Institute for Language, Logic and Informa-
tion, Amsterdam, December 1989.

[Emms, 1991] Martin Emms. Polymorphic Quanti-
tiers. In Studies in Categoriai Grammar Barry, G.
and Morrill, G. (eds.) , pages 65-112, Volume 5 of
Working Papers in Cognitive Science, 1991, Edin-
burgh, Centre for Cognitive Science.

[Emms, 1992] Martin Emms. Logical Ambiguity.
PhD Thesis, Centre of Cognitive Science, Edin-
burgh.

[Emms and Leiss, forthcoming] Martin Emms and
Hans Leiss. Cut Elimination for Polymorphic
Lambek Calculus. CIS Technical Report, forth-
coming.

[Gabbay, 1974] Dov Gabbay. Semantical Investiga-
tions in Heyting's Intuitionistic Logic Dordrecht:
Reidel.

[Girard, 1972] :I. Y. Girard. Interpreta-
tion Fonctionelle et Elimination des Coupres de
L'Arithmetique d'Order Superieur. PhD Thesis.

[Hendriks, 1989] Herman Hendriks. Cut Elimination
and Semantics in Lambek Calculus Manuscript
available from University of Amsterdam. To ap-
pear in his PhD thesis 'Studied Flexibility'.

[Lambek, 1958] Joachim Lambek. The mathemat-
ics of sentence structure. American Mathematical
Monthly, 65:154-170, 1958.

[Mey, 1992] Daniel Mey. Investigations on a Calcu-
lus Without Contractions. PhD Thesis, Swiss Fed-
eral Institute of Technology, Zurich.

[Moortgat, 1988] Michael Moortgat. Categorial In-
vestigations: Logical and Linguistic Aspects of the
Lambek Calculus. Dordrecht: Forts Publications.

[Moortgat, 1989] Michael Moortgat. Unambiguous
proof representations for the Lambek Calculus.
In Proceedings of the Seventh Amsterdam Collo-
quium, pages 389-401, Torenvliet, M. S. L. (ed.),
Institute for Language, Logic and Information,
Amsterdam, December 1989.

[Reynolds, 1974] :I.C Reynolds. Towards a theory of
type structure. In Colloquium sur la programma-
tion, 1974, pages 408-423.

129

